JPS61124175A - Semiconductor device and manufacture thereof - Google Patents

Semiconductor device and manufacture thereof

Info

Publication number
JPS61124175A
JPS61124175A JP24674384A JP24674384A JPS61124175A JP S61124175 A JPS61124175 A JP S61124175A JP 24674384 A JP24674384 A JP 24674384A JP 24674384 A JP24674384 A JP 24674384A JP S61124175 A JPS61124175 A JP S61124175A
Authority
JP
Japan
Prior art keywords
film
base
mask
region
semiconductor layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24674384A
Other languages
Japanese (ja)
Inventor
Akira Sato
彰 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP24674384A priority Critical patent/JPS61124175A/en
Publication of JPS61124175A publication Critical patent/JPS61124175A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/73Bipolar junction transistors
    • H01L29/732Vertical transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0649Dielectric regions, e.g. SiO2 regions, air gaps

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Bipolar Transistors (AREA)

Abstract

PURPOSE:To improve the frequency characteristic and the switching property of a bipolar semiconductor device by interposing an insulating film in a wide area between collector and the base of the device to reduce the collector capacity, further providing a polycrystalline silicon region at the base to reduce the base resistance, and connecting the base electrode with the polycrystalline silicon region, thereby reducing the connecting capacity. CONSTITUTION:An n type collector region 11, a p type base region 12 made of single crystal semiconductor layer, a p type base 13 made of polycrystalline semiconductor layer, an n<+> type emitter region 14, a field insulating film 15 made of silicon dioxide (SiO2) film, an SiO2 film 16 interposed between the collector and the base, a base electrode 17, and an emitter electrode 18 are formed. Thus, the collector capacity, the base resistance and the electrode connecting capacity an be reduced to accelerate the operation.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は半導体装置および製造方法に係り、そのうち特
に、バイポーラ型半導体装置の新規な構造とその形成方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor device and a manufacturing method, and more particularly to a novel structure of a bipolar semiconductor device and a method for forming the same.

最近におけるIC,LSIなど半導体装置の発展は非常
に目覚ましいものがあるが、それらはすべて高集積化、
高密度化して高速動作する方向に技術的検討が進められ
ている。
The recent development of semiconductor devices such as ICs and LSIs has been very remarkable, but they have all become highly integrated and
Technical studies are progressing toward higher density and faster operation.

且つ、ICなどの半導体装置はバイポーラ型とMIS型
との2つのタイプの構造に大別されるが、前者のバイポ
ーラ型の方が同じディメンジョンではMIS型よりも高
速化が容易なことが知られている。
In addition, semiconductor devices such as ICs can be roughly divided into two types of structures: bipolar type and MIS type, but it is known that the former bipolar type can be more easily increased in speed than the MIS type with the same dimensions. ing.

本発明はこのようなバイポーラ型ICにおいて、−N高
速化するための構造と製造方法に関するものである。
The present invention relates to a structure and manufacturing method for increasing -N speed in such a bipolar IC.

[従来の技術〕 第3図は従来の一例のバイポーラ型半導体装置の断面構
造図を示しており、1はn型コレクタ領域、2はp型ベ
ース領域、3はn++エミッタ領域、4は二酸化シリコ
ン(SiO2)膜からなるフィールド絶縁膜、5はベー
ス電極、6はエミッタ電極、7はコレクタ電極、8はn
+型型埋階層ある。
[Prior Art] FIG. 3 shows a cross-sectional structural diagram of an example of a conventional bipolar semiconductor device, in which 1 is an n-type collector region, 2 is a p-type base region, 3 is an n++ emitter region, and 4 is silicon dioxide. A field insulating film made of (SiO2) film, 5 is a base electrode, 6 is an emitter electrode, 7 is a collector electrode, 8 is an n
+ There is a type-type buried layer.

図のように、バイポーラ型半導体装置はコレクタとベー
スとがpn接合し、ベースとエミッタとがpn接合する
構造が基本となって、作成されている。
As shown in the figure, a bipolar semiconductor device is basically manufactured with a structure in which a collector and a base are in a pn junction, and a base and an emitter are in a pn junction.

し発明が解決しようとする問題点] しかし、接合(ジャンクション)は容量を発生し、その
接合容量が動作の高速化を器官する問題がある。
Problems to be Solved by the Invention] However, there is a problem in that junctions generate capacitance, and the junction capacitance increases the speed of operation.

バイポーラ型半導体装置の高周波性能指数ば、F=f/
r−c なる式で表され、Fは遮v!n周波数、rはベース抵抗
、Cはコレクタ容量であるが、この式から明らかなよう
に、特にコレクタ容量(コレクタ・ベース間の寄生容量
)は周波数特性、スイッチング特性に与える影響が大き
い。従って、コレクタ容量を減少するために、従前より
種々の工夫がなされているが、必ずしも十分ではない。
The high frequency figure of merit of a bipolar semiconductor device is F=f/
It is expressed by the formula r−c, where F is the interruption v! n frequency, r is the base resistance, and C is the collector capacitance. As is clear from this equation, the collector capacitance (parasitic capacitance between the collector and the base) has a particularly large influence on the frequency characteristics and switching characteristics. Therefore, various efforts have been made to reduce the collector capacitance, but these are not always sufficient.

且つ、上記の式から、ベース抵抗rを小さくすると、周
波数特性、スイッチング特性が同様に改善されることが
明らかである。
Furthermore, from the above equation, it is clear that by reducing the base resistance r, the frequency characteristics and switching characteristics are similarly improved.

更に、半導体装置の電極接続部、例えばベース領域とベ
ース電極との間にも接合容量が生じて、これも高速動作
に害を与えている。
Further, junction capacitance also occurs between electrode connections of the semiconductor device, such as between a base region and a base electrode, which also impairs high-speed operation.

本発明はこれらの容量や抵抗を減少させて、動作を高速
化する構造の半導体装置とその製造方法を提案するもの
である。
The present invention proposes a semiconductor device having a structure that reduces these capacitances and resistances to increase the speed of operation, and a method for manufacturing the same.

[問題点を解決するための手段〕 その問題は、エミッタ領域を含むベース領域が単結晶半
導体層に設けられ、該単結晶半導体層を取り囲んだベー
ス電極を有する多結晶半導体層からなるベース領域が設
けられ、該多結晶半導体層からなるベース領域と単結晶
半導体層からなるコレクタ領域との間に絶縁膜が介在す
る構造を具備している半導体装置によって達成される。
[Means for solving the problem] The problem is that the base region including the emitter region is provided in a single crystal semiconductor layer, and the base region is made of a polycrystalline semiconductor layer having a base electrode surrounding the single crystal semiconductor layer. This is achieved by a semiconductor device having a structure in which an insulating film is interposed between a base region made of the polycrystalline semiconductor layer and a collector region made of the single crystal semiconductor layer.

且つ、その半導体装置は、エミッタ形成部を含むエミッ
タ形成部周囲領域に保護マスクを被覆し、該エミッタ形
成部周囲領域外の一導電型単結晶半導体基板をエツチン
グして、前記保護マスクの下面をもサイドエツチングす
る工程、次いで、該一導電型単結晶半導体基板の表面に
二酸化シリコン膜を形成した後、上面より耐弗酸性マス
クをスパッタして被覆する工程、次いで、該耐弗酸性マ
スクを保護膜として、前記保護マスクの下の単結晶半導
体基板側面部分に露出した二酸化シリコン膜を弗酸でエ
ツチング除去した後、前記耐弗酸性マスクを除去する工
程、次いで、多結晶半導体膜を気相成長して前記保護マ
スクまで積層し、更に、該多結晶半導体膜の表面を研磨
して平坦化する工程、次いで、保護マスクをマスクとし
て不純物を導入した後、前記保護マスクを除去し、耐酸
化性マスクを形成して、フィールド酸化膜を生成する工
程が含まれる製造方法によって作成される。
In addition, in the semiconductor device, a region surrounding the emitter formation portion including the emitter formation portion is covered with a protective mask, and a single-crystal semiconductor substrate of one conductivity type outside the region surrounding the emitter formation portion is etched to remove the lower surface of the protective mask. Next, after forming a silicon dioxide film on the surface of the one conductivity type single crystal semiconductor substrate, a step of sputtering and covering the top surface with a hydrofluoric acid-resistant mask, and then protecting the hydrofluoric acid-resistant mask. After etching and removing the silicon dioxide film exposed on the side surface of the single crystal semiconductor substrate under the protective mask with hydrofluoric acid as a film, the process of removing the hydrofluoric acid-resistant mask is followed by vapor phase growth of a polycrystalline semiconductor film. Then, the surface of the polycrystalline semiconductor film is polished and planarized. Next, impurities are introduced using the protective mask as a mask, and then the protective mask is removed and oxidation-resistant It is produced by a manufacturing method that includes the steps of forming a mask and producing a field oxide film.

[作用] 即ち、本発明にかかるバイポーラ型半導体装置はコレク
タとベースとの間の広い面積部分に絶縁膜(Si02膜
)を介在させてコレクタ容量を減少させ、更に、ベース
に多結晶シリコン領域を設けて、ベース抵抗を減少させ
、且つ、ベース電極は多結晶シリコン領域で接続させて
、その接続容量を小さくする構造にする。
[Function] That is, the bipolar semiconductor device according to the present invention reduces the collector capacitance by interposing an insulating film (Si02 film) in a wide area between the collector and the base, and further includes a polycrystalline silicon region in the base. The base electrode is connected to a polycrystalline silicon region to reduce the connection capacitance.

かくして、周波数特性、スイッチング特性が一層改善さ
れた半導体装置を得ることができる。
In this way, a semiconductor device with further improved frequency characteristics and switching characteristics can be obtained.

[実施例] 以下、図面を参照して実施例によって詳細に説明する。[Example] Hereinafter, embodiments will be described in detail with reference to the drawings.

第1図は本発明にかかる半導体装置の断面構造図を示し
ており、11はn型コレクタ領域、12は単結晶半導体
層からなるp型ベース領域、13は多結晶半導体層から
なるp型ベース領域で、上記のベース領域12を取り囲
んで設けられている。14はn+型エミッタ領域、15
は二酸化シリコン(SiO2)膜からなるフィールド絶
縁膜、16はコレクタとベースとの間に介在させている
5i02膜(絶縁膜)、。
FIG. 1 shows a cross-sectional structural diagram of a semiconductor device according to the present invention, in which 11 is an n-type collector region, 12 is a p-type base region made of a single crystal semiconductor layer, and 13 is a p-type base made of a polycrystalline semiconductor layer. The base region 12 is provided surrounding the base region 12 described above. 14 is an n+ type emitter region, 15
16 is a field insulating film made of a silicon dioxide (SiO2) film, and 16 is a 5i02 film (insulating film) interposed between the collector and the base.

17はベース電極、18はエミッタ電極である。17 is a base electrode, and 18 is an emitter electrode.

このような構造にすれば、上記したようにコレクタ容量
、ベース抵抗および電極接続容量を少なくすることがで
きて、一層動作が高速化される。
With such a structure, the collector capacitance, base resistance, and electrode connection capacitance can be reduced as described above, and the operation speed can be further increased.

次に、その形成方法を第2図fa)〜(h)に示す形成
工程順断面図によって説明する。
Next, a method for forming the same will be explained with reference to sequential cross-sectional views of the forming steps shown in FIGS. 2fa) to 2(h).

まず、第2図(a)に示すように、n型シリコン基板1
1の上のエミッタ形成領域とその周囲部分に、窒化シリ
コン(Si2N4膜膜21からなる保護マスクを形成す
る。この保護マスクは、化学気相成長(CVD)法でS
i3N4膜21を被着し、パターンニングして形成され
る。
First, as shown in FIG. 2(a), an n-type silicon substrate 1
A protective mask made of silicon nitride (Si2N4 film 21) is formed in the emitter formation region on the emitter formation region 1 and its surrounding area.
It is formed by depositing an i3N4 film 21 and patterning it.

次いで、第2図(1))に示すように、シリコン基板1
1をCF4ガスを用いたドライエツチングによって膜厚
5000人程度程度等方的なエツチングを行なう。そう
すると、図のようにSi3N4膜21の下面までサイド
エツチングされる。
Next, as shown in FIG. 2 (1), the silicon substrate 1
1 is isotropically etched by dry etching using CF4 gas to a film thickness of about 5000 mm. Then, as shown in the figure, side etching is performed to the bottom surface of the Si3N4 film 21.

次いで、第2図(C)に示すように、高温高湿雰囲気中
で酸化して、露出したシリコン基板の表面に5i02膜
16を生成する。
Next, as shown in FIG. 2C, oxidation is performed in a high temperature and high humidity atmosphere to form a 5i02 film 16 on the exposed surface of the silicon substrate.

次いで、第2図(dlに示すように、その上面から蒸着
法によってタングステン膜22(耐弗酸性マスク)を被
着する。そうすると、蒸着法は方向性があるから、Si
3N4膜21の下面のサイドエツチングされた部分に生
成された5i02膜の部分には被覆されない。
Next, as shown in FIG. 2 (dl), a tungsten film 22 (hydrofluoric acid-resistant mask) is deposited on the top surface by vapor deposition.Then, since vapor deposition is directional, Si
The portion of the 5i02 film formed on the side-etched portion of the lower surface of the 3N4 film 21 is not coated.

次いで、第2図(e)に示すように、弗酸溶液によって
露出した5i02膜(Sia N4膜21の下面のシリ
コン基板側面部分)をエツチング除去した後、タングス
テン膜22を王水でエツチング除去する。
Next, as shown in FIG. 2(e), the exposed 5i02 film (side surface of the silicon substrate under the Sia N4 film 21) is etched away using a hydrofluoric acid solution, and then the tungsten film 22 is etched away using aqua regia. .

ここに、耐弗酸性マスクとしてタングステン膜22を用
いたが、その他にモリブテン膜などを用いても良い。
Although the tungsten film 22 is used here as a hydrofluoric acid-resistant mask, other materials such as a molybdenum film may also be used.

次いで、第2図(flに示すように、CVD法によって
多結晶シリコン膜13を被着して、Si2N4膜21を
含む凸状のシリコン基板11の部分を埋没させた後、研
磨などにより平坦化し、Si3N4膜21を表出させる
。その後、Si3N4膜21をマスクにして外部ベース
となる多結晶シリコンに硼素をイオン注入する。
Next, as shown in FIG. 2 (fl), a polycrystalline silicon film 13 is deposited by the CVD method to bury the convex portion of the silicon substrate 11 including the Si2N4 film 21, and is then flattened by polishing or the like. , the Si3N4 film 21 is exposed. Then, using the Si3N4 film 21 as a mask, boron ions are implanted into the polycrystalline silicon that will serve as an external base.

次いで、第2図(幻に示すように、Si3 N421を
エツチング除去した後、再び5i02膜を介在させたS
i3N4膜23を被着してパターンニングし、半導体素
子形成領域上の全面をマスクして、高温高湿雰囲気中で
酸化処理して、5i02膜からなるフィールド酸化膜1
5を選択的に形成する。即ち、これは公知のLOCO5
法と呼ばれるフィールド酸化膜の形成法である。
Next, as shown in Figure 2 (phantom), after removing Si3N421 by etching, S
A field oxide film 1 made of a 5i02 film is formed by depositing and patterning an i3N4 film 23, masking the entire surface of the semiconductor element formation region, and performing oxidation treatment in a high temperature and high humidity atmosphere.
5 is selectively formed. That is, this is the known LOCO5
This is a method of forming a field oxide film called the method.

次いで、第2図th)に示すように、5L3N4膜23
をエツチング除去し、半導体素子形成領域上に新しい5
i02膜24を形成して、更に、その上から硼素をイオ
ン注入し熱処理して、単結晶半導体層からなるp型ベー
ス領域12を画定する。
Next, as shown in FIG. 2th), the 5L3N4 film 23
is removed by etching, and a new 5 is formed on the semiconductor element forming area.
After forming the i02 film 24, boron ions are implanted thereon and heat treated to define the p-type base region 12 made of a single crystal semiconductor layer.

しかる後、公知の方法によって、エミッタ領域14およ
びベース電極17.エミッタ電極1Bを形成して、半導
体装置が完成される。
Thereafter, emitter region 14 and base electrode 17 . The emitter electrode 1B is formed to complete the semiconductor device.

このような形成方法を採れば、上記の半導体装置の構造
を容易に作成することができる。
If such a formation method is adopted, the structure of the semiconductor device described above can be easily created.

[発明の効果コ 以上の説明から明らかなように、本発明によればバイポ
ーラ型半導体装置が高速化されて、このような構造から
なるICは著しく高性能化される効果がある。
[Effects of the Invention] As is clear from the above description, the present invention has the effect of increasing the speed of a bipolar semiconductor device and significantly improving the performance of an IC having such a structure.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明にかかるバイポーラ型半導体装置の構造
断面図、 第2図fal〜(h)は本発明にかかる半導体装置の形
成工程順断面図、 第3図は従来のバイポーラ型半導体装置の構造断面図で
ある。 図において、 1.11はn型コレクタ領域、 2はn型ベース領域、 3.14はn+型エミッタ領域、 4,15はフィールド酸化膜、 5.17はベース電極、  6,18はエミッタ電極、
12は単結晶半導体層からなるベース領域、13は多結
晶半導体層からなるベース領域、16はベースとコレク
タ間に介在させたS L O2膜、21はSi3N4膜
(保護マスク)、 22は耐弗酸性マスク、 23は5i021!iiを介在させたSi3N4膜、2
4は新しい5i02膜 を示している。 第1図 第2図
FIG. 1 is a cross-sectional view of the structure of a bipolar semiconductor device according to the present invention, FIGS. FIG. In the figure, 1.11 is an n-type collector region, 2 is an n-type base region, 3.14 is an n+ type emitter region, 4 and 15 are field oxide films, 5.17 is a base electrode, 6 and 18 are emitter electrodes,
12 is a base region made of a single crystal semiconductor layer, 13 is a base region made of a polycrystalline semiconductor layer, 16 is an S L O2 film interposed between the base and collector, 21 is a Si3N4 film (protective mask), and 22 is a fluorocarbon film. Acid mask, 23 is 5i021! Si3N4 film with ii interposed, 2
4 shows the new 5i02 membrane. Figure 1 Figure 2

Claims (2)

【特許請求の範囲】[Claims] (1)エミッタ領域を含むベース領域が単結晶半導体層
に設けられ、該単結晶半導体層を取り囲んだベース電極
を有する多結晶半導体層からなるベース領域が設けられ
、該多結晶半導体層からなるベース領域と単結晶半導体
層からなるコレクタ領域との間に絶縁膜が介在する構造
を具備してなることを特徴とする半導体装置。
(1) A base region including an emitter region is provided in a single crystal semiconductor layer, a base region made of a polycrystalline semiconductor layer having a base electrode surrounding the single crystal semiconductor layer is provided, and a base region made of the polycrystalline semiconductor layer is provided. 1. A semiconductor device comprising a structure in which an insulating film is interposed between the region and a collector region made of a single crystal semiconductor layer.
(2)エミッタ形成部を含むエミッタ形成部周囲領域に
保護マスクを被覆し、該エミッタ形成部周囲領域外の一
導電型単結晶半導体基板をエッチングして、前記保護マ
スクの下面をもサイドエッチングする工程、次いで、該
一導電型単結晶半導体基板の表面に二酸化シリコン膜を
形成した後、上面より耐弗酸性マスクを蒸着して被覆す
る工程、次いで、該耐弗酸性マスクを保護膜として、前
記保護マスクの下の単結晶半導体基板側面部分に露出し
た二酸化シリコン膜を弗酸でエッチング除去した後、前
記耐弗酸性マスクを除去する工程、次いで、多結晶半導
体膜を気相成長して前記保護マスクまで積層し、更に、
該多結晶半導体膜の表面を平坦化する工程、次いで、前
記保護マスクをマスクとして不純物を導入した後、前記
保護マスクを除去し、耐酸化性マスクを形成して、フィ
ールド酸化膜を生成する工程が含まれてなることを特徴
とする半導体装置の製造方法。
(2) Covering the area surrounding the emitter formation part including the emitter formation part with a protective mask, etching the single conductivity type single crystal semiconductor substrate outside the area surrounding the emitter formation part, and also side-etching the lower surface of the protection mask. Next, after forming a silicon dioxide film on the surface of the one-conductivity type single crystal semiconductor substrate, a step of depositing a hydrofluoric acid-resistant mask from the upper surface to cover the substrate, using the hydrofluoric acid-resistant mask as a protective film, After removing the silicon dioxide film exposed on the side surface of the single-crystal semiconductor substrate under the protective mask by etching with hydrofluoric acid, the hydrofluoric acid-resistant mask is removed, and then a polycrystalline semiconductor film is vapor-phase grown to remove the protective layer. Laminated up to the mask, and furthermore,
a step of flattening the surface of the polycrystalline semiconductor film, then a step of introducing impurities using the protective mask as a mask, then removing the protective mask and forming an oxidation-resistant mask to generate a field oxide film. A method for manufacturing a semiconductor device, comprising:
JP24674384A 1984-11-20 1984-11-20 Semiconductor device and manufacture thereof Pending JPS61124175A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24674384A JPS61124175A (en) 1984-11-20 1984-11-20 Semiconductor device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24674384A JPS61124175A (en) 1984-11-20 1984-11-20 Semiconductor device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS61124175A true JPS61124175A (en) 1986-06-11

Family

ID=17152988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24674384A Pending JPS61124175A (en) 1984-11-20 1984-11-20 Semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS61124175A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5198689A (en) * 1988-11-30 1993-03-30 Fujitsu Limited Heterojunction bipolar transistor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5198689A (en) * 1988-11-30 1993-03-30 Fujitsu Limited Heterojunction bipolar transistor

Similar Documents

Publication Publication Date Title
JPH04106932A (en) Manufacture of bipolar transistor
JPS60117664A (en) Bipolar semiconductor device
JPH01274470A (en) Bipolar-transistor device and manufacture thereof
JP2589209B2 (en) Method of forming element isolation region of semiconductor device
JPH0897225A (en) Semiconductor device and its manufacture
JPS61124175A (en) Semiconductor device and manufacture thereof
JPS62194673A (en) Manufacture of semiconductor device
JPH0669430A (en) Manufacture of semiconductor device
JP2663632B2 (en) Semiconductor device and manufacturing method thereof
JPS60164356A (en) Semiconductor device
JPS594073A (en) Manufacture of semiconductor device
JP3173184B2 (en) Semiconductor device
JPS6218758A (en) Manufacture of semiconductor device
JP2816107B2 (en) Manufacturing method of bipolar transistor
JPH01187864A (en) Transistor and manufacture thereof
JPH0467786B2 (en)
JP3251834B2 (en) Semiconductor device and manufacturing method thereof
JP2619950B2 (en) Method for manufacturing semiconductor device
JPH04207038A (en) Semiconductor device and its manufacture
JPS6080275A (en) Manufacture of semiconductor device
JPH06291132A (en) Bipolar transistor and fabrication thereof
JPH0335529A (en) Bipolar semiconductor device and manufacture thereof
JPS63164365A (en) Semiconductor device and manufacture thereof
JPS62160762A (en) Semiconductor device
JPS59188970A (en) Semiconductor device