JPH02299271A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH02299271A
JPH02299271A JP12082789A JP12082789A JPH02299271A JP H02299271 A JPH02299271 A JP H02299271A JP 12082789 A JP12082789 A JP 12082789A JP 12082789 A JP12082789 A JP 12082789A JP H02299271 A JPH02299271 A JP H02299271A
Authority
JP
Japan
Prior art keywords
semiconductor substrate
oxide film
source
drain diffusion
gate oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12082789A
Other languages
Japanese (ja)
Inventor
Takaaki Shimazaki
嶋崎 隆章
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP12082789A priority Critical patent/JPH02299271A/en
Publication of JPH02299271A publication Critical patent/JPH02299271A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make a restraint on a hot carrier effect by a method wherein a channel region is provided above a source and and a drain diffusion layer, and a position at which an intermediate impurity concentration region becomes the highest in concentration is so set to be located distant from an interface between a semiconductor substrate and a gate oxide film. CONSTITUTION:A channel region is provided above source and drain diffusion layers 6, and an intermediate impurity concentration region 5 becomes the highest in concentration at a position which is so set to be located inside a semiconductor substrate 1 and distant from an interface between the semiconductor substrate 1 and a gate film 2. Therefore, the maximum point of impact ionization induced by an intense electrical field near drain is made distant from the interface between the semiconductor substrate 1 and the gate oxide film 2, and the intermediate impurity concentration region 5 is formed just under a gate electrode 3 so as to moderate the intensity of the electrical field of a point where impact ionization is liable to occur by the electrical field induced by the gate electrode 3. By this setup, hot carriers injected into the gate oxide film 2 or a side wall spacer 4 can be lessened in quantity, so that the effect of hot carriers can be restrained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、ホットキャリヤ効果を抑制し、高速動作を実
現することの可能な半導体装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a semiconductor device that can suppress hot carrier effects and realize high-speed operation.

従来の技術 近年、半導体集積回路の高集積化に伴い半導体装置の微
細化が進んでいる。その過程でホットキャリヤ効果によ
る素子特性の劣化が大きな問題となってきた。
2. Description of the Related Art In recent years, as semiconductor integrated circuits have become more highly integrated, semiconductor devices have become increasingly finer. In this process, deterioration of device characteristics due to hot carrier effects has become a major problem.

以下に、従来から使用されているLDD構造と呼ばれる
半導体装置について説明する。
Below, a conventionally used semiconductor device called an LDD structure will be described.

第4図はLDD構造のNチャネルトランジスタの半導体
装置の要部断面図である。第4図において、1はシリコ
ン等の半導体基板、2はシリコン酸化膜等のゲート酸化
膜、3は多結晶シリコン等のゲート電極、4はHTO膜
等のサイドウオールスペーサ、5は中濃度不純物領域、
6はソース・ドレイン拡散層である。第5図は、第4図
のAB断面の半導体基板1中の不純物濃度分布である。
FIG. 4 is a sectional view of a main part of a semiconductor device of an N-channel transistor having an LDD structure. In FIG. 4, 1 is a semiconductor substrate such as silicon, 2 is a gate oxide film such as a silicon oxide film, 3 is a gate electrode such as polycrystalline silicon, 4 is a sidewall spacer such as an HTO film, and 5 is a medium concentration impurity region. ,
6 is a source/drain diffusion layer. FIG. 5 shows the impurity concentration distribution in the semiconductor substrate 1 taken along the line AB in FIG. 4. FIG.

なお、中濃度不純物領域5はゲート電極3をマスクにし
てリンイオンP+をイオン注入することによって形成さ
れ、ソース・ドレイン拡散層6はゲート電極3並びにサ
イドウオールスペーサ4をマスクにして砒素イオンAs
+をイオン注入するこ七によって形成される。
Note that the medium concentration impurity region 5 is formed by implanting phosphorus ions P+ using the gate electrode 3 as a mask, and the source/drain diffusion layer 6 is formed by implanting arsenic ions As using the gate electrode 3 and sidewall spacers 4 as a mask.
It is formed by implanting + ions.

ソース・ドレイン間に電圧を印加した時、中濃度不純物
領域5において空乏層が大きく広がることによって、高
電界が緩和され、ホットキャリヤ効果をある程度抑制す
ることができる。
When a voltage is applied between the source and the drain, the depletion layer expands greatly in the medium concentration impurity region 5, thereby relaxing the high electric field and suppressing the hot carrier effect to some extent.

発明が解決しようとする課題 しかしながら、従来の半導体装置では、ドレイン近傍の
基板表面付近で高電界が発生するため、この電界によっ
て生じたホットキャリヤがゲート酸化膜2やサイドウオ
ールスペーサ4中に注入され、しきい値電圧およびサブ
スレッショルド係数の増加や相互コンダクタンスの減少
といったホットキャリヤ効果があられれ、素子特性が経
時的に劣化するといった問題があった。
Problems to be Solved by the Invention However, in conventional semiconductor devices, a high electric field is generated near the substrate surface near the drain, so hot carriers generated by this electric field are injected into the gate oxide film 2 and the sidewall spacer 4. However, hot carrier effects such as an increase in the threshold voltage and subthreshold coefficient and a decrease in mutual conductance occur, which causes the device characteristics to deteriorate over time.

本発明は前記従来の課題を解決するもので、ゲート酸化
llI2やサイドウオールスペーナ4中に注入されるホ
ットキャリヤの量を低減し、ホットキャリヤ効果を抑制
することができる半導体装置を提供することを目的とす
る。
The present invention solves the above-mentioned conventional problems, and provides a semiconductor device that can reduce the amount of hot carriers injected into the gate oxide llI2 and the sidewall spanner 4, and suppress the hot carrier effect. With the goal.

課題を解決するための手段 この目的を達成するために本発明の半導体装置は、ソー
ス・ドレイン拡散層より上方にチャネル領域を備え、ド
レイン拡散層付近の中濃度不純物領域の最大濃度の位置
がソース・ドレイン拡散層の上限より下方にくるように
構成されている。
Means for Solving the Problems To achieve this object, the semiconductor device of the present invention includes a channel region above the source/drain diffusion layer, and the position of maximum concentration of the medium concentration impurity region near the drain diffusion layer is located at the source. - It is configured to be below the upper limit of the drain diffusion layer.

作用 この構成によって、中濃度不純物領域の不純物濃度が最
大となる位置を半導体基板とゲート酸化膜の界面から離
して半導体基板内部に形成でき、ドレイン付近の高電界
によって起こる衝突電離の最大点を半導体基板とゲート
酸化膜の界面から遠ざけることができる。しかも中濃度
不純物領域をゲート電極の真下に形成することができる
ので、衝突電離の起こりやすい点の電界強度をゲート電
極からの電界によって緩和することができる。その結果
、ゲート酸化膜やサイドウオールスペーサ中に注入され
るホットキャリヤの量を低減することができ、ホットキ
ャリヤ効果を抑制することができる。
Effect With this configuration, the intermediate concentration impurity region can be formed inside the semiconductor substrate by separating the position where the impurity concentration is maximum from the interface between the semiconductor substrate and the gate oxide film, and the maximum point of impact ionization caused by the high electric field near the drain can be located within the semiconductor substrate. It can be kept away from the interface between the substrate and the gate oxide film. Moreover, since the intermediate concentration impurity region can be formed directly under the gate electrode, the electric field strength at points where impact ionization is likely to occur can be alleviated by the electric field from the gate electrode. As a result, the amount of hot carriers injected into the gate oxide film and sidewall spacers can be reduced, and the hot carrier effect can be suppressed.

さらにゲート電極とソース・ドレイン拡散層の距離が太
き(なるため、ゲート電極とソース・ドレイン拡散層間
の帰還容量を小さくすることができ、高速化をはかるこ
とができる。
Furthermore, since the distance between the gate electrode and the source/drain diffusion layer is wide, the feedback capacitance between the gate electrode and the source/drain diffusion layer can be reduced, and the speed can be increased.

実施例 以下、本発明を、一実施例により、図面を参照しながら
説明する。
EXAMPLE Hereinafter, the present invention will be explained by way of an example with reference to the drawings.

第1図は本発明の一実施例におけるNチャネルトランジ
スタの半導体装置の要部断面図である。
FIG. 1 is a sectional view of a main part of a semiconductor device of an N-channel transistor in one embodiment of the present invention.

第1図において、1はシリコン等の半導体基板、2はシ
リコン酸化膜等のゲート酸化膜、3は多結晶シリコン等
のゲート電極、4はHTO膜等のサイドウオールスペー
サ、5は中濃度不純物領域、6はソース・ドレイン拡散
層で、これらは従来例の構成と同じである。なお、第2
図は、第1図のAB断面の不純物濃度分布である。
In FIG. 1, 1 is a semiconductor substrate such as silicon, 2 is a gate oxide film such as a silicon oxide film, 3 is a gate electrode such as polycrystalline silicon, 4 is a sidewall spacer such as an HTO film, and 5 is a medium concentration impurity region. , 6 are source/drain diffusion layers, which have the same structure as the conventional example. In addition, the second
The figure shows the impurity concentration distribution of the AB cross section in FIG.

第1図において、半導体基板1上にゲート酸化膜2およ
びゲート電極3を形成した後、ソース・ドレイン拡散層
6となるべき位置の半導体基板1の表面を、ゲート電極
3をマスクにしてチャネルの深さとほぼ同じ厚みの約1
0nmだけドライエツチングする。この工程は、選択酸
化膜成長を行い、ついで同酸化膜を除去することによっ
て行なってもよい。次に、中濃度不純物領域5の形成の
ため、リンイオンP+を60KeV、5X 10”el
m −2でイオン注入する。ソース・ドレイン拡散層6
の形成のため、サイドウオールスペーサ4を形成のあと
、ゲート電極3並びにサイドウオールスペーサ4をマス
クにして砒素イオンAs十を40K e V 、 4 
X 10”c+*−2でイオン注入する。その後900
℃、150分のアニールを施す。このアニールによって
不純物は3次元的に拡散するから、下方のみならず上方
にも拡散する。つまり、中濃度不純物領域5の一部は半
導体基板1の内部から表面に向かって拡散しチャネル領
域と接触するようになる。
In FIG. 1, after forming a gate oxide film 2 and a gate electrode 3 on a semiconductor substrate 1, the surface of the semiconductor substrate 1 at the position where the source/drain diffusion layer 6 is to be formed is formed into a channel using the gate electrode 3 as a mask. Approximately 1 thick, approximately the same thickness as the depth.
Dry etching by 0 nm. This step may be performed by selectively growing an oxide film and then removing the oxide film. Next, to form the medium concentration impurity region 5, phosphorus ions P+ were heated at 60KeV and 5X 10”el.
Ion implantation is performed at m −2. Source/drain diffusion layer 6
After forming the sidewall spacer 4, arsenic ions (As) were injected at 40K e V, 4 using the gate electrode 3 and the sidewall spacer 4 as masks.
Ion implantation at X 10"c++-2. Then 900
Annealing is performed at ℃ for 150 minutes. This annealing causes impurities to be diffused three-dimensionally, so that they are diffused not only downward but also upward. That is, a portion of medium concentration impurity region 5 diffuses from the inside of semiconductor substrate 1 toward the surface and comes into contact with the channel region.

以上の製造工程によって、第2図に示すように、中濃度
不純物領域5の不純物濃度が最大となる位置を半導体基
板1とゲート酸化膜2の界面から遠ざけて設定すること
ができる。
Through the above manufacturing process, as shown in FIG. 2, the position where the impurity concentration of medium concentration impurity region 5 is maximum can be set away from the interface between semiconductor substrate 1 and gate oxide film 2.

前記のプロセス条件と同一の条件で本発明の半導体装置
と従来例の半導体装置をつくり、ゲート電極に2V、ド
レインに5v印加した時のドレイン付近における衝突電
離の最大の位置を比較すると、本発明の方が約50nm
だけ半導体基板1内部に押しやられている。
A semiconductor device of the present invention and a conventional semiconductor device were manufactured under the same process conditions as described above, and when 2V was applied to the gate electrode and 5V was applied to the drain, the maximum position of impact ionization near the drain was compared. is about 50 nm
1 is pushed inside the semiconductor substrate 1.

ホットキャリヤがゲート酸化膜2やサイドウォ−ルスペ
ーサ4中に注入される確率PはP=exp(−φ/に/
T)e xp(−x/λ)但し φはホットキャリヤが
半導体基板1とゲート酸化膜2の界面を乗り越えるのに
要するエネルギー。
The probability P that hot carriers are injected into the gate oxide film 2 and the sidewall spacers 4 is P=exp(-φ//
T) e xp (-x/λ) where φ is the energy required for hot carriers to overcome the interface between semiconductor substrate 1 and gate oxide film 2.

kはボルツマン定数。k is Boltzmann's constant.

Tはホットキャリヤの温度。T is the temperature of the hot carrier.

Xはホットキャリヤが界面まで到達するのに進む道のり
X is the path taken by hot carriers to reach the interface.

λはホットキャリヤの平均自由行程。と表現することが
できる。φ、Tを一定とし、λ=7.3nmとすると、
衝突電離の最大の位置が約50nmだけ半導体基板1内
部に押しやられることによって、ホットキャリヤがゲー
ト酸化膜2やサイドウオールスペーサ4中に注入される
確率は1/1000だけ小さくなる。
λ is the mean free path of hot carriers. It can be expressed as When φ and T are constant and λ=7.3 nm,
By pushing the maximum position of impact ionization into the semiconductor substrate 1 by about 50 nm, the probability that hot carriers will be injected into the gate oxide film 2 and the sidewall spacers 4 is reduced by 1/1000.

したがって、本発明の半導体装置によって、ゲート酸化
膜2やサイドウオールスペーサ4中に注入されるホット
キャリヤの量を低減し、ホットキャリヤ効果を抑制する
ことができる。
Therefore, with the semiconductor device of the present invention, the amount of hot carriers injected into the gate oxide film 2 and the sidewall spacers 4 can be reduced, and the hot carrier effect can be suppressed.

なお、上記実施例ではサイドウオールスペーサ4を用い
て中濃度不純物領域5とソース・ドレイン拡散層6を形
成したが、他の実施例として、第3図の断面図に示すよ
うに、サイドウオールスペーサ4を用いずに、ソース・
ドレイン拡散層6とチャネル領域の段差の部分で中濃度
不純物領域5を形成してもよい。
In the above embodiment, the medium concentration impurity region 5 and the source/drain diffusion layer 6 were formed using the sidewall spacer 4. However, in another embodiment, as shown in the cross-sectional view of FIG. Source without using 4.
The medium concentration impurity region 5 may be formed at the step between the drain diffusion layer 6 and the channel region.

発明の効果 本発明によれば、ソース・ドレイン拡散層より上方にチ
ャネル領域を設け、ドレイン拡散層付近の中濃度不純物
領域の最大濃度の位置がソース・ドレイン拡散層の上限
より下方にくるように設定することによって、ホットキ
ャリヤ効果を抑制することができる優れた半導体装置を
実現できる。
Effects of the Invention According to the present invention, the channel region is provided above the source/drain diffusion layer, and the maximum concentration position of the medium concentration impurity region near the drain diffusion layer is located below the upper limit of the source/drain diffusion layer. By setting this, an excellent semiconductor device that can suppress the hot carrier effect can be realized.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は本発明の一実施例における半導体
装置の要部断面図およびその要部の不純物濃度分布、第
3図は本発明の他の実施例装置の断面図、第4図、第5
図は従来の半導体装置の断面図、不純物濃度分布である
。 1・・・・・・半導体基板、2・・・・・・ゲート酸化
膜、3・・・・・・ゲート電極、4・・・・・・サイド
ウオールスペーサ、5・・・・・・中濃度不純物領域、
6・・・・・・ソース・ドレイン拡散層。 代理人の氏名 弁理士 栗野重孝 はか1名2− ゲー
ト醗イL頃 3− ゲートを判E 4゛°°サイF′7オールスづ−ナ S・・中1多不純物領域 第 1 図             6− ソースド
レ/ン棒取1第 2 図 二 仰L 2°゛−ゲート酸化R爽 3−・・ゲー)1& 5゛=甲凍戻不与も′#J預域 6− ソーストルインオ奏紋漕 第3図 雨 5 図 正 亀
1 and 2 are a cross-sectional view of a main part of a semiconductor device according to an embodiment of the present invention and an impurity concentration distribution of the main part, FIG. 3 is a cross-sectional view of a device according to another embodiment of the present invention, and FIG. , 5th
The figure shows a cross-sectional view of a conventional semiconductor device and an impurity concentration distribution. DESCRIPTION OF SYMBOLS 1... Semiconductor substrate, 2... Gate oxide film, 3... Gate electrode, 4... Side wall spacer, 5... Middle concentration impurity region,
6... Source/drain diffusion layer. Name of agent Patent attorney Shigetaka Kurino Haka 1 person 2- Gate entrance L around 3- Gate E 4゛°゜゛゛゛Source drain/drain rod 1 No. 2 Figure 2 L 2° - Gate oxidation R refreshing 3 -...Ge) 1 &5' = No refreeze in the upper part' Figure 3: Rain 5 Figure: Turtle

Claims (1)

【特許請求の範囲】[Claims] ソース・ドレイン拡散層の主部より突出して上方にチャ
ネル領域を備え、少なくとも前記ソース・ドレイン拡散
層付近の中濃度不純物領域の最大濃度の位置が前記ソー
ス・ドレイン拡散層の上限より下方にあることを特徴と
する半導体装置。
A channel region is provided above the main part of the source/drain diffusion layer, and at least the position of the maximum concentration of the intermediate concentration impurity region near the source/drain diffusion layer is below the upper limit of the source/drain diffusion layer. A semiconductor device characterized by:
JP12082789A 1989-05-15 1989-05-15 Semiconductor device Pending JPH02299271A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12082789A JPH02299271A (en) 1989-05-15 1989-05-15 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12082789A JPH02299271A (en) 1989-05-15 1989-05-15 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH02299271A true JPH02299271A (en) 1990-12-11

Family

ID=14795947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12082789A Pending JPH02299271A (en) 1989-05-15 1989-05-15 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH02299271A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06216148A (en) * 1991-03-13 1994-08-05 Gold Star Electron Co Ltd Field effect transistor and manufacture thereof
US5834810A (en) * 1996-10-17 1998-11-10 Mitsubishi Semiconductor America, Inc. Asymmetrical vertical lightly doped drain transistor and method of forming the same
US6995414B2 (en) 2001-11-16 2006-02-07 Kabushiki Kaisha Toshiba Semiconductor memory device including multi-layer gate structure

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06216148A (en) * 1991-03-13 1994-08-05 Gold Star Electron Co Ltd Field effect transistor and manufacture thereof
JP2690069B2 (en) * 1991-03-13 1997-12-10 エルジイ・セミコン・カンパニイ・リミテッド Method for manufacturing field effect transistor
US5834810A (en) * 1996-10-17 1998-11-10 Mitsubishi Semiconductor America, Inc. Asymmetrical vertical lightly doped drain transistor and method of forming the same
US6995414B2 (en) 2001-11-16 2006-02-07 Kabushiki Kaisha Toshiba Semiconductor memory device including multi-layer gate structure
US7115930B2 (en) 2001-11-16 2006-10-03 Kabushiki Kaisha Toshiba Semiconductor memory device including multi-layer gate structure
US7135729B2 (en) 2001-11-16 2006-11-14 Kabushiki Kaisha Toshiba Semiconductor memory device including multi-layer gate structure
US7442978B2 (en) 2001-11-16 2008-10-28 Kabushiki Kaisha Toshiba Semiconductor memory device including multi-layer gate structure
US7446364B2 (en) 2001-11-16 2008-11-04 Kabushiki Kaisha Toshiba Semiconductor memory device including multi-layer gate structure
US7812386B2 (en) 2001-11-16 2010-10-12 Kabushiki Kaisha Toshiba Semiconductor memory device including multi-layer gate structure
US8017467B2 (en) 2001-11-16 2011-09-13 Kabushiki Kaisha Toshiba Semiconductor memory device including multi-layer gate structure
US8202774B2 (en) 2001-11-16 2012-06-19 Kabushiki Kaisha Toshiba Semiconductor memory device including multi-layer gate structure
US8324674B2 (en) 2001-11-16 2012-12-04 Kabushiki Kaisha Toshiba Semiconductor memory device including multi-layer gate structure
US8541827B2 (en) 2001-11-16 2013-09-24 Kabushiki Kaisha Toshiba Semiconductor memory device including multi-layer gate structure
US8647940B2 (en) 2001-11-16 2014-02-11 Kabushiki Kaisha Toshiba Semiconductor memory device including multi-layer gate structure

Similar Documents

Publication Publication Date Title
US4637124A (en) Process for fabricating semiconductor integrated circuit device
KR20020082469A (en) Mosfet device system and method
JPH05160396A (en) Mos field effect transistor
JPH08264562A (en) Semiconductor device and fabrication thereof
JPH04225529A (en) Improved method for manufacture of integrated-circuit structure body provided with lightly doped drain (ldd)
JPS59111358A (en) Method of producing cmos structure
US20060270125A1 (en) Method for manufacturing semiconductor device and MOS field effect transistor
JPH02299271A (en) Semiconductor device
JP2017162920A (en) Semiconductor device and manufacturing method of the same
JPS6025028B2 (en) Manufacturing method of semiconductor device
JPH0552069B2 (en)
JP2718757B2 (en) MOS type semiconductor device and method of manufacturing the same
JPH04715A (en) Manufacture of semiconductor device
JPH02196434A (en) Manufacture of mos transistor
JPS61210673A (en) Mis type semiconductor device
JPH0637106A (en) Manufacture of semiconductor device
JPH05335503A (en) Manufacture of semiconductor device
JPS6126234B2 (en)
KR100588777B1 (en) Semiconductor device and its fabricating method
JP2732845B2 (en) Method for manufacturing MIS type field effect transistor
JPH03148834A (en) Manufacture of mos transistor
KR0127691B1 (en) Method of manufacturing transistor
JPS6146984B2 (en)
JPH06252392A (en) Field effect transistor
JPS63160277A (en) Manufacture of semiconductor element