JPH0228925A - Manufacture of wafer - Google Patents

Manufacture of wafer

Info

Publication number
JPH0228925A
JPH0228925A JP63180010A JP18001088A JPH0228925A JP H0228925 A JPH0228925 A JP H0228925A JP 63180010 A JP63180010 A JP 63180010A JP 18001088 A JP18001088 A JP 18001088A JP H0228925 A JPH0228925 A JP H0228925A
Authority
JP
Japan
Prior art keywords
substrate
silicon layer
stopper
thickness
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63180010A
Other languages
Japanese (ja)
Inventor
Yuichi Saito
雄一 斎藤
Shinsuke Sakai
愼介 酒井
Hisao Hayashi
久雄 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Silicon Corp
Sony Corp
Original Assignee
Sony Corp
Japan Silicon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp, Japan Silicon Co Ltd filed Critical Sony Corp
Priority to JP63180010A priority Critical patent/JPH0228925A/en
Priority to EP89110984A priority patent/EP0348757B1/en
Priority to DE68920365T priority patent/DE68920365T2/en
Priority to US07/367,637 priority patent/US5096854A/en
Priority to KR1019890008887A priority patent/KR0145300B1/en
Publication of JPH0228925A publication Critical patent/JPH0228925A/en
Pending legal-status Critical Current

Links

Landscapes

  • Weting (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

PURPOSE:To form a wafer of desired thickness in a distortionless mirror face state by laminating a stopper and a silicon layer on the surface of a substrate, then rotating a surface plate, supplying an alkaline solution decomposed from a polishing agent, securing the substrate to a flat supporting base, subjecting silicon layer to contact-bonding to the front surface of the plate, and polishing it by friction. CONSTITUTION:After a stopper 12 and a silicon layer 13 are laminated on a substrate 11, a surface plate having a smooth surface is rotated, and alkaline solution in which SiO2 fine particles are dispersed is supplied to the surface. The substrate is secured to a flat supporting base disposed in parallel with the surface of the plate, the layer 13 is press-bonded to the surface of the plate, and frictioned to perform its distortionless mirror polishment. Accordingly, since the distortionless mirror-polished silicon layer 13 having the same thickness as that of the stopper 12 is formed on the substrate 11, the distortionless mirror silicon layer 13 having an extremely accurate thickness can be formed on the substrate 11 by setting the thickness of the stopper 12 to the thickness of the layer 13 to be formed.

Description

【発明の詳細な説明】 「産業上の利用分野」 この発明は、基板上に、単結晶、多結晶又は非晶質シリ
コンからなる層を、所望の厚さでかつ無歪鏡面な状態で
形成するためのウェーハの製造方法に関する。
Detailed Description of the Invention "Industrial Application Field" This invention is directed to the formation of a layer made of single crystal, polycrystalline or amorphous silicon on a substrate to a desired thickness and in a mirror-like state without distortion. The present invention relates to a method for manufacturing a wafer.

「従来の技術およびその課題」 従来、基板上に前述シリコン層を、精密に厚さを制御し
つつ無歪鏡面な状轢で形成するのに好適な方法は知られ
ておらず、したがって基板上に所望の厚さのシリコン層
を形成するのは困難であった。
"Prior art and its problems" Conventionally, there has been no known method suitable for forming the silicon layer on a substrate in a mirror-like state without distortion while precisely controlling the thickness. It was difficult to form a silicon layer of desired thickness.

例えば、従来より知られているシリコンウェーハのメカ
ノケミカル研磨方法を用いて基板上に所定厚さのシリコ
ン層を形成する場合を第1!図ないし第13図を基に説
明する。まず、単結晶シリコンや多結晶シリコンからな
る基板lの表面にSiOxからなる絶縁部分2を形成し
、続いて気相成長法などの薄膜形成手段を用い、基板I
上に単結晶、多結晶あるいは非晶質シリコンからなる層
3を積層形成し、第11図に示すシリコン積層基板を形
成する。そしてこのシリコン積層基板のシリコン層3を
、第12図に示すように所定の厚さのシリコン層3を残
すように従来の研磨方法を用いて研磨する。この従来法
による研磨では、不飽和ポリエステル等の繊維からなる
クロスが均一に接着された金属製の定盤を回転させ、こ
のクロス上に SiO*微粒子を分散させたアルカリ溶
液を滴下しつつ、クロスに基板lを圧着、摩擦させてシ
リコン層3をメカノケミカル研磨する。
For example, in the first example, a silicon layer of a predetermined thickness is formed on a substrate using a conventionally known mechanochemical polishing method for silicon wafers. This will be explained based on FIGS. 13 to 13. First, an insulating portion 2 made of SiOx is formed on the surface of a substrate l made of single crystal silicon or polycrystalline silicon, and then a thin film forming method such as a vapor phase growth method is used to form a substrate I.
A layer 3 made of single crystal, polycrystalline or amorphous silicon is laminated thereon to form a silicon laminated substrate shown in FIG. 11. The silicon layer 3 of this silicon laminated substrate is then polished using a conventional polishing method so that the silicon layer 3 of a predetermined thickness remains as shown in FIG. In this conventional polishing method, a metal surface plate to which a cloth made of fibers such as unsaturated polyester is evenly bonded is rotated, and an alkaline solution containing SiO* fine particles dispersed is dripped onto the cloth. The silicon layer 3 is mechanochemically polished by pressing the substrate 1 onto it and applying friction.

しかしながら、この従来の研磨法では、研磨され難い絶
縁部分2の位置において、クロスが圧縮変形を起こして
絶縁部分2間のシリコン層2をえぐり取るように研磨が
なされ、第13図に示す研磨取代4の部分が研磨除去さ
れてしまうために、得られる研磨ウェーハ5のソリコン
層3の厚さにばらつきを生じてしまう問題があった。
However, in this conventional polishing method, the cloth is compressively deformed at the position of the insulating part 2 that is difficult to polish, and polishing is performed so as to gouge out the silicon layer 2 between the insulating parts 2, and the polishing removal amount shown in FIG. Since the portion 4 is removed by polishing, there is a problem in that the thickness of the soric layer 3 of the resulting polished wafer 5 varies.

本発明は上記事情に鑑みてなされたもので、基板上に単
結晶、多結晶あるいは非晶質シリコンからなる層を、所
望の厚さでかつ無歪鏡面な状態で形成することのできる
ウェーハの製造方法の提供を目的としている。
The present invention has been made in view of the above circumstances, and provides a wafer that can form a layer made of single crystal, polycrystalline or amorphous silicon on a substrate to a desired thickness and in a mirror-like state without distortion. The purpose is to provide a manufacturing method.

「課題を解決するための手段」 上記目的達成のために、本発明は、平坦な基板の表面に
、シリコンよりもメカノケミカル研磨され難い材料から
なるストッパーを形成し、次いで該ストッパーが形成さ
れた基板の表面に、少なくとも該ストッパーの厚さ以上
の厚さの単結晶、多結晶または非晶質シリコンからなる
層を積層形成し、次いで、表面が平滑な定盤を回転せし
め、その表面に、高純度石英の微粒子からなる研磨剤が
分散されたアルカリ溶液を供給し、該定盤の表面に平行
に配置された平坦な支持台に上記基板を固定して該定盤
の表面にシリコン層を圧着し、摩擦せしめて無歪鏡面研
磨するものである。
"Means for Solving the Problem" In order to achieve the above object, the present invention forms a stopper made of a material that is less susceptible to mechanochemical polishing than silicon on the surface of a flat substrate, and then the stopper is formed. A layer made of single crystal, polycrystalline or amorphous silicon having a thickness at least equal to or greater than the thickness of the stopper is laminated on the surface of the substrate, and then a surface plate with a smooth surface is rotated, and on the surface, An alkaline solution in which an abrasive made of fine particles of high-purity quartz is dispersed is supplied, and the substrate is fixed on a flat support placed parallel to the surface of the surface plate to form a silicon layer on the surface of the surface plate. It is crimped, rubbed and polished to a distortion-free mirror surface.

「作用 」 基板の表面にストッパーとシリコン層を積層形成した後
、表面が平滑な定盤を回転せしめ、その表面に、高純度
石英の微粒子からなる研磨剤が分散されたアルカリ溶液
を供給し、該定盤の表面に平行に配置された平坦な支持
台に上記基板を固定して該定盤の表面にシリコン層を圧
着し、摩擦せしめて研磨することにより、ストッパーの
厚さと等しい厚さのシリコン層を無歪の状態で残すこと
ができ、基板上に無歪鏡面のシリコン層を所望の厚さで
形成することができる。
``Operation'' After forming a stopper and a silicon layer on the surface of the substrate, a surface plate with a smooth surface is rotated, and an alkaline solution in which an abrasive made of fine particles of high-purity quartz is dispersed is supplied to the surface. The substrate is fixed to a flat support placed parallel to the surface of the surface plate, and a silicon layer is pressed onto the surface of the surface plate, rubbed and polished to form a layer with a thickness equal to that of the stopper. The silicon layer can be left in a strain-free state, and a strain-free mirror silicon layer can be formed to a desired thickness on the substrate.

「実施例」 第1図ないし第4図は本発明のウェーハの製造方法の一
実施例を説明するためのものである。この例では、まず
基板11の表面に、形成すべきシリコン層の厚さと同一
の厚さを有するストッパー12および必要によって絶縁
部分2を形成する。
Embodiment FIGS. 1 to 4 are for explaining an embodiment of the wafer manufacturing method of the present invention. In this example, first, on the surface of the substrate 11, a stopper 12 having the same thickness as the silicon layer to be formed and an insulating portion 2 are formed if necessary.

この基板Itとしては、少なくとも表面部分が単結晶シ
リコン、多結晶シリコンまたは高純度石英からなるもの
が使用される。また上記ストッパー12の材料としては
、Sin、などの酸化物、SiCなどの炭化物、5is
Ntなどの窒化物などのシリコン(S i)よりもメカ
ノケミカル研磨され難い材料が使用される。また、スト
ッパー12の形成面積は基板11の面積の1〜20%の
範囲とするのが好ましい。
As this substrate It, at least the surface portion is made of single crystal silicon, polycrystalline silicon, or high purity quartz. Further, as the material of the stopper 12, oxides such as Sin, carbides such as SiC, 5is
A material that is more difficult to mechanochemically polish than silicon (Si) is used, such as a nitride such as Nt. Further, it is preferable that the formation area of the stopper 12 be in the range of 1 to 20% of the area of the substrate 11.

次いで、基板ttのストッパ−12形成面に、気相成長
法を用いて多結晶シリコンからなるノリコン層13を積
層形成し、第3図に示すシリコン積層基板14を形成す
る。このシリコン層13の厚さはストッパー12の厚さ
よりも大きく設定する。
Next, a silicone layer 13 made of polycrystalline silicon is laminated on the surface of the substrate tt on which the stopper 12 is to be formed by using a vapor phase growth method to form a silicon laminated substrate 14 shown in FIG. 3. The thickness of this silicon layer 13 is set to be larger than the thickness of the stopper 12.

次いでこのシリコン積層基板14をメカノケミカル研磨
して、第3図に示す研磨取代15の部分、すなわちスト
ッパー12の厚さ以上のシリコン層部分を研磨除去する
。この研磨方法は、定盤を回転させ、この定盤面に粒度
0.02μm程度の粒度を有する高純度5ins粒子が
分散されたpHl0〜11のアルカリ溶液を滴下する。
Next, this silicon laminated substrate 14 is mechanochemically polished to remove a portion of the polishing allowance 15 shown in FIG. In this polishing method, a surface plate is rotated, and an alkaline solution having a pH of 10 to 11 in which high-purity 5-ins particles having a particle size of about 0.02 μm are dispersed is dripped onto the surface of the surface plate.

そしてこの定盤面に平行に配置された平坦な支持台にシ
リコン積層基板14を固定し、シリコン層13の面を定
盤に圧着し、摩擦することによってシリコン層13を無
歪鏡面に研磨する。このときシリコン層13の表面は、
メカノケミカル反応により研磨される。またこの研磨は
、シリコン部分においては良好に進行するが、定盤面が
シリコンよりも研磨し難い材料からなるストッパー12
に当接した時点で研磨速度が急激に低下する。したがっ
て研磨速度が急激に低下した時点で研磨を停止すれば、
第4図に示すように、基板ll上にストッパー12の厚
さと同一の厚さにシリコン層13が残り、基板11上に
所定厚さのシリコン層13が無歪鏡面の状態で形成され
たウェーハ16が得られる。
Then, the silicon laminated substrate 14 is fixed to a flat support placed parallel to the surface of the surface plate, and the surface of the silicon layer 13 is pressed against the surface plate, and the silicon layer 13 is polished to a distortion-free mirror surface by friction. At this time, the surface of the silicon layer 13 is
Polished by mechanochemical reaction. Further, although this polishing progresses well in the silicon portion, the stopper 12 whose surface plate surface is made of a material that is more difficult to polish than silicon.
The polishing speed decreases rapidly when it comes into contact with. Therefore, if you stop polishing when the polishing speed suddenly decreases,
As shown in FIG. 4, a wafer in which a silicon layer 13 remains on the substrate 11 with the same thickness as the stopper 12, and a silicon layer 13 of a predetermined thickness is formed on the substrate 11 in a mirror-free state. 16 is obtained.

この例によるウェーハの製造方法では、基板11の表面
にストッパー12とノリコン層13を積層形成した後、
表面が平滑な定盤を回転させ、その表面に、5iOy微
粒子が分散されたアルカリ溶液を供給し、該定盤の表面
に平行に配置された平坦な支持台に上記基板を固定して
該定盤の表面にシリコン層13を圧着し、摩擦させて無
歪鏡面研磨することにより、基板11上にストッパー1
2と同一の厚さの無歪鏡面のシリコン層13を形成でき
るので、ストッパー12の厚さを、形成すべきシリコン
層i3の厚さに設定しておくことにより、基板+1上に
、極めて正確な厚さの無歪のシリコン層13を形成する
ことができる。
In the wafer manufacturing method according to this example, after forming the stopper 12 and the laminated layer 13 on the surface of the substrate 11,
A surface plate with a smooth surface is rotated, an alkaline solution in which 5iOy fine particles are dispersed is supplied to the surface of the surface plate, and the substrate is fixed on a flat support placed parallel to the surface of the surface plate. A stopper 1 is formed on the substrate 11 by pressing the silicon layer 13 onto the surface of the board and polishing it to a distortion-free mirror surface by friction.
By setting the thickness of the stopper 12 to the thickness of the silicon layer i3 to be formed, it is possible to form a silicon layer 13 with an undistorted mirror surface having the same thickness as that of the silicon layer i3 on the substrate +1. The strain-free silicon layer 13 can be formed to have a certain thickness.

次に、本発明方法に基づいてウェーハの製造を実施した
製造例(製造例1、製造例2)を示す。
Next, manufacturing examples (Manufacturing Example 1 and Manufacturing Example 2) in which wafers were manufactured based on the method of the present invention will be shown.

(製造例1) 第5図ないし第7図は本発明によるウェーハの一製造例
を工程順に説明する図である。この例では、単結晶シ・
リコンからなる基板21の表面に、深さ0.1μmの溝
22を10μmの間隔で形成し、かつその表面を熱酸化
して形成されたウェーハAと、上記基板2Iと同様の基
板23の表面を熱酸化して形成したウェーハBとを重ね
合わせ、両者を水素結合により接合させて、第5図に示
す接合基板24を作成した。なお、上記ウェーハA表面
のS i Oを層25aの厚さは0.1μmとし、ウェ
ーハ8表面のS iOを層25bの厚さは0.9μmと
した。また、ウェーハAのIWt22内にはポリシリコ
ン26を充填した。
(Manufacturing Example 1) FIGS. 5 to 7 are diagrams illustrating an example of manufacturing a wafer according to the present invention in the order of steps. In this example, the single crystal
A wafer A is formed by forming grooves 22 with a depth of 0.1 μm at intervals of 10 μm on the surface of a substrate 21 made of silicon and thermally oxidizing the surface, and a surface of a substrate 23 similar to the substrate 2I described above. The bonded substrate 24 shown in FIG. 5 was created by stacking the wafer B and the wafer B formed by thermally oxidizing and bonding them together by hydrogen bonding. The thickness of the SiO layer 25a on the surface of the wafer A was 0.1 μm, and the thickness of the SiO layer 25b on the surface of the wafer 8 was 0.9 μm. Further, the IWt 22 of the wafer A was filled with polysilicon 26.

次に、接合基板24のウェーハAの裏面側から、ウェー
ハAを2μm程度の厚さ残存させるように研削し、第6
図に示す半研磨基板27とした。
Next, the wafer A is ground from the back surface side of the wafer A of the bonding substrate 24 so that a thickness of about 2 μm remains.
A semi-polished substrate 27 shown in the figure was obtained.

続いて、定盤(表面荒さ0.01μm)を回転させ、そ
の表面に粒度0.02μmの高純度石英粒子を5wt%
分散させたpH10,5のアルカリ溶液を滴下させつつ
、この定盤の表面に上記半研磨基板27のウェーハA面
を2009/ c+n”の圧力で圧着摩擦させて研磨を
行った。研磨開始から約20分経過後、定盤にウェーハ
Aの1Fit22部分にあたる一部のSi0g層25a
(ストッパー)が当接して研磨がほとんど進行しなくな
り、この時点で研磨を中止した。
Next, a surface plate (surface roughness 0.01 μm) was rotated, and 5 wt% of high-purity quartz particles with a particle size of 0.02 μm were added to the surface.
While dropping a dispersed alkaline solution with a pH of 10.5, the wafer A surface of the semi-polished substrate 27 was pressed and rubbed onto the surface of this surface plate at a pressure of 2009/c+n" to perform polishing. Approximately from the start of polishing After 20 minutes, a part of the Si0g layer 25a corresponding to 1Fit22 part of wafer A is placed on the surface plate.
(stopper) abutted and polishing hardly progressed, and polishing was stopped at this point.

以上の操作により、第7図に示すように、つ工−ハBの
上方に、溝22の深さに等しい厚さを有する無歪のシリ
コン層28が形成されたウェーハ29が得られた。
Through the above operations, a wafer 29 was obtained in which a strain-free silicon layer 28 having a thickness equal to the depth of the groove 22 was formed above the tool B, as shown in FIG.

そして、得られたウェーハ29を用いてデバイスの作成
を実施したところ、シリコン層28に高品質のデバイス
を作成することができた。
Then, when a device was created using the obtained wafer 29, a high quality device could be created on the silicon layer 28.

(製造例2 ) 第8図ないし第10図は本発明によるウェーハの他の製
造例を工程順に説明する図である。この例では、まず、
単結晶シリコンからなる基板の表面を熱酸化して、厚さ
1.0μmの5iOz層を形成し、更にこの5iOz層
に2回の転写工程とS40gエツチング工程を行うこと
により、第8図に示すように、基板の単結晶シリコンが
局所的に露出するように基板表面を覆うとともに、局所
にストッパ一部31が突出形成された状態の5i02層
32が単結晶シリコン基板上に形成された基板33を作
成した。
(Manufacturing Example 2) FIGS. 8 to 10 are diagrams explaining another manufacturing example of a wafer according to the present invention in the order of steps. In this example, first,
The surface of the substrate made of single crystal silicon is thermally oxidized to form a 5iOz layer with a thickness of 1.0 μm, and this 5iOz layer is further subjected to two transfer processes and an S40g etching process to form the material shown in FIG. A substrate 33 in which a 5i02 layer 32 is formed on a single crystal silicon substrate, covering the surface of the substrate so that the single crystal silicon of the substrate is locally exposed, and having a locally protruding stopper portion 31 formed thereon. It was created.

次に、選択エビタキンヤル法により基板33の単結晶シ
リコン露出部のみから結晶成長させることにより、基板
33の表面に第9図に示すようなエピタキシャルSi層
34を形成する。選択エピタキシャル法の条件としては
、基板33を水素中、1100℃で10分間熱処理し、
引き続いて900℃、30 Torrの条件下で、5i
HtC1tとHClとH7の混合ガスを供給して基板3
3表面にエピタキシャル成長させた。このときの結晶成
長速度は縦方向、横方向とも0.1μi/l1lin、
であった。
Next, an epitaxial Si layer 34 as shown in FIG. 9 is formed on the surface of the substrate 33 by growing crystals only from the exposed portion of the single crystal silicon of the substrate 33 using the selective epitaxial method. The conditions for the selective epitaxial method include heat treating the substrate 33 in hydrogen at 1100° C. for 10 minutes;
Subsequently, 5i was heated at 900°C and 30 Torr.
The substrate 3 is supplied with a mixed gas of HtC1t, HCl, and H7.
3 epitaxial growth was performed on the surface. The crystal growth rate at this time was 0.1μi/llin in both the vertical and horizontal directions.
Met.

次に、エピタキシャルSi層34を、先の製造例1と同
様の研磨方法を用いて研磨した。そして約20分の研磨
によって、エピタキシャルSi層34をストッパ一部3
1の位置まで研磨することができ、この研磨によって第
10図に示すように、基板33上に、ストッパ一部31
あるいはストッバ一部31とSin!層32層厚2に等
しい厚さのシリコン層35が形成されたつf−ハ36が
得られた。
Next, the epitaxial Si layer 34 was polished using the same polishing method as in Manufacturing Example 1 above. Then, by polishing for about 20 minutes, the epitaxial Si layer 34 is removed from the stopper part 3.
As a result of this polishing, as shown in FIG.
Or Stopba Part 31 and Sin! A silicon layer 35 having a thickness equal to the layer thickness 2 of the layer 32 was obtained.

そして、得られたウェーハ36を用いてデバイスの作成
を実施したところ、シリコン層35に高品質のデバイス
を作成することができた。
Then, when a device was created using the obtained wafer 36, a high quality device could be created on the silicon layer 35.

なお、本発明において、研磨するシリコン層は、単結晶
、多結晶または非晶質シリコンのいずれでも良い。
In the present invention, the silicon layer to be polished may be made of single crystal, polycrystal, or amorphous silicon.

また研磨は、定盤の回転だけに限定されるしのではなく
、基板の支持台または定盤と基板の支持台の双方を移動
させても良い。
Further, polishing is not limited to only rotating the surface plate, but may also move the substrate support or both the surface plate and the substrate support.

さらにまた、研磨面は基板の一方の面に限定されるもの
ではなく、表面に生成されたシリコン層と同時に基板裏
面を研磨する事、および基板の両面に形成されたシリコ
ン層を同時に研磨することも可能である。
Furthermore, the polishing surface is not limited to one side of the substrate; the back side of the substrate can be polished at the same time as the silicon layer formed on the front surface, and the silicon layers formed on both sides of the substrate can be polished at the same time. is also possible.

「発明の効果」 以上説明したように本発明によれば、基板の表面にスト
ッパーとシリコン層を積層形成した後、表面が平滑な定
盤を回転させ、その表面に、研磨剤が分散されたアルカ
リ溶液を供給し、該定盤の表面に平行に配置された平坦
な支持台に上記基板を固定して該定盤の表面にシリコン
層を圧着し、摩擦させて無歪鏡面研磨することにより、
基板上にストッパーと同一の厚さの無歪鏡面のシリコン
層を形成できるので、ストッパーの厚さを、形成すべき
シリコン層の厚さに設定しておくことにより、基板上に
、極めて正確な厚さの無歪のシリコン層を形成すること
ができる。
"Effects of the Invention" As explained above, according to the present invention, after a stopper and a silicon layer are laminated on the surface of a substrate, a surface plate with a smooth surface is rotated, and an abrasive is dispersed on the surface. By supplying an alkaline solution, fixing the substrate on a flat support placed parallel to the surface of the surface plate, pressing the silicon layer onto the surface of the surface plate, and applying friction to polish the substrate to a distortion-free mirror surface. ,
It is possible to form an undistorted mirror silicon layer on the substrate with the same thickness as the stopper, so by setting the thickness of the stopper to the thickness of the silicon layer to be formed, an extremely accurate layer can be formed on the substrate. A thick unstrained silicon layer can be formed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第4図は本発明の一実施例を説明するため
の断面図、第5図ないし第7図は本発明の一製造例を工
程順に説明するための断面図、第8図ないし第1θ図は
本発明の他の製造例を工程順に説明するための断面図、
第11図ないし第13図は従来のウェーハの製造方法の
例を説明するための断面図である。 11.23.33・・・基板 12・・・ストッパー 13.28.35・・・シリコン層 l g、29.36・・・ウェーハ 31・・・ストッパ一部(ストッパー)。
1 to 4 are sectional views for explaining an embodiment of the present invention, 5 to 7 are sectional views for explaining a manufacturing example of the present invention in the order of steps, and 8 to 4 are sectional views for explaining an embodiment of the present invention. Figure 1θ is a sectional view for explaining another manufacturing example of the present invention in the order of steps;
11 to 13 are cross-sectional views for explaining an example of a conventional wafer manufacturing method. 11.23.33...Substrate 12...Stopper 13.28.35...Silicon layer lg, 29.36...Wafer 31...Part of stopper (stopper).

Claims (1)

【特許請求の範囲】[Claims]  平坦な表面を有する基板の少なくとも一方の面に、シ
リコンに比べ、メカノケミカル研磨され難い材料からな
るストッパーを形成し、次いで該ストッパーが形成され
た基板の表面に、少なくとも該ストッパーの厚さ以上の
厚さを有するシリコン層を形成し、次いで表面が平坦か
つ平滑な定盤と、前述のシリコン層の間に高純度石英か
らなる研磨剤が分散されたアルカリ溶液を供給し、前述
定盤とシリコン層の相対的加工移動により無歪鏡面研磨
することを特徴とするウェーハの製造方法。
A stopper made of a material that is less susceptible to mechanochemical polishing than silicon is formed on at least one side of a substrate having a flat surface, and then a stopper made of a material that is less susceptible to mechanochemical polishing than silicon is formed on the surface of the substrate on which the stopper is formed. A silicon layer having a thickness is formed, and then an alkaline solution containing an abrasive made of high-purity quartz dispersed is supplied between a surface plate having a flat and smooth surface and the silicon layer. A method for manufacturing a wafer, characterized in that distortion-free mirror polishing is performed by relative processing movement of layers.
JP63180010A 1988-06-28 1988-07-19 Manufacture of wafer Pending JPH0228925A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP63180010A JPH0228925A (en) 1988-07-19 1988-07-19 Manufacture of wafer
EP89110984A EP0348757B1 (en) 1988-06-28 1989-06-16 Method for polishing a silicon wafer
DE68920365T DE68920365T2 (en) 1988-06-28 1989-06-16 Process for polishing a semiconductor wafer.
US07/367,637 US5096854A (en) 1988-06-28 1989-06-19 Method for polishing a silicon wafer using a ceramic polishing surface having a maximum surface roughness less than 0.02 microns
KR1019890008887A KR0145300B1 (en) 1988-06-28 1989-06-27 Polishing method of silicon wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63180010A JPH0228925A (en) 1988-07-19 1988-07-19 Manufacture of wafer

Publications (1)

Publication Number Publication Date
JPH0228925A true JPH0228925A (en) 1990-01-31

Family

ID=16075877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63180010A Pending JPH0228925A (en) 1988-06-28 1988-07-19 Manufacture of wafer

Country Status (1)

Country Link
JP (1) JPH0228925A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5804495A (en) * 1990-04-24 1998-09-08 Mitsubishi Materials Corporation Method of making SOI structure

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS582040A (en) * 1981-06-26 1983-01-07 Fujitsu Ltd Manufacture of semiconductor device
JPS59136943A (en) * 1983-01-27 1984-08-06 Nec Corp Element isolation process of semiconductor device
JPS6230333A (en) * 1985-05-20 1987-02-09 ナルコ ケミカル カンパニ− Method and composition for grinding silicon wafer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS582040A (en) * 1981-06-26 1983-01-07 Fujitsu Ltd Manufacture of semiconductor device
JPS59136943A (en) * 1983-01-27 1984-08-06 Nec Corp Element isolation process of semiconductor device
JPS6230333A (en) * 1985-05-20 1987-02-09 ナルコ ケミカル カンパニ− Method and composition for grinding silicon wafer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5804495A (en) * 1990-04-24 1998-09-08 Mitsubishi Materials Corporation Method of making SOI structure

Similar Documents

Publication Publication Date Title
US6146979A (en) Pressurized microbubble thin film separation process using a reusable substrate
US20030008478A1 (en) Production method for silicon wafer and soi wafer, and soi wafer
EP1189266A1 (en) Production method for silicon wafer and soi wafer, and soi wafer
JPH0376118A (en) Manufacture of substrate for semiconductor element formation
JPS61296709A (en) Manufacture of semiconductor
JP3496508B2 (en) Bonded silicon wafer and manufacturing method thereof
WO2020022415A1 (en) SiC WAFER MANUFACTURING METHOD
JPH06124932A (en) Polishing
JPS61151097A (en) Production of diamond thin film with smooth surface
JPH0228925A (en) Manufacture of wafer
JP2762462B2 (en) Semiconductor substrate manufacturing method
JP2961522B2 (en) Substrate for semiconductor electronic device and method of manufacturing the same
JP2000077372A (en) Manufacture of semiconductor wafer for vapor-phase growth
JPH10242439A (en) Stuck silicon wafer and its manufacture
US5773354A (en) Method of forming SOI substrate
JPH04162630A (en) Semiconductor substrate
JP2000211997A (en) Production of epitaxial wafer
JPH10199840A (en) Manufacture of soi substrate
JPH056883A (en) Manufacture of semiconductor substrate
JPH10189405A (en) Manufacture of direct-bonded silicon substrate
JPS61234547A (en) Manufacture of semiconductor substrate
JPH03270209A (en) Production of directly bonding silicon substrate
JPH04313211A (en) Manufacture of pasted substrate
JPH01179435A (en) Formation of silicon thin film
JPH06260378A (en) Manufacture of semiconductor substrate