JPS6146984B2 - - Google Patents

Info

Publication number
JPS6146984B2
JPS6146984B2 JP4225877A JP4225877A JPS6146984B2 JP S6146984 B2 JPS6146984 B2 JP S6146984B2 JP 4225877 A JP4225877 A JP 4225877A JP 4225877 A JP4225877 A JP 4225877A JP S6146984 B2 JPS6146984 B2 JP S6146984B2
Authority
JP
Japan
Prior art keywords
source
drain
substrate
mask layer
photoresist
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4225877A
Other languages
Japanese (ja)
Other versions
JPS53127273A (en
Inventor
Junji Sakurai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP4225877A priority Critical patent/JPS53127273A/en
Publication of JPS53127273A publication Critical patent/JPS53127273A/en
Publication of JPS6146984B2 publication Critical patent/JPS6146984B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/107Substrate region of field-effect devices
    • H01L29/1075Substrate region of field-effect devices of field-effect transistors
    • H01L29/1079Substrate region of field-effect devices of field-effect transistors with insulated gate
    • H01L29/1083Substrate region of field-effect devices of field-effect transistors with insulated gate with an inactive supplementary region, e.g. for preventing punch-through, improving capacity effect or leakage current

Description

【発明の詳細な説明】 本発明はソース、ドレイン間耐圧の高い短チヤ
ンネルMIS電界効果トランジスタの製造方法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a short channel MIS field effect transistor with high breakdown voltage between source and drain.

最近、ICの集積度を上げてMIS電界効果トラン
ジスタ(FET)の相互コンダクタンスgnを向上
し、スイツチングスピードを速くするためにソー
ス、ドレイン間のチヤンネル長またはゲート長を
短くすることは最近の一般的な傾向である。とこ
ろが単にゲート長を短かくしただけではドレイン
からの空乏層が容易にソースに到達し、ソース、
ドレイン耐圧が低下してしまう。これを避けるた
めの1つの方法は基板濃度を高くして空乏層を拡
がりにくくして短絡破壊(パンチスルー)耐圧を
上げることが行なわれている。ところが、この方
法の欠点は空乏層が狭くなるのでソースおよびド
レインの接合容量が増加し高周波特性を悪化させ
ることである。そこでこれらを考慮した他の方法
としてチヤンネルドープ技術が提案された。これ
は低濃度基板を用いることにより、ソース、ドレ
インの接合容量を低く押え、そのチヤンネル領域
のみを高濃度にドーピングし、パンチスルー耐圧
を高くすることである。これら2つの方法に共通
した難点はチヤンネル形成領域が高濃度となるた
め閾値電圧の基板効果が増加したり、チヤンネル
の空乏層が浅くなることにより遮断特性が劣化し
たり、不純物原子やイオン注入時の欠陥の増加に
より電界効果移動度が低下したりすることであ
る。
Recently, it has become increasingly important to increase the integration density of ICs, improve the mutual conductance g n of MIS field-effect transistors (FETs), and shorten the channel length or gate length between the source and drain in order to increase the switching speed. This is a general trend. However, if the gate length is simply shortened, the depletion layer from the drain easily reaches the source.
The drain breakdown voltage will decrease. One way to avoid this is to increase the substrate concentration to make it difficult for the depletion layer to expand, thereby increasing the short-circuit breakdown (punch-through) breakdown voltage. However, a drawback of this method is that the depletion layer becomes narrower, so that the junction capacitance between the source and drain increases and the high frequency characteristics deteriorate. Therefore, channel doping technology was proposed as another method that takes these into consideration. This is to suppress the junction capacitance between the source and drain by using a low concentration substrate, and to increase the punch-through breakdown voltage by doping only the channel region with a high concentration. The common disadvantages of these two methods are that the channel formation region becomes highly doped, which increases the substrate effect of the threshold voltage, that the channel depletion layer becomes shallow, deteriorating the blocking characteristics, and that when impurity atoms or ions are implanted, The field effect mobility decreases due to an increase in the number of defects.

本発明の目的は上記欠点を除去することのでき
る短チヤンネルのMISトランジスタの製造方法を
提供することである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for manufacturing a short channel MIS transistor that can eliminate the above-mentioned drawbacks.

前記目的を達成するため、本発明のMISトラン
ジスタの製造方法は、絶縁性酸化物を被着した半
導体基板のソース、ドレインおよびチヤンネル部
の前記絶縁性酸化物を除去し、再酸化によりゲー
ト酸化膜を設け、その上に多結晶シリコン層と第
1のマスク層を順次重ねて形成し、その上にホト
レジストを塗布しパターニングしてゲート部を残
し、他の部分の該第1のマスク層及び多結晶シリ
コン層を該ホトレジストがひさし状になるまでエ
ツチング除去し、次に第2のマスク層を該ホトレ
ジスト上及びソース、ドレイン部に形成した後、
該ホトレジスト及びその上の第2のマスク層を除
去し、該第1及び第2のマスク層をマスクにして
基板にそれと同一導電形のイオン打込みを行な
い、前記ソース、ドレイン部に形成される拡散領
域のチヤンネル形成領域に対向する端部にソー
ス、ドレインの拡散の深さより深い基板と同一導
電形の高濃度領域を形成することを特徴とするも
のである。
In order to achieve the above object, the method for manufacturing an MIS transistor of the present invention involves removing the insulating oxide from the source, drain and channel portions of a semiconductor substrate on which the insulating oxide is deposited, and forming a gate oxide film by reoxidation. A polycrystalline silicon layer and a first mask layer are sequentially formed on top of the polycrystalline silicon layer, and a photoresist is applied and patterned on top of the polycrystalline silicon layer to leave a gate portion, and the other portions of the first mask layer and the polycrystalline mask layer are formed. After etching away the crystalline silicon layer until the photoresist becomes a canopy, and then forming a second mask layer on the photoresist and on the source and drain regions,
The photoresist and the second mask layer thereon are removed, and ions of the same conductivity type are implanted into the substrate using the first and second mask layers as masks to eliminate the diffusion formed in the source and drain regions. This is characterized in that a high concentration region of the same conductivity type as the substrate is formed at the end of the region opposite to the channel forming region, which is deeper than the depth of diffusion of the source and drain.

以下本発明を実施例につき詳述する。 The present invention will be described in detail below with reference to examples.

第1図は従来のMIS電界効果トランジスタの1
つであるMOS電界効果トランジスタの前述した
チヤンネルドープ技術による構成を示したもので
ある。同図において、酸化膜2を被着した半導体
基板1のソース、ドレインおよびチヤンネル部の
酸化膜2を除去し、ソース、ドレイン拡散領域
3,4間のチヤンネル部の直下に基板1と同一導
電形の深い低濃度領域6とその上層に浅い高濃度
のチヤンネル形成領域5を設け、その上にゲート
酸化膜7と多結晶シリコン層8が形成される。な
おその後は通常の方法によりソース、ドレイン、
ゲート部の電極形成が行なわれる。
Figure 1 shows a conventional MIS field effect transistor.
This figure shows the structure of a MOS field effect transistor using the aforementioned channel doping technique. In the figure, the oxide film 2 on the source, drain and channel portions of the semiconductor substrate 1 on which the oxide film 2 has been deposited is removed, and a layer of the same conductivity type as the substrate 1 is placed directly under the channel portion between the source and drain diffusion regions 3 and 4. A deep low concentration region 6 and a shallow high concentration channel forming region 5 are provided above the deep low concentration region 6, and a gate oxide film 7 and a polycrystalline silicon layer 8 are formed thereon. After that, the source, drain,
Electrodes for the gate portion are formed.

第2図は本発明に係るMISトランジスタの構成
を示す説明図である。同図において、第1図と異
なる点は基板1を低濃度基板とすることにより、
チヤンネル直下の深い低濃度領域6をとくに設け
ないこと、およびソース、ドレイン拡散領域3,
4のチヤンネル形成領域5に対向する端部にそれ
ぞれソース、ドレインの拡散の深さより深い基板
1と同一導電形の高濃度領域10,11を設けた
ことである。
FIG. 2 is an explanatory diagram showing the configuration of the MIS transistor according to the present invention. In this figure, the difference from FIG. 1 is that the substrate 1 is a low concentration substrate.
The deep low concentration region 6 immediately below the channel is not particularly provided, and the source and drain diffusion regions 3,
High concentration regions 10 and 11 having the same conductivity type as the substrate 1 and deeper than the diffusion depth of the source and drain are provided at the end portions facing the channel forming region 5 of No. 4, respectively.

このような構成とすることにより、まずチヤン
ネル形成領域5の濃度と深さが閾値電圧の変化の
みを考慮して一元的に定められるから、前述の問
題点すなわちチヤンネル形成領域の高濃度、チヤ
ンネルの空乏層が浅くなること、および不純物原
子や欠陥の増加等に基づく基板効果を最小限にコ
ントロールすることができる。また基板として低
濃度基板を用いたことにより、ソース、ドレイン
の接合容量を減少させ上記の問題点を緩和する効
果がある。また狭く深い高濃度領域10,11を
設けてことにより、ソース、ドレイン拡散領域
3,4間に空乏層が伸びてパンチスルーを起すの
を防止する。ソース、ドレイン拡散領域3,4は
この高濃度領域10,11の1部と重複するので
その部分の接合容量は大きくなるがその面積は比
較的小さいので全体の接合容量に比べて無視でき
る程度となる。さらに、チヤンネル形成領域5は
従来に比較して低濃度にできるのでスイツチング
速度が早くなる。
With such a configuration, the concentration and depth of the channel forming region 5 can be centrally determined by considering only the change in the threshold voltage, so that the above-mentioned problems such as the high concentration of the channel forming region and the depth of the channel can be fixed. Substrate effects caused by the shallowing of the depletion layer and the increase in impurity atoms and defects can be controlled to a minimum. Further, by using a low concentration substrate as the substrate, the junction capacitance between the source and the drain is reduced, which has the effect of alleviating the above-mentioned problems. Further, by providing the narrow and deep high concentration regions 10 and 11, it is possible to prevent a depletion layer from extending between the source and drain diffusion regions 3 and 4 and causing punch-through. Since the source and drain diffusion regions 3 and 4 overlap a part of these high concentration regions 10 and 11, the junction capacitance of that part increases, but since the area is relatively small, it can be ignored compared to the overall junction capacitance. Become. Furthermore, since the channel forming region 5 can be made to have a lower concentration than before, the switching speed can be increased.

次にこのようなソース、ドレイン拡散領域3,
4とチヤンネル形成領域5の境目に狭く深い高濃
度領域10,11を形成した本発明の実施例の
MOSトランジスタの製造方法を第3図a〜cに
つき説明する。
Next, such source and drain diffusion regions 3,
In the embodiment of the present invention, narrow and deep high concentration regions 10 and 11 are formed at the boundary between the channel forming region 5 and the channel forming region 5.
A method of manufacturing a MOS transistor will be explained with reference to FIGS. 3a to 3c.

同図aに示すように、低濃度P形シリコン基板
(濃度1013cm-1)1の表面に絶縁性酸化膜(SiO2
2を被着させ、ソース、ドレインおよびチヤンネ
ル部の酸化膜2を除去し、再酸化により深さ約
500Åのゲート酸化膜7を設ける。次にゲート酸
化膜を含めた全面にイオン注入法によりP形不純
11B+を3×1011ドーズ/cm-2で40KeV程度に加
速して打込みチヤンネル形成領域5を設ける。次
に通常のCVD法等により厚さ4000Åの多結晶シ
リコン成長層8と厚さ2000Åの金(Au)の真空
蒸着層9を順次形成し、その上からホトレジスト
20を被着して、パターニングによりゲート部を
残して他をエツチング除去する。この場合ゲート
部の側面はエツチング速度の関係によりホトレジ
スト20をひさしとして下部がくびれた形状とな
る。これが本発明の自己整合効果をもたらすもの
である。
As shown in Figure a, an insulating oxide film (SiO 2 ) is formed on the surface of a low concentration P-type silicon substrate (concentration 10 13 cm -1 ).
2, remove the oxide film 2 on the source, drain and channel parts, and re-oxidize it to a depth of approximately
A gate oxide film 7 of 500 Å is provided. Next, an implantation channel forming region 5 is formed by ion implanting P-type impurity 11 B + into the entire surface including the gate oxide film at a dose of 3×10 11 /cm -2 and accelerating to about 40 KeV. Next, a polycrystalline silicon growth layer 8 with a thickness of 4000 Å and a vacuum-deposited layer 9 of gold (Au) with a thickness of 2000 Å are sequentially formed using the usual CVD method, and then a photoresist 20 is deposited on top of the layer 8 and then patterned. The gate portion is left and the rest is removed by etching. In this case, the side surface of the gate portion has a constricted bottom shape with the photoresist 20 serving as an eaves, depending on the etching speed. This is what provides the self-alignment effect of the present invention.

次にこの上からアルミニウム(Al)を約1μ
mの厚さとなるように垂直蒸着を行ない、ゲート
部のホトレジスト20をリフトオフするとその上
部のAl層は除去され同図bに示すように、ゲー
ト部およびホトレジスト20で蔽われていたその
周辺部を除いてソース、ドレインおよび絶縁性酸
化膜の上にAl層12が被着される。従つてゲー
ト部周辺にはAl層12のない間隙13を生じ
る。この表面に基板と同じP形不純物りん31P+
6×1012ドーズ/cm-2で約200KeVに加速して打
込むと約5000Åの深さにピーク値をもつ狭くて深
いP形の高濃度領域10,11が自己整合効果と
して形成されるものである。
Next, apply approximately 1 μm of aluminum (Al) on top of this.
Vertical deposition is performed to a thickness of m, and when the photoresist 20 on the gate part is lifted off, the Al layer on top of it is removed, and the gate part and its surrounding area covered with the photoresist 20 are removed, as shown in FIG. An Al layer 12 is deposited on the source, drain and insulating oxide except for the source, drain and insulating oxide. Therefore, a gap 13 without the Al layer 12 is created around the gate portion. When P-type impurity 31 P +, which is the same as that of the substrate, is implanted into this surface at a dose of 6×10 12 /cm -2 and accelerated to about 200 KeV, a narrow and deep P-type height with a peak value at a depth of about 5000 Å is formed. The concentration regions 10 and 11 are formed as a self-alignment effect.

次にAl層およびゲート部上のAu層9をエツチ
ング除去し、同図cに示すように、通常の手順に
従いN形のソース、ドレイン拡散領域を形成し、
さらにソース、ドレイン、ゲート部の上にそれぞ
れの電極14,15,16を形成する。
Next, the Al layer and the Au layer 9 on the gate part are removed by etching, and as shown in FIG.
Further, electrodes 14, 15, and 16 are formed on the source, drain, and gate portions, respectively.

以上説明したように、本発明によれば、ソー
ス、ドレインの拡散領域とチヤンネル形成領域の
境目にソース、ドレインの拡散の深さより深い基
板と同一導電形の高濃度領域を、チヤンネル形成
領域直下に低濃度領域を形成させることにより、
ソース、ドレイン間耐圧の高い短チヤンネルの
MISトランジスタを実現することができるもので
ある。また本発明の製造方法によれば、前記高濃
度領域の形成を自己整合効果を利用して非常に簡
単に行なうことができる。
As explained above, according to the present invention, a high concentration region of the same conductivity type as the substrate, which is deeper than the depth of the source and drain diffusion, is placed at the boundary between the source and drain diffusion regions and the channel formation region, directly below the channel formation region. By forming a low concentration region,
Short channel with high breakdown voltage between source and drain
It is possible to realize an MIS transistor. Further, according to the manufacturing method of the present invention, the high concentration region can be formed very easily by utilizing the self-alignment effect.

以上MOSトランジスタを例にとつて説明した
が、チツ化膜等をゲートの絶縁膜として用いたト
ランジスタにも本発明も適用することができる。
Although the above description has been made using a MOS transistor as an example, the present invention can also be applied to a transistor using a silicon nitride film or the like as a gate insulating film.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来例の構成説明図、第2図は本発明
に係るMISトランジスタの構成説明図、第3図a
〜cは本発明の一実施例の製造方法の説明図であ
り、図中、1は基板、2は絶縁性酸化膜、3はソ
ース拡散領域、4はドレイン拡散領域、5はチヤ
ンネル形成領域、7はゲート酸化膜、8は多結晶
シリコン層、9は金層、10,11は高濃度領
域、12はアルミ層、13はゲート部周辺間隙、
14,15,16はそれぞれソース、ドレイン、
ゲート電極を示す。
Fig. 1 is an explanatory diagram of the configuration of the conventional example, Fig. 2 is an explanatory diagram of the configuration of the MIS transistor according to the present invention, and Fig. 3a
-c are explanatory diagrams of a manufacturing method according to an embodiment of the present invention, in which 1 is a substrate, 2 is an insulating oxide film, 3 is a source diffusion region, 4 is a drain diffusion region, 5 is a channel forming region, 7 is a gate oxide film, 8 is a polycrystalline silicon layer, 9 is a gold layer, 10 and 11 are high concentration regions, 12 is an aluminum layer, 13 is a gap around the gate part,
14, 15, 16 are the source, drain,
The gate electrode is shown.

Claims (1)

【特許請求の範囲】[Claims] 1 絶縁性酸化物を被着した半導体基板のソー
ス、ドレインおよびチヤンネル部の前記絶縁性酸
化物を除去し、再酸化によりゲート酸化膜を設
け、その上に多結晶シリコン層と第1のマスク層
を順次重ねて形成し、その上にホトレジストを塗
布しパターニングしてゲート部を残し、他の部分
の該第1のマスク層及び多結晶シリコン層を該ホ
トレジストがひさし状になるまでエツチング除去
し、次に第2のマスク層を該ホトレジスト上及び
ソース、ドレイン部に形成した後、該ホトレジス
ト及びその上の第2のマスク層を除去し、該第1
及び第2のマスク層をマスクにして基板にそれと
同一導電形のイオン打込みを行ない、前記ソー
ス、ドレイン部に形成される拡散領域のチヤンネ
ル形成領域に対向する端部にソース、ドレインの
拡散の深さより深い基板と同一導電形の高濃度領
域を形成することを特徴とするMISトランジスタ
の製造方法。
1. Remove the insulating oxide from the source, drain, and channel portions of the semiconductor substrate on which the insulating oxide has been deposited, form a gate oxide film by reoxidation, and form a polycrystalline silicon layer and a first mask layer thereon. are successively stacked, a photoresist is applied thereon and patterned to leave a gate portion, and other portions of the first mask layer and the polycrystalline silicon layer are removed by etching until the photoresist becomes an eaves shape; Next, after forming a second mask layer on the photoresist and on the source and drain parts, the photoresist and the second mask layer thereon are removed, and the first mask layer is removed.
Then, using the second mask layer as a mask, ions of the same conductivity type are implanted into the substrate, and the depth of the source and drain diffusion is formed at the end of the diffusion region to be formed in the source and drain portions, opposite to the channel forming region. A method for manufacturing an MIS transistor characterized by forming a highly doped region of the same conductivity type as a substrate deeper than the substrate.
JP4225877A 1977-04-13 1977-04-13 Mis transistor and its manufacture Granted JPS53127273A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4225877A JPS53127273A (en) 1977-04-13 1977-04-13 Mis transistor and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4225877A JPS53127273A (en) 1977-04-13 1977-04-13 Mis transistor and its manufacture

Publications (2)

Publication Number Publication Date
JPS53127273A JPS53127273A (en) 1978-11-07
JPS6146984B2 true JPS6146984B2 (en) 1986-10-16

Family

ID=12630997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4225877A Granted JPS53127273A (en) 1977-04-13 1977-04-13 Mis transistor and its manufacture

Country Status (1)

Country Link
JP (1) JPS53127273A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5710617U (en) * 1980-06-11 1982-01-20
JPH0254537A (en) * 1988-08-18 1990-02-23 Seiko Epson Corp Semiconductor device and manufacture thereof

Also Published As

Publication number Publication date
JPS53127273A (en) 1978-11-07

Similar Documents

Publication Publication Date Title
US5641698A (en) Method of fabricating FET device with double spacer
US5244823A (en) Process for fabricating a semiconductor device
US5401994A (en) Semiconductor device with a non-uniformly doped channel
JPH04225529A (en) Improved method for manufacture of integrated-circuit structure body provided with lightly doped drain (ldd)
JPH05160396A (en) Mos field effect transistor
US4029522A (en) Method to fabricate ion-implanted layers with abrupt edges to reduce the parasitic resistance of Schottky barrier fets and bipolar transistors
JPH06204469A (en) Field-effect transistor and manufacture thereof
JPS63281465A (en) Manufacture of field effect transistor and its intermediate product
JPH1022398A (en) Silicon-on-insulator substrate for manufacturing transistors and manufacture thereof
JPS63122174A (en) Semiconductor device and its manufacture
JPH07153952A (en) Semiconductor device and manufacture thereof
JPS6146984B2 (en)
JPS6025028B2 (en) Manufacturing method of semiconductor device
KR100263475B1 (en) Semiconductor device and method for fabricating the same
JPH02159070A (en) Semiconductor device and manufacture thereof
JPS6344769A (en) Field effect transistor and manufacture of the same
JPS63227059A (en) Semiconductor device and manufacture thereof
JPH0637106A (en) Manufacture of semiconductor device
JPS6112390B2 (en)
JP3061157B2 (en) Method for forming semiconductor device
JPS6126264A (en) Manufacture of semiconductor device
KR950000145B1 (en) It ldd structure for ig fet and manufacturing method thereof
JPH04115538A (en) Semiconductor device
JPH0472770A (en) Manufacture of semiconductor device
KR940010568B1 (en) Mosfet and manufacturing method thereof