JPH02234434A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH02234434A
JPH02234434A JP5540489A JP5540489A JPH02234434A JP H02234434 A JPH02234434 A JP H02234434A JP 5540489 A JP5540489 A JP 5540489A JP 5540489 A JP5540489 A JP 5540489A JP H02234434 A JPH02234434 A JP H02234434A
Authority
JP
Japan
Prior art keywords
layer
base
insulating layer
opening
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5540489A
Other languages
Japanese (ja)
Inventor
Kiyoshi Ozawa
清 小沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP5540489A priority Critical patent/JPH02234434A/en
Publication of JPH02234434A publication Critical patent/JPH02234434A/en
Pending legal-status Critical Current

Links

Landscapes

  • Bipolar Transistors (AREA)

Abstract

PURPOSE:To obtain a bipolar transistor with small base resistance by forming a short base lead-out electrode using a metal. CONSTITUTION:Three layers, namely first to third insulation layers 41-43, which are formed on a semiconductor substrate 1. Sides of three layers, namely, a collector layer 6, a base layer 7, and an emitter layer 8 are in contact with sides of the first to third insulation layer 41-43, and the side surface of the base layer 7 contacts all of the side surface of the insulation layer 42, one part of the side surface of the first insulation layer 41, and one part of the side surface of the third insulation layer 43. Then, a first hole 5 which is adjacent to the base layer 7 to the second insulation layer 42 are selectively etched, thus forming a hole leading from the side surface of the base layer 7 to the upper part of the third insulation layer 43. Then, it is embedded by a metal layer 11 to form a base lead-out electrode. Also, the collector layer 6, the base layer 7, and the emitter layer 8 are formed being closer to an element isolating region 2. Then, by forming the first hole 5 in the element isolating region 2, the length of the base lead-out electrode 13 is reduced, thus reducing base resistance.

Description

【発明の詳細な説明】 〔概要〕 半導体装置の製造方法に係り,特にハイボーラトランジ
スタの製造方法に関し, ベース抵抗を低減して高速化を可能ならしめる方法を目
的とし. 素子分離領域と埋込み層を有する半導体基板上に,第1
の絶縁層,第2の絶縁層,第3の絶縁層をこの順に積層
する工程と,該素子分離領域に近接する該埋込み層上の
該第3の絶縁層に開口し該埋込み層に達する第1の開孔
を形成した後,該第1の開孔に選択エピタキシャル成長
によりコレクタ層,ベース層,エミッタ層をこの順に形
成し,且つ該コレクタ層の厚さを該第1の絶縁層の厚さ
より小さく,該コレクタ層の厚さと該ベース層の厚さの
和を該第1の絶縁層の厚さと該第2の絶縁層の厚さの和
より大きく形成する工程と,該素子分離領域上の該第3
の絶縁層に開口し少なくとも該第1の絶縁層に達する第
2の開孔を形成する工程と,該第2の開孔から該第2の
絶縁層を選択エッチにより除去し,該第2の開孔に該ベ
ース層の側面を露出した後,該第2の開孔に金属層を堆
積して該ベース層の側面に接続するベース電極を形成す
る工程とを含む半導体装置の製造方法により構成する。
[Detailed Description of the Invention] [Summary] The present invention relates to a method for manufacturing semiconductor devices, and in particular to a method for manufacturing high-bolar transistors, and aims to provide a method for reducing base resistance and increasing speed. A first layer is formed on a semiconductor substrate having an element isolation region and a buried layer.
a step of laminating an insulating layer, a second insulating layer, and a third insulating layer in this order; and a step of laminating an insulating layer, a second insulating layer, and a third insulating layer in this order; After forming a first hole, a collector layer, a base layer, and an emitter layer are formed in this order in the first hole by selective epitaxial growth, and the thickness of the collector layer is made smaller than the thickness of the first insulating layer. a step of forming the sum of the thickness of the collector layer and the thickness of the base layer to be larger than the sum of the thickness of the first insulating layer and the thickness of the second insulating layer; The third
forming a second opening in the insulating layer reaching at least the first insulating layer; removing the second insulating layer from the second opening by selective etching; A method for manufacturing a semiconductor device comprising: exposing a side surface of the base layer to the opening, and then depositing a metal layer in the second opening to form a base electrode connected to the side surface of the base layer. do.

〔産業上の利用分野〕[Industrial application field]

本発明は半導体装置の製造方法に係り,特にバイボーラ
トランジスタの製造方法に関する。
The present invention relates to a method of manufacturing a semiconductor device, and particularly to a method of manufacturing a bibolar transistor.

バイボーラトランジスタにおいては高速化が要求されて
いる.このため,ベース抵抗を低減する必要がある。
Bibolar transistors are required to be faster. Therefore, it is necessary to reduce the base resistance.

〔従来の技術〕[Conventional technology]

従来,バイポーラトランジスタの高速化をはかるために
,ベース電極の引出し長を短くするデバイス構造が提案
されている。
Conventionally, in order to increase the speed of bipolar transistors, device structures have been proposed in which the extension length of the base electrode is shortened.

かかる構造を持つものに,例えば,SST(Super
 Self−alignn+ent Technolo
gy )構造や.S I C O S (Side w
all Contact Structure )構造
があるが,いずれもベース電極の引出し長を短くする工
夫はされているものの,電極の引出しにはポリシリコン
を用いているため.金属を用いた時ほどの低抵抗は実現
されない。また,製造工程が複雑であるといった欠点も
ある。
For example, SST (Super
Self-align+ent Technolo
gy) structure and. S I CO S (Side w
All Contact Structures) structure, but all of them are designed to shorten the length of the base electrode, but polysilicon is used for the electrode lead-out. The resistance as low as when using metal cannot be achieved. Another disadvantage is that the manufacturing process is complicated.

〔発明が解決しようとする課題] 従って,ベース抵抗の低減がなかなか困難で,高速化が
達成されないといった問題を生じていた。
[Problems to be Solved by the Invention] Therefore, it has been difficult to reduce the base resistance, resulting in the problem that high speed cannot be achieved.

本発明はベース電極の引出しに金属を用い.しかも製造
工程が平易なバイボーラトランジスタの製造方法を提供
することを目的とする。
The present invention uses metal to lead out the base electrode. Moreover, it is an object of the present invention to provide a method for manufacturing a bibolar transistor with a simple manufacturing process.

〔課題を解決するための手段〕[Means to solve the problem]

第1図(a)乃至(h)は本発明の実施例の製造工程を
示すものであり,図中の符号を参照しながら上記課題を
解決するための手段について説明する。
FIGS. 1(a) to 1(h) show the manufacturing process of an embodiment of the present invention, and means for solving the above problem will be explained with reference to the reference numerals in the figures.

上記課題は,素子分離領域2と埋込み層3を有する半導
体基板1上に,第1の絶縁層41,第2の絶縁層42.
第3の絶縁層43をこの順に積層する工程と,該素子分
離領域2に近接する該埋込み層3上の該第3の絶縁層4
3に開口し該埋込み層3に達する第1の開孔5を形成し
た後.該第1の開孔5に選択エピタキシャル成長により
コレクタ層6,ベース層7,エミッタ層8をこの順に形
成し,且つ該コレクタ層6の厚さを該第1の絶縁層f4
1の厚さより小さく,該コレクタ層6の厚さと該ベース
層7の厚さの和を該第1の絶縁層41の厚さと該第2の
絶縁層42の厚さの和より大きく形成する工程と,該素
子分離領域2上の該第3の絶縁層43に開口し少なくと
も該第1の絶縁層41に達する第2の開孔9を形成する
工程と,該第2の開孔9から該第2の絶縁層42を選択
エッチにより除去し,該第2の開孔9に該ベース層7の
側面を露出した後.該第2の開孔9に金属層11を堆積
して該ベース層7の側面に接続するベース電極13を形
成する工程とを含む半導体装置の製造方法によって解決
される。
The above problem is solved by forming a first insulating layer 41, a second insulating layer 42 .
A step of stacking a third insulating layer 43 in this order, and a step of stacking the third insulating layer 43 on the buried layer 3 close to the element isolation region 2.
After forming a first opening 5 that opens in 3 and reaches the buried layer 3. A collector layer 6, a base layer 7, and an emitter layer 8 are formed in this order in the first opening 5 by selective epitaxial growth, and the thickness of the collector layer 6 is set to be equal to that of the first insulating layer f4.
1, and the sum of the thickness of the collector layer 6 and the thickness of the base layer 7 is larger than the sum of the thickness of the first insulating layer 41 and the thickness of the second insulating layer 42. forming a second opening 9 in the third insulating layer 43 on the element isolation region 2 and reaching at least the first insulating layer 41; After removing the second insulating layer 42 by selective etching and exposing the side surface of the base layer 7 in the second opening 9. The problem is solved by a semiconductor device manufacturing method including a step of depositing a metal layer 11 in the second opening 9 and forming a base electrode 13 connected to the side surface of the base layer 7.

〔作用〕[Effect]

本発明では.半導体基板1上に形成された第1の絶縁層
41,第2の絶縁層42,第3の絶縁層43からなる三
層と,選択エピタキシャル法により形成されたコレクタ
層6,ベース層7,エミッタ層8の三層とが,お互いに
その側面を接し,ベース層7の側面は第2の絶縁層42
の側面の全部と第1の絶縁層41の側面の一部と第3の
絶縁層43の側面の一部に接するようになっている。
In the present invention. Three layers consisting of a first insulating layer 41, a second insulating layer 42, and a third insulating layer 43 formed on a semiconductor substrate 1, and a collector layer 6, a base layer 7, and an emitter layer formed by selective epitaxial method. The three layers of the layer 8 are in contact with each other on their side surfaces, and the side surface of the base layer 7 is in contact with the second insulating layer 42.
, a portion of the side surface of the first insulating layer 41 , and a portion of the side surface of the third insulating layer 43 .

それ故,ベース層7に近接する第1の開孔5から第2の
絶縁層42を選択エッチすることにより,ベース層7の
側面から第3の絶緑層43の上部に通じる開孔が形成で
きて.そこを金属層11で埋込むことによりベース引出
し電極を形成することができる。
Therefore, by selectively etching the second insulating layer 42 from the first opening 5 close to the base layer 7, an opening leading from the side surface of the base layer 7 to the top of the third green-free layer 43 is formed. Done. A base extraction electrode can be formed by burying the metal layer 11 there.

しかも.コレクタ層6,ベース層7,エミッタ層8は素
子分離領域2に近接して形成し.その素子分離領域2に
第1の開孔5を形成しているので,ベース引出し電極の
長さを小さくすることができる。
Moreover. The collector layer 6, base layer 7, and emitter layer 8 are formed close to the element isolation region 2. Since the first opening 5 is formed in the element isolation region 2, the length of the base lead-out electrode can be reduced.

このように,金属を用いて短いベース引出し電極を形成
できるので,ヘース抵抗を小さくすることができる。
In this way, since a short base lead-out electrode can be formed using metal, the Heas resistance can be reduced.

〔実施例〕〔Example〕

第1図(a)乃至(h)は本発明の実施例の製造工程を
説明するための図であり.1は半導体基板,2は素子分
離領域,3は活性領域,41乃至43は第1乃至第3の
絶縁層,5は第1の開孔,6はコレクタ層,7はベース
層,8はエミッタ層,9は第2の開孔,10は第3の開
孔,11は金属層.12はコレクタ電極,13はベース
電極,14はエミノタ電極を表す。
FIGS. 1(a) to 1(h) are diagrams for explaining the manufacturing process of an embodiment of the present invention. 1 is a semiconductor substrate, 2 is an element isolation region, 3 is an active region, 41 to 43 are first to third insulating layers, 5 is a first opening, 6 is a collector layer, 7 is a base layer, and 8 is an emitter. 9 is the second opening, 10 is the third opening, and 11 is the metal layer. 12 represents a collector electrode, 13 represents a base electrode, and 14 represents an emitter electrode.

以下,第1図(a)乃至(h)を参照しながら,本発明
について説明する。
The present invention will be described below with reference to FIGS. 1(a) to 1(h).

第1図(a)参照 第1図(a)は.P型の半導体基板上に, SiOzの
素子分離領域2とn゛型の埋込み層3との形成された状
態を示す。
See Figure 1(a) Figure 1(a) is. A state in which an SiOz element isolation region 2 and an n-type buried layer 3 are formed on a P-type semiconductor substrate is shown.

第1図(b)参照 化学気相成長(CVD)法により,全面に第1の絶縁層
41.第2の絶縁層42.第3の絶縁層43をこの順に
堆積する。各層の組成と厚さは次の如くである。
Referring to FIG. 1(b), a first insulating layer 41 is deposited on the entire surface by chemical vapor deposition (CVD). Second insulating layer 42. A third insulating layer 43 is deposited in this order. The composition and thickness of each layer are as follows.

?1.第1の絶縁層   Si0■ 1500人42.
第2の絶縁層   SiJ.  500人43.第3の
絶縁層   Si0.  2750人第1図(c)参照 素子分離領域2に近接する埋込み層3上の第3の絶縁層
43上に開口し,埋込み層3に達する幅1μmの溝形の
第1の開孔5を形成する。
? 1. First insulating layer Si0■ 1500 people42.
Second insulating layer SiJ. 500 people 43. Third insulating layer Si0. 2,750 people FIG. 1(c) Reference A first groove-shaped opening 5 with a width of 1 μm is opened on the third insulating layer 43 on the buried layer 3 close to the element isolation region 2 and reaches the buried layer 3. Form.

第1図(d)参照 第1の開孔5の埋込み層3上に,コレクタ層6,ベース
層7,エミッタ層8をこの順に選択エピタキシャル成長
する。形成条件と各層の厚さは次の如くである。
Referring to FIG. 1(d), a collector layer 6, a base layer 7, and an emitter layer 8 are selectively epitaxially grown in this order on the buried layer 3 in the first opening 5. The formation conditions and the thickness of each layer are as follows.

?件: SillzCIz + HCI  +ll■(
キャリアガス)SiHzC1zとHCIの体積比は10
0対5乃至30圧力はlOTorr 6,コレクタ層(n型)   1250人7.ベース層
(p型)    1000人8,エミッタ層( n +
型)  1250人第1図(e)参照 ベース電極とコレクタ電極を引き出す窓を形成する工程
である。
? Item: SillzCIz + HCI +ll■(
Carrier gas) The volume ratio of SiHzC1z and HCI is 10
0 to 5 to 30 pressure is 1OTorr 6, collector layer (n type) 1250 people 7. Base layer (p type) 1000 people 8, emitter layer (n +
Type) 1250 peopleRefer to Fig. 1(e), this is the process of forming a window for drawing out the base electrode and collector electrode.

素子分離領域2上と埋込み層3上に幅1μmの溝形の開
口を有するマスク(図示せず)を第3の絶縁層43上に
形成し,その開口から反応性イオンエッチング(RIE
)により,第1の絶縁層41,第2の絶縁層42.第3
の絶縁層43を除去し,素子分離領域2上に第2の開孔
9.埋込み層3上に第3の開孔10を形成する。
A mask (not shown) having a groove-shaped opening with a width of 1 μm on the element isolation region 2 and the buried layer 3 is formed on the third insulating layer 43, and reactive ion etching (RIE) is performed from the opening.
), the first insulating layer 41, the second insulating layer 42 . Third
The insulating layer 43 is removed, and a second opening 9. is formed on the element isolation region 2. A third opening 10 is formed on the buried layer 3.

エッチング条件は次の如くである。The etching conditions are as follows.

?1.第1の!!!縁層:CF4 + CIl■Fz(
1:1)42.第2の絶縁層:CF4 43.第3(7)vA縁層: CF4 + CthFz
 ( 1 : 1 )第1の開孔5と第2の開孔9間の
絶縁層の幅2は5000人,第1の開孔5と第3の開孔
10間の絶縁層の幅Lは1μmである。
? 1. First! ! ! Limb layer: CF4 + CIl■Fz(
1:1)42. Second insulating layer: CF4 43. 3rd (7) vA marginal layer: CF4 + CthFz
(1:1) The width 2 of the insulating layer between the first aperture 5 and the second aperture 9 is 5000, and the width L of the insulating layer between the first aperture 5 and the third aperture 10 is It is 1 μm.

第1図(f)参照 第1の開孔5と第2の開孔9から180゜Cの熱燐酸に
より第2の絶縁層42を選択エッチにより除去して,第
1の開孔5内にベース層7の側面を露出させる。
Referring to FIG. 1(f), the second insulating layer 42 is removed from the first opening 5 and the second opening 9 by selective etching using hot phosphoric acid at 180°C, and the inside of the first opening 5 is removed. The side surfaces of the base layer 7 are exposed.

この選択エッチは.第1の開孔5内にベース層7の側面
が十分露出した時点で止めるようにし.第1の開孔5と
第3の開孔10間には第2の絶縁層42が残存するよう
にする。
This selective sex. Stop when the side surface of the base layer 7 is fully exposed in the first opening 5. The second insulating layer 42 is left between the first opening 5 and the third opening 10.

第1図(g)参照 化学気相成長法により全面にアルミニウムを堆積し,金
属層l1を形成する。形成条件は次の如くである。
Referring to FIG. 1(g), aluminum is deposited on the entire surface by chemical vapor deposition to form a metal layer l1. The forming conditions are as follows.

AI(CTo >s +  Ib (キャリアガス)基
板温度   約300″C アルミニウムは第2の開孔9を埋込んで,ベース層7の
側面に接続し,また.第3の開孔lOを埋込んで,コレ
クタ層6の下の埋込み層3に接続する。
AI (CTo > s + Ib (carrier gas) substrate temperature approximately 300″C Aluminum fills the second opening 9 and connects to the side surface of the base layer 7, and also fills the third opening IO. It is connected to the buried layer 3 under the collector layer 6.

第1図(h)参照 アルミニウムの金属層11をバターニングして.コレク
タ電極12,ベース電極13,エミッタ電極14を形成
する。
Refer to FIG. 1(h), the aluminum metal layer 11 is patterned. A collector electrode 12, a base electrode 13, and an emitter electrode 14 are formed.

かくしてパイポーラトランジスタ素子が形成され.その
ベース抵抗は200Ωであった。一方,同様の構造でベ
ース引出し電極にポリシリコンを用いた場合は,ベース
抵抗は400Ωであった。
In this way, a bipolar transistor element is formed. Its base resistance was 200Ω. On the other hand, when polysilicon was used for the base lead-out electrode in a similar structure, the base resistance was 400Ω.

なお,ベース引出し電極の材料として, AIの他に.
1%程度のStを含むAISi合金, W,誓Si合金
等を用いてもよい。
In addition to AI, there are other materials for the base extraction electrode.
AISi alloys, W, Si alloys, etc. containing about 1% of St may also be used.

〔発明の効果〕〔Effect of the invention〕

以上説明した様に,本発明によれば,ベース抵゛抗の小
さいパイポーラトランジスタを提供することができる. 本発明は,パイポーラトランジスタの高速化に寄与する
ところが大きい。
As explained above, according to the present invention, a bipolar transistor with low base resistance can be provided. The present invention greatly contributes to increasing the speed of bipolar transistors.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)乃至(h)は本発明の実施例の製造工程を
説明するための図 である。図において. 1は半導体基板, 2は素子分離領域, 3は埋込み層, 41乃至43は第1乃至第3の絶縁層,5は第1の開孔
, 6はコレクタ層, 7はベース層, 8はエミッタ層. 9は第2の開孔, 10は第3の開孔, 11は金属層, 12はコレクタ電極, l3はベース電極, 14はエミッタ電極 C久) (b冫 火 杷 例 51図α.n1 )
FIGS. 1(a) to 1(h) are diagrams for explaining the manufacturing process of an embodiment of the present invention. In the figure. 1 is a semiconductor substrate, 2 is an element isolation region, 3 is a buried layer, 41 to 43 are first to third insulating layers, 5 is a first opening, 6 is a collector layer, 7 is a base layer, 8 is an emitter layer. 9 is the second aperture, 10 is the third aperture, 11 is the metal layer, 12 is the collector electrode, l3 is the base electrode, 14 is the emitter electrode (Fig.

Claims (1)

【特許請求の範囲】 素子分離領域(2)と埋込み層(3)を有する半導体基
板(1)上に、第1の絶縁層(41)、第2の絶縁層(
42)、第3の絶縁層(43)をこの順に積層する工程
と、 該素子分離領域(2)に近接する該埋込み層(3)上の
該第3の絶縁層(43)に開口し該埋込み層(3)に達
する第1の開孔(5)を形成した後、該第1の開孔(5
)に選択エピタキシャル成長によりコレクタ層(6)、
ベース層(7)、エミッタ層(8)をこの順に形成し、
且つ該コレクタ層(6)の厚さを該第1の絶縁層(41
)の厚さより小さく、該コレクタ層(6)の厚さと該ベ
ース層(7)の厚さの和を該第1の絶縁層(41)の厚
さと該第2の絶縁層(42)の厚さの和より大きく形成
する工程と、 該素子分離領域(2)上の該第3の絶縁層 (43)に開口し少なくとも該第1の絶縁層(41)に
達する第2の開孔(9)を形成する工程と、該第2の開
孔(9)から該第2の絶縁層(42)を選択エッチによ
り除去し該第2の開孔(9)に該ベース層(7)の側面
を露出した後、該第2の開孔(9)に金属層(11)を
堆積して該ベース層(7)の側面に接続するベース電極
(13)を形成する工程と を含むことを特徴とする半導体装置の製造方法。
[Claims] On a semiconductor substrate (1) having an element isolation region (2) and a buried layer (3), a first insulating layer (41) and a second insulating layer (
42), a step of stacking a third insulating layer (43) in this order, and forming an opening in the third insulating layer (43) on the buried layer (3) close to the element isolation region (2). After forming the first opening (5) reaching the buried layer (3), the first opening (5) is formed.
) by selective epitaxial growth to form a collector layer (6),
A base layer (7) and an emitter layer (8) are formed in this order,
and the thickness of the collector layer (6) is set to the thickness of the first insulating layer (41).
), and the sum of the thickness of the collector layer (6) and the thickness of the base layer (7) is the thickness of the first insulating layer (41) and the thickness of the second insulating layer (42). forming a second opening (9) in the third insulating layer (43) on the element isolation region (2) and reaching at least the first insulating layer (41); ), and removing the second insulating layer (42) from the second opening (9) by selective etching to form a side surface of the base layer (7) in the second opening (9). After exposing the base layer (7), a metal layer (11) is deposited in the second opening (9) to form a base electrode (13) connected to the side surface of the base layer (7). A method for manufacturing a semiconductor device.
JP5540489A 1989-03-08 1989-03-08 Manufacture of semiconductor device Pending JPH02234434A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5540489A JPH02234434A (en) 1989-03-08 1989-03-08 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5540489A JPH02234434A (en) 1989-03-08 1989-03-08 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH02234434A true JPH02234434A (en) 1990-09-17

Family

ID=12997602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5540489A Pending JPH02234434A (en) 1989-03-08 1989-03-08 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH02234434A (en)

Similar Documents

Publication Publication Date Title
JPS6072268A (en) Method of producing bipolar transistor structure
JPS6362272A (en) Manufacture of semiconductor device
JPS62156869A (en) Manufacture of bipolar transistor structure
JPS61222172A (en) Forming method for gate insulating film in mosfet
JPS5922344A (en) Manufacture of semiconductor device
JPH02234434A (en) Manufacture of semiconductor device
JPS62194673A (en) Manufacture of semiconductor device
JPS5848438A (en) Semiconductor integrated circuit device
JPH03201564A (en) Lateral semiconductor device
JPH03163832A (en) Semiconductor device
JP2707536B2 (en) Method for manufacturing semiconductor device
JPH02106971A (en) Semiconductor integrated circuit device and manufacture thereof
JP2659798B2 (en) Semiconductor device
JPH0335528A (en) Manufacture of semiconductor device
JPH0342842A (en) Manufacture of semiconductor device
JPH0464470B2 (en)
JPS6185839A (en) Manufacture of semiconductor integrated circuit
JPH0529624A (en) Thin film transistor and manufacture thereof
JPS63228752A (en) Manufacture of semiconductor device
JPS61124175A (en) Semiconductor device and manufacture thereof
JPS6384156A (en) Forming method of bipolar transistor
JPH0240921A (en) Manufacture of bipolar transistor
JPS61147533A (en) Manufacture of semiconductor device
JPH01270270A (en) Manufacture of semiconductor device
JPS639150A (en) Manufacture of semiconductor device