JPS60117664A - Bipolar semiconductor device - Google Patents

Bipolar semiconductor device

Info

Publication number
JPS60117664A
JPS60117664A JP22443683A JP22443683A JPS60117664A JP S60117664 A JPS60117664 A JP S60117664A JP 22443683 A JP22443683 A JP 22443683A JP 22443683 A JP22443683 A JP 22443683A JP S60117664 A JPS60117664 A JP S60117664A
Authority
JP
Japan
Prior art keywords
film
insulating film
well
buried layer
conductivity type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22443683A
Other languages
Japanese (ja)
Inventor
Kunihiro Suzuki
邦広 鈴木
Toshihiro Sugii
寿博 杉井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP22443683A priority Critical patent/JPS60117664A/en
Publication of JPS60117664A publication Critical patent/JPS60117664A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals

Abstract

PURPOSE:To produce the titled semiconductor device subject to high degree of integration and high speed operation making separation between elements and leading out electrode etc. entirely feasible utilizing a self alignment system by a method wherein a well is formed on a semiconductor substrate to produce an insulating film for separating elements, the first and the second interlayer insulating films. CONSTITUTION:A well 23 is formed in a field insulating film 22 and a silicon semiconductor substrate 21 and after forming another insulating film 24 for separating elements on the well 23 and then leaving the peripheral part of the well 23 only, a buried layer leading out conductive film 25, an n<++> type buried layer 26 are formed by etching process. Firstly an SiO2 film 29, the first Si3N4 interlayer insulating film 30A are formed and after removing a part of the buried layer leading out conductive film 25 on the bottom of the well 23 by etching process, an n type silicon semiconductor layer 31, a base leading out conductive film 32 and a p<+> type base region 33 are formed. Secondly another insulting SiO2 film 34, the second Si3N4 interlayer insulating film 35 and the other SiO2 film 36 are formed. Finally an emitter electrode 37E, a collector electrode 37C and a base electrode 37B are formed.

Description

【発明の詳細な説明】 発明の技術分野 本発明は、主要部分の殆どをセルフ・アラインメント方
式を適用して形成することができると共に高集積化が可
能であるバイポーラ半導体装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Technical Field of the Invention The present invention relates to a bipolar semiconductor device in which most of the main parts can be formed by applying a self-alignment method and which can be highly integrated.

従来技術と問題点 一般に、第1図に見られるようなバイポーラ半導体装置
が知られている。
Prior Art and Problems Generally, a bipolar semiconductor device as shown in FIG. 1 is known.

図に於いて、1はn型シリコン半導体基板、2はn〜型
埋め込み層、3はエピタキシャル成長p型シリコン半導
体層、4は二酸化シリコン(SiO□)からなる絶縁膜
、5はp゛型ベース領域、6はn++型エ主エミツタ領
域はn+型コレクタ・コンタクト領域、8はp型素子間
分離領域、9はコレクタ電極、10はベース電極、11
はエミッタ電極をそれぞれ示している。
In the figure, 1 is an n-type silicon semiconductor substrate, 2 is an n-type buried layer, 3 is an epitaxially grown p-type silicon semiconductor layer, 4 is an insulating film made of silicon dioxide (SiO□), and 5 is a p-type base region. , 6 is an n++ type emitter region, an n+ type collector contact region, 8 is a p type isolation region, 9 is a collector electrode, 10 is a base electrode, 11
indicate emitter electrodes, respectively.

このようなバイポーラ半導体装置では、通常、コレクタ
・コンタクト領域7或いは素子間分離領域8は不純物拡
散に依り形成され、シリコン半導体基板1に到達するま
でには、かなり横方向にも拡がるので、それに要する面
積は余裕を採って大きく見込む必要があり、また、素子
間分離領域8とシリコン半導体層3との間に於けるpn
接合容量も大きなものとなる。
In such a bipolar semiconductor device, the collector contact region 7 or the element isolation region 8 is usually formed by impurity diffusion, and by the time it reaches the silicon semiconductor substrate 1, it has spread considerably in the lateral direction. It is necessary to allow a large margin for the area, and the pn between the element isolation region 8 and the silicon semiconductor layer 3
The junction capacitance also becomes large.

また、電極形成の為、ペース領域5或いはエミッタ領域
6上の絶縁膜4に電極コンタクト窓を形成する必要があ
るので、それ等領域5或いは6の面積もある程度大きく
採る必要があり、エミッタ・ベース接合の面積を縮小す
ることに制約を与えている。
Furthermore, in order to form an electrode, it is necessary to form an electrode contact window in the insulating film 4 on the space region 5 or the emitter region 6, so the area of the region 5 or 6 must be large to some extent, and the emitter base This imposes restrictions on reducing the area of the bond.

第2図は第1図に示したものと異なる構成を有する従来
のバイポーラ半導体装置を表す要部切断側面図である。
FIG. 2 is a cross-sectional side view of a main part of a conventional bipolar semiconductor device having a configuration different from that shown in FIG. 1.

図に於いて、12ばn或いはp型シリコン半導体基板、
13はエピタキシャル成長n+型シリコン半導体層、1
4はエピタキシャル成長n型シリコン半導体層、15は
p++ベース領域、16はn++エミッタ領域、17は
マグネシア・スピネル(MgO・Al2O2)からなる
素子間分離膜をそれぞれ示している。
In the figure, a 12-ban or p-type silicon semiconductor substrate,
13 is an epitaxially grown n+ type silicon semiconductor layer, 1
4 is an epitaxially grown n-type silicon semiconductor layer, 15 is a p++ base region, 16 is an n++ emitter region, and 17 is an inter-element isolation film made of magnesia spinel (MgO.Al2O2).

この従来例のバイポーラ半導体装置を製造するには、半
導体基板12にウェルを形成し、そのウェルに於ける壁
面にマグネシア・スピネルからなる素子間分離膜17を
形成し、該素子間分離膜17に囲まれたウェル内にエピ
タキシャル成長n+型シリコン半導体層13及びエピタ
キシャル成長n型シリコン半導体層14を堆積させ、エ
ピタキシャル成長n型シリコン半導体層14内に拡散に
依りp++ベース領域15及びn+型型抜ミッタ領域1
6形成する工程を採っている。従って、第1図に関して
説明したバイポーラ半導体装置と同様にエミッタ・ベー
ス接合の面積を縮小することには制約がある。
To manufacture this conventional bipolar semiconductor device, a well is formed in the semiconductor substrate 12, an inter-element isolation film 17 made of magnesia spinel is formed on the wall surface of the well, and the inter-element isolation film 17 is made of magnesia spinel. An epitaxially grown n+ type silicon semiconductor layer 13 and an epitaxially grown n type silicon semiconductor layer 14 are deposited in the enclosed well, and a p++ base region 15 and an n+ type emitter region 1 are formed by diffusion into the epitaxially grown n type silicon semiconductor layer 14.
6 forming process is adopted. Therefore, similar to the bipolar semiconductor device described with reference to FIG. 1, there are restrictions on reducing the area of the emitter-base junction.

このように、従来のバイポーラ半導体装置には高集積化
及び高速化を妨げる要因が多かった。
As described above, conventional bipolar semiconductor devices have many factors that hinder high integration and high speed.

発明の目的 本発明は、素子間分離、電極引き出し等を全てセルフ・
アラインメント方式で形成できると共に高集積化及び高
速化が可能である半導体装置を提供する。
Purpose of the Invention The present invention is capable of self-containing isolation between elements, electrode extraction, etc.
Provided is a semiconductor device that can be formed using an alignment method and can be highly integrated and run at high speed.

発明の構成 本発明のバイポーラ半導体装置に於いては、ウェルが形
成された一専電型半専体凸板と、該ウェルの側周に形成
された素子間分離用絶縁膜と、前記ウェル底部の前記−
導電型半導体裁板に形成された反対導電型埋め込み層と
、該反対導電型埋め込み層の周辺と連なり前記素子間分
離用絶縁膜上を経て引き出される埋め込み層引き出し導
電膜と、該埋め込み層引き出し導電膜を覆う第1の層間
絶縁膜と、側周が前記ウェル内の該第1の層間絶縁膜で
囲まれ且つ前記反対導電型埋め込み層に隣接して形成さ
れた反対導電型半導体層と、該反対導電型半導体層表面
に形成されたー導電型ベース領域及び該−導電型ベース
領域の周辺と連なり前記第1の眉間絶縁股上を経て引き
出されるベース領域引き出し導電膜と、該ベース領域引
き出し4電膜を覆う第2の眉間絶縁膜と、側周が前記ウ
ェル内の該第2の層間絶縁膜で囲まれ且つ前記−導電型
ベース領域表面に形成された反対導電型エミッタ領域と
を備えた構成になっているので、漱細なバターニングが
必要とされるウェルの近傍では殆どセルフ・アラインメ
ン1〜方式を適用して加工することができ、マスクを用
いてバターニングしなければならない部分は然程微細さ
を必要とする部分ではないから、高集積化する際の有力
な技術となる。
Structure of the Invention In the bipolar semiconductor device of the present invention, a single-current type semi-dedicated convex plate in which a well is formed, an insulating film for isolation between elements formed on the side periphery of the well, and a bottom portion of the well. The above-
a buried layer of an opposite conductivity type formed on a conductive semiconductor substrate; a conductive film extending from the buried layer connected to the periphery of the buried layer of the opposite conductivity type and drawn out through the insulating film for isolation between elements; a first interlayer insulating film covering the film; a semiconductor layer of an opposite conductivity type whose side periphery is surrounded by the first interlayer insulator in the well and formed adjacent to the buried layer of the opposite conductivity type; a base region of conductivity type formed on the surface of the semiconductor layer of opposite conductivity type; a base region extraction conductive film connected to the periphery of the conductivity type base region and drawn out through the first glabellar insulating crotch; A configuration comprising a second glabellar insulating film covering the film, and an emitter region of opposite conductivity type whose side periphery is surrounded by the second interlayer insulating film in the well and formed on the surface of the -conductivity type base region. Therefore, the self-alignment method 1~ can be applied to most of the areas near the wells where detailed buttering is required, and the areas that need to be buttered using a mask are naturally processed. Since it is not a part that requires extremely fine detail, it is a powerful technology for achieving high integration.

発明の実施例 第3図乃至第11図は本発明一実施例を説明する為の工
程要所に於ける半導体装置の要部切断側面図であり、以
下これ等の図を参照しつつ解説する。
Embodiment of the Invention FIGS. 3 to 11 are cross-sectional side views of essential parts of a semiconductor device at key points in the process for explaining an embodiment of the present invention, and explanations will be given below with reference to these figures. .

第3図参照 ■熱酸化法酸いは化学気相堆積法(CVD法:Chem
ical vapour deposition法)を
適用し、p型シリコン半導体基板21の表面にSjO□
からなるフィールド絶縁膜22を厚さ例えば3000 
(人〕程度に形成する。
See Figure 3 ■ Thermal oxidation method Acid or chemical vapor deposition method (CVD method: Chem
ical vapor deposition method) to deposit SjO□ on the surface of the p-type silicon semiconductor substrate 21.
The thickness of the field insulating film 22 is, for example, 3000 mm.
form to the extent of (a person).

第4図参照 ■フォト・リソグラフィ技術及びプラズマ・エツチング
技術或いはウェット・エツチング技術を適用し、フィー
ルド絶縁膜22及びシリコン半導体基板21のエツチン
グを行ない、例えば幅6 〔μITI)、深さ2〔μm
〕程度のウェル23を形成する。
Refer to Fig. 4. The field insulating film 22 and the silicon semiconductor substrate 21 are etched by applying photolithography technology and plasma etching technology or wet etching technology to, for example, a width of 6 [μITI] and a depth of 2 [μm].
] A well 23 is formed.

CVD法を適用し、SiO□からなる素子間分離用絶縁
膜24を厚さ例えば5000 (人〕程度に形成する。
By applying the CVD method, an inter-element isolation insulating film 24 made of SiO□ is formed to a thickness of, for example, about 5000 (layers).

第5図参照 ■リソグラフィ・イオン・エツチング法(RIE法)を
適用し、素子間分離用絶縁膜24をエツチングする。尚
、SiO□をRIE法でエツチングする際のエッチャン
トとしてはトリフロロメタン(CHF3)を用いるもの
とし、これは後の工程でも同様である。
Refer to FIG. 5. 2) Applying a lithography ion etching method (RIE method), the insulating film 24 for isolation between elements is etched. Note that trifluoromethane (CHF3) is used as the etchant when etching SiO□ by the RIE method, and the same applies to subsequent steps.

この際、エツチングする厚さは5000 (人〕であり
、これに依り、フィールド絶縁膜22上の素子間分離用
絶縁膜24及びウェル23の底部にある素子間分離用絶
縁膜24は除去されるが、ウェル23の側周に在る素子
間分離用絶縁膜24は、その上部が若干エツチングされ
るだけで他は殆ど残留する。
At this time, the etching thickness is 5000 mm, so that the element isolation insulating film 24 on the field insulating film 22 and the element isolation insulating film 24 at the bottom of the well 23 are removed. However, the upper part of the element isolation insulating film 24 on the side periphery of the well 23 is slightly etched, and most of the rest remains.

CVD法を適用し、多結晶シリコンからなる埋め込み層
引き出し導電膜25を厚さ例えば5000〔人〕程度に
形成する。
By applying the CVD method, a buried layer extraction conductive film 25 made of polycrystalline silicon is formed to a thickness of, for example, about 5000 [layers].

イオン注入法を適用し、加速エネルギ:例えば50(K
eV)、ドーズ量:例えばlXl01b(cn−”)の
条件で砒素(As)イオンの打ち込みを行なう。
Applying the ion implantation method, the acceleration energy: for example, 50 (K
Arsenic (As) ions are implanted under conditions of, for example, lXl01b(cn-'').

窒素(N2)雰囲気中で、温度:例えば1000〔℃〕
、時間:例えば1〔時間〕の条件で熱処理を行ない、n
=型埋め込み層26を形成すると共に多結晶シリコンの
埋め込み層引き出し導電膜25を導電性化する。
In a nitrogen (N2) atmosphere, temperature: e.g. 1000 [℃]
, time: For example, heat treatment is performed under the conditions of 1 [hour], and
=A mold buried layer 26 is formed, and the conductive film 25 made of polycrystalline silicon is made conductive.

ここで、多結晶シリコンの埋め込み層引き出し導電膜2
5は、ウェル23の底面以外では素子間分離用絶縁膜2
4に依りシリコン半導体基板21と分離されているので
、シリコン半導体7iHff121に対する不純物拡散
の横方向への拡がりは発生しない。
Here, the buried layer of polycrystalline silicon is extracted from the conductive film 2.
5 is an insulating film 2 for element isolation except for the bottom surface of the well 23.
4, the impurity diffusion into the silicon semiconductor 7iHff121 does not spread in the lateral direction.

第6図参照 ■この工程から工程■の一部までは、埋め込み層引き出
し導電膜25のうち、ウェル23の底部に在る部分のみ
を除去する為のものである。
Refer to FIG. 6. The steps from this step to a part of step (2) are for removing only the portion of the buried layer extraction conductive film 25 located at the bottom of the well 23.

先ず、CVD法を適用することに依り、窒化シリコン(
Si3N4)膜27を厚さ例えば1000 〔人〕程度
に形成する。
First, by applying the CVD method, silicon nitride (
A Si3N4) film 27 is formed to a thickness of, for example, about 1000 [people].

スピン・コート法を適用し、レジストを塗布してレジス
ト膜28を形成する。
A resist film 28 is formed by applying a resist using a spin coating method.

第7図参照 ■RIE法を適用し、レジスト膜28の表面からエツチ
ングを行なって、レジスト膜28の一部並びにS ii
 N4膜27の一部を除去し、埋め込み層引き出し電極
膜25の表面が露出したらエツチングを停止する。尚、
レジストをtE法でエツチングする際のエッチャントと
しては02を、また、Si、N、に対するエッチャント
としてはCF、(95(、%〕)+0□ (5〔%〕)
混合ガスを用いるものとし、これは以下の工程でも同様
である。
Refer to FIG. 7. Applying the RIE method, etching is performed from the surface of the resist film 28, and a part of the resist film 28 and S ii
When a portion of the N4 film 27 is removed and the surface of the buried layer extraction electrode film 25 is exposed, etching is stopped. still,
02 was used as the etchant when etching the resist by the tE method, and CF was used as the etchant for Si and N, (95 (,%)) + 0□ (5 [%])
A mixed gas is used, and the same applies to the following steps.

これに依り、S i3 N4膜27ばウェル23の側周
並びに底面に残留する。
As a result, the Si3N4 film 27 remains on the side periphery and bottom surface of the well 23.

ウェル23内に残留しているレジスト膜28を溶解して
除去し、残留しているSi3N、膜27を露出させる。
The resist film 28 remaining in the well 23 is dissolved and removed, and the remaining Si3N film 27 is exposed.

残留している5i3Na膜27をマスクにして熱酸化法
を適用し、一部が露出されている埋め込み層引き出し導
電膜25の表面に厚さ例えば3゜00 〔人〕程度の5
in2膜29を形成する。
Using the remaining 5i3Na film 27 as a mask, thermal oxidation is applied to the surface of the partially exposed buried layer extraction conductive film 25 to a thickness of, for example, about 3°00 [person].
An in2 film 29 is formed.

CVD法を適用し、5t3N、膜3oを厚さ例えば10
00 (人〕程度に形成する。
Applying the CVD method, a 5t3N film 3o is formed to a thickness of, for example, 10
00 (people).

このSi3N4膜30は、後の工程で、Si3N4膜2
7とSing膜29との衝合部分に於いて多結晶シリコ
ンからなる埋め込み層引き出し導電膜25が露出しない
ように保護する為に形成したものである。
This Si3N4 film 30 will be changed to the Si3N4 film 2 in a later process.
This is formed in order to protect the buried layer extraction conductive film 25 made of polycrystalline silicon from being exposed at the abutting portion between the Sing film 29 and the Sing film 29 .

第8図参照 ■RIE法を適用し、Si、N、膜30をエツチングす
る。
Refer to FIG. 8. ② RIE method is applied to etch the Si, N, and film 30.

この際、エツチングする厚さば1000 (人〕程度で
あり、これに依り、ウェル23外に於いてはSiO2膜
29の表面が、ウェル23の側周には5t3N4膜30
が、ウェル23の底面には多結晶シリコンからなる埋め
込み層引き出し導電膜25の一部がそれぞれ露出されて
いる。
At this time, the etching thickness is approximately 1,000 mm, so that the surface of the SiO2 film 29 outside the well 23 is etched, and the 5t3N4 film 30 is etched around the side of the well 23.
However, at the bottom of the well 23, a portion of the buried layer-extracting conductive film 25 made of polycrystalline silicon is exposed.

ここで、残留しているSi3N4膜30とその下地にな
っているSi3N4膜27を纏めて30Aで表わし、こ
れを第1の層間絶縁膜と呼ぶことにする。
Here, the remaining Si3N4 film 30 and the underlying Si3N4 film 27 are collectively represented by 30A, and will be referred to as a first interlayer insulating film.

ウェット・エツチング法を適用し、ウェル23の底面に
在る埋め込み層引き出し導電膜25の部分をエツチング
することに依り、シリコン半導体基板21を露出させる
By applying a wet etching method, a portion of the buried layer extraction conductive film 25 located at the bottom of the well 23 is etched, thereby exposing the silicon semiconductor substrate 21.

気相エピタキシャル成長法を適用し、n型シリコン半導
体層31を厚さ例えば2〔μm〕程度に成長させる。
By applying a vapor phase epitaxial growth method, the n-type silicon semiconductor layer 31 is grown to a thickness of, for example, about 2 [μm].

第9図参照 ■CVD法を適用し、多結晶シリコンからなるベース引
き出し導電膜32を厚さ例えば5000〔人〕程度に成
長する。
Refer to FIG. 9. By applying the CVD method, a base drawing conductive film 32 made of polycrystalline silicon is grown to a thickness of, for example, about 5000 [layers].

イオン注入法を適用し、硼素(B)イオンの打ち込みを
してから熱処理を行ない、p゛型ヘペー領域33の形成
とベース引き出し導電膜32の導電性化を行なう。
By applying an ion implantation method, boron (B) ions are implanted, and then heat treatment is performed to form the p'-type hepatic region 33 and to make the base lead-out conductive film 32 conductive.

フォト・リソグラフィ技術を適用し、ベース引き出し導
電膜32のパターニングを行なう。このパターニングは
、例えば図に於いて、左の端部が切れているが、これは
コレクタ電極と衝合しないようにする為であり、このよ
うな部分では然程の精密さは要求されない。
The base-extracting conductive film 32 is patterned by applying photolithography technology. In this patterning, for example, the left end in the figure is cut off, but this is to prevent it from colliding with the collector electrode, and such a part does not require great precision.

第10図参照 ■この工程は、・ベース引出し導電膜32のうち、ウェ
ル23の底部に在る部分のみを除去する為のものであり
、基本的には、前記■がら■に於いて説明した工程と全
く同様である。
Refer to Figure 10 ■ This process is for removing only the portion of the base lead-out conductive film 32 that is located at the bottom of the well 23, and is basically the same as described in the previous paragraph ■. The process is exactly the same.

先ず、CVD法を適用することに依り、第2の層間絶縁
膜の一部となるSi、N、膜を厚さ1゜00 〔人〕程
度に形成する。
First, by applying the CVD method, a Si, N film, which will become a part of the second interlayer insulating film, is formed to a thickness of about 1.00 mm.

スピン・コート法を適用し、レジストを塗布してレジス
ト膜を形成する。
Applying a spin coating method, a resist is applied to form a resist film.

RIE法を適用し、前記レジスト膜の表面からエツチン
グを行なって、レジスト膜の一部並びに前記第2の眉間
絶縁膜の一部となるSi、N4膜の一部を除去し、ベー
ス引き出し導電膜32の表面の一部が選択的に露出され
たらエツチングを停止する。
Applying the RIE method, etching is performed from the surface of the resist film to remove a part of the resist film and a part of the Si and N4 films that will become part of the second glabellar insulating film, and form a base drawing conductive film. Etching is stopped when a portion of the surface of 32 is selectively exposed.

これに依り、前記第2の層間絶縁膜の一部となるSi、
N4膜はウェル23の側周並びに底面に残留する。
As a result, Si, which becomes a part of the second interlayer insulating film,
The N4 film remains on the side periphery and bottom of the well 23.

ウェル23内に残留しているレジスト膜を溶解して除去
し、残留している前記第2の層間絶縁膜の一部となるS
i3N4膜を露出させる。
The resist film remaining in the well 23 is dissolved and removed to form a portion of the remaining second interlayer insulating film.
Expose the i3N4 film.

残留している前記第2の層間絶縁膜となるSi3N4膜
をマスクにして熱酸化法を適用し、一部が露出されてい
るベース引き出し導電1模、32の表面に厚さ例えば3
000 (人〕程度のSiO□膜34膜形4する。
A thermal oxidation method is applied using the remaining Si3N4 film serving as the second interlayer insulating film as a mask, and a thickness of, for example, 3
000 (person) SiO□ film 34 film type 4.

CVD法を適用し、これも第2の層間絶縁膜の一部とな
るSi3N、膜を厚さ例えば1000〔人〕程度に形成
する。
A CVD method is applied to form a Si3N film, which also becomes a part of the second interlayer insulating film, to a thickness of, for example, about 1000 [layers].

このSi3N4膜は、後の工程で、最初に形成した前記
第2の眉間絶縁膜の一部となるSi、N。
This Si3N4 film is composed of Si and N, which will become a part of the second eyebrow insulating film formed first in a later step.

膜とSiO□膜34膜形4合部分に於いて多結晶シリコ
ンからなるベース引き出し導電膜32が露出しないよう
に保護する為に形成したものである。
This is formed to protect the base lead-out conductive film 32 made of polycrystalline silicon from being exposed in the area where the film and the SiO□ film 34 meet.

RIE法を適用し、前記Si、N4膜をエツチングする
The RIE method is applied to etch the Si and N4 films.

この際、エツチングする厚さは1000(人〕程度であ
り、これに依り、ウェル23外に於いてはSiO□膜2
9及び34の表面が、ウェル23の側周には後から形成
した第2の層間絶縁膜の一部となるSi、N、膜が、ウ
ェル23の底面には多結晶シリコンからなる引き出し導
電膜32の一部がそれぞれ露出されている。
At this time, the etching thickness is approximately 1,000 mm, so that the SiO□ film 2 is etched outside the well 23.
The surfaces of the wells 9 and 34 are covered with a Si, N film that will become a part of the second interlayer insulating film formed later on the side periphery of the well 23, and the drawn conductive film made of polycrystalline silicon is on the bottom of the well 23. 32 are each exposed.

ここで、ウェルの側周に残留しているSi3N。Here, Si3N remains on the side periphery of the well.

膜の二重層を纏めて第2の層間絶縁11H5と呼ぶこと
にする。
The double layer of films will be collectively referred to as second interlayer insulation 11H5.

ウェフト・エツチング法を適用し、ウェル23の底面に
在るベース引き出し導電膜32の部分をエツチングする
ことに依り、p′″型ベース領域33の表面を露出させ
る。
By applying a wet etching method, the surface of the p'' type base region 33 is exposed by etching the portion of the base-extracting conductive film 32 located on the bottom surface of the well 23.

CVD法を適用することに依り、p+型ベース領i!1
i33と次に形成するエミッタ領域とを絶縁膜aする為
のSiO□膜36全36例えば3000〔人〕程度に形
成する。
By applying the CVD method, the p+ type base region i! 1
A total of 36 SiO□ films 36 are formed to form an insulating film a between i33 and an emitter region to be formed next.

RIE法を適用し、SiO□膜36全36チングする。Applying the RIE method, all 36 of the SiO□ films 36 are etched.

このエツチングに依り、ウェル23外に於いてはSin
、膜29及び34の表面が、ウェル23の側周にはSi
n、膜36が、ウェル23の底面にはp“型ベース領域
33の表面がそれぞれ露出される。
Due to this etching, the sin outside the well 23 is
, the surfaces of the films 29 and 34 are coated with Si on the side periphery of the well 23.
The surface of the p" type base region 33 is exposed on the bottom surface of the well 23, and the surface of the p" type base region 33 is exposed on the bottom surface of the well 23.

S f Oz 8m29及び34のバターニングを行な
い、コレクタ電極コンタクト窓及びベース電極コンタク
ト窓を形成する。
Patterning of S f Oz 8m29 and 34 is performed to form a collector electrode contact window and a base electrode contact window.

CVD法を適用することに依り、厚さ例えば3000〜
400o〔人〕程度の多結晶シリコン膜を成長させる。
By applying the CVD method, the thickness, for example, 3000 ~
A polycrystalline silicon film of about 400° is grown.

フォト・リソグラフィ技術を適用し、前記多結晶シリコ
ン膜をバターニングしてエミッタ電極37E、コレクタ
電極37c2ベース電極37Bを形成する。
Applying photolithography technology, the polycrystalline silicon film is patterned to form an emitter electrode 37E, a collector electrode 37c, and a base electrode 37B.

第11図参照 ■イオン注入法を適用し、エミッタ電極37E、コレク
タ電極37CにはAsイオンを、ベース電極37Bには
Bイオンをそれぞれ注入し、熱処理を行なう。
Refer to FIG. 11 (2) Applying the ion implantation method, As ions are implanted into the emitter electrode 37E and the collector electrode 37C, and B ions are implanted into the base electrode 37B, followed by heat treatment.

これに依り、各電極は導電性化されるとともにp゛型ベ
ース領域33内にn ゛−型エミッタ領域38が形成さ
れる。
As a result, each electrode is rendered conductive, and an n'-type emitter region 38 is formed within the p'-type base region 33.

この後、通常の技法を適用し、金属の電極・配線や保護
膜等を形成して完成させる。
After this, standard techniques are applied to complete the process by forming metal electrodes, wiring, protective films, etc.

発明の効果 本発明のバイポーラ半導体装置に於いては、ウェルが形
成された一導電型半導体基板と、該ウェルの側周に形成
された素子間分離用絶縁膜と、前記ウェル底部の前記−
導電型半導体基板に形成された反対導電型埋め込み層と
、該反対導電型埋め込み層の周辺と連なり前記素子間分
離用絶縁11り上を経て引き出される埋め込み層引き出
し導電膜と、該埋め込み層引き出し導電膜を覆う第1の
層間絶縁膜と、側周が前記ウェル内の該第1の層間絶縁
膜で囲まれ且つ前記反対導電型埋め込み層に隣接して形
成された反対導電型半導体層と、該反対導電型半導体層
表面に形成されたー導電型ベース領域及び該−導電型ベ
ース領域の周辺と連なり前記第1の層間絶縁膜上を経て
引き出されるベース引き出し導電膜と、該ベース引き出
し導電膜を覆う第2の層間絶縁膜と、側周が前記ウェル
内の該第2の層間絶縁膜で囲まれ且つ前記−導電型ベー
ス領域表面に形成された反対感電型エミッタ領域とを備
えた構造になっていて、素子間分離、電極引き出し等を
全てセルフ・アライメント方式で形成することができる
から従来技術で製造されたものと比較すると著しく小型
にすることができ、高密度化するのに極めて有利である
。また、素子間分離は薄い絶縁膜のみで行なうことが可
能であって、pn接合に依存する素子間分離ではないか
ら接合容量も発生しない。
Effects of the Invention In the bipolar semiconductor device of the present invention, a semiconductor substrate of one conductivity type in which a well is formed, an insulating film for isolation between elements formed on the side periphery of the well, and the -
a buried layer of opposite conductivity type formed on a conductivity type semiconductor substrate; a buried layer extraction conductive film connected to the periphery of the opposite conductivity type buried layer and drawn out through the top of the element isolation insulator 11; and the buried layer extraction conductive layer. a first interlayer insulating film covering the film; a semiconductor layer of an opposite conductivity type whose side periphery is surrounded by the first interlayer insulator in the well and formed adjacent to the buried layer of the opposite conductivity type; A base region of conductivity type formed on the surface of the opposite conductivity type semiconductor layer; a base-extracting conductive film connected to the periphery of the conductivity-type base region and extended over the first interlayer insulating film; and the base-extracting conductive film. a second interlayer insulating film covering the well, and an opposite electric shock type emitter region whose side periphery is surrounded by the second interlayer insulating film in the well and formed on the surface of the - conductivity type base region. Since all elements such as isolation between elements and electrode extensions can be formed using a self-alignment method, it can be made significantly smaller than those manufactured using conventional technology, and is extremely advantageous for increasing density. be. Further, since element isolation can be achieved only with a thin insulating film, and element isolation does not depend on pn junctions, no junction capacitance occurs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は従来技術に依るバイポーラ半導体装
置の要部切断側面図、第3図乃至第1I図は本発明一実
施例を説明する為の工程要所に於ける半導体装置の要部
切断側面図である。 図に於いて、21はp型シリコン半導体基板、22はフ
ィールド絶縁膜、23はウェル、24は素子間分離用絶
縁膜、25は埋め込み層引き出し導電膜、26はn”型
埋め込み層、27ばSi。 N4膜、28はレジスト膜、29ばSiO□膜、30は
Si3N4膜、30Aは第1の層間絶縁膜、31はn型
シリコン半導体層、32ばベース引き出し導電膜、33
はp4型ベース領域、34はSi0g膜、35は第2の
層間絶縁膜、36はSin、膜、37Bはエミッタ電極
、3゛7Cはコレクタ電極、37Bはベース電極、38
はn4″型エミツタ領域である。 第1図 第2図 第3図 第4図 3 第5図 3 第6図 8 第7図 第8図 第9図
1 and 2 are cross-sectional side views of main parts of a bipolar semiconductor device according to the prior art, and FIGS. 3 to 1I are main parts of a semiconductor device at important process points for explaining an embodiment of the present invention. FIG. In the figure, 21 is a p-type silicon semiconductor substrate, 22 is a field insulating film, 23 is a well, 24 is an insulating film for isolation between elements, 25 is a buried layer extraction conductive film, 26 is an n'' type buried layer, and 27 is a Si.N4 film, 28 is a resist film, 29 is a SiO□ film, 30 is a Si3N4 film, 30A is a first interlayer insulating film, 31 is an n-type silicon semiconductor layer, 32 is a base drawing conductive film, 33
34 is a p4 type base region, 34 is a Si0g film, 35 is a second interlayer insulating film, 36 is a Sin film, 37B is an emitter electrode, 3'7C is a collector electrode, 37B is a base electrode, 38
is an n4'' type emitter region. Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 3 Fig. 5 3 Fig. 6 Fig. 8 Fig. 7 Fig. 8 Fig. 9

Claims (1)

【特許請求の範囲】[Claims] ウェルが形成された一導電型半導体基板と、該ウェルの
側周に形成された素子間分離用絶縁膜と、前記ウェル底
部の前記−導電型半導体基板に形成された反対導電型埋
め込み層と、該反対導電型埋め込み層の周辺と連なり前
記素子間分離用絶縁膜上を経て引き出される埋め込み層
引き出し感電1模と、該埋め込み層引き出し導電膜を覆
う第1の眉間絶縁膜と、側周が前記ウェル内の該第1の
層間絶縁膜で囲まれ且つ前記反対導電型埋め込み層に隣
接して設けられた反対導電型手厚体層と、該反対導電型
半導体層表面に形成されたー導電型ベース領域及び該−
導電型ベース領域の周辺と連なり前記第1の眉間絶縁膜
上を経て引き出されるベース引き出し導電膜と、該ベー
ス引き出し導電膜を覆う第2の眉間絶縁膜と、側周が前
記ウェル内の該第2の眉間絶縁膜で囲まれ且つ前記−導
電型ベース領域表面に形成された反対導電型エミッタ領
域とからなることを特徴とするバイポーラ半導体装置。
a semiconductor substrate of one conductivity type in which a well is formed, an insulating film for isolation between elements formed on the side periphery of the well, and a buried layer of the opposite conductivity type formed in the -conductivity type semiconductor substrate at the bottom of the well; A buried layer drawing-out electric shock 1 model connected to the periphery of the buried layer of the opposite conductivity type and drawn out through the inter-element isolation insulating film, a first glabella insulating film covering the buried layer drawing-out conductive film, and a side periphery of the a thick body layer of opposite conductivity type surrounded by the first interlayer insulating film in the well and provided adjacent to the buried layer of opposite conductivity type; base area and the -
a base lead-out conductive film connected to the periphery of the conductive type base region and drawn out via the first glabellar insulating film; a second glabellar insulating film covering the base lead-out conductive film; 2. A bipolar semiconductor device comprising: an emitter region of an opposite conductivity type surrounded by a glabellar insulating film and formed on the surface of the base region of the − conductivity type.
JP22443683A 1983-11-30 1983-11-30 Bipolar semiconductor device Pending JPS60117664A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22443683A JPS60117664A (en) 1983-11-30 1983-11-30 Bipolar semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22443683A JPS60117664A (en) 1983-11-30 1983-11-30 Bipolar semiconductor device

Publications (1)

Publication Number Publication Date
JPS60117664A true JPS60117664A (en) 1985-06-25

Family

ID=16813741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22443683A Pending JPS60117664A (en) 1983-11-30 1983-11-30 Bipolar semiconductor device

Country Status (1)

Country Link
JP (1) JPS60117664A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4696097A (en) * 1985-10-08 1987-09-29 Motorola, Inc. Poly-sidewall contact semiconductor device method
EP0306213A2 (en) * 1987-09-02 1989-03-08 AT&T Corp. Submicron bipolar transistor with edge contacts
EP0332106A2 (en) * 1988-03-10 1989-09-13 Oki Electric Industry Company, Limited Bi-polar transistor structure and process for producing the same
US4908691A (en) * 1985-10-31 1990-03-13 International Business Machines Corporation Selective epitaxial growth structure and isolation
US4926233A (en) * 1988-06-29 1990-05-15 Texas Instruments Incorporated Merged trench bipolar-CMOS transistor fabrication process
US4929996A (en) * 1988-06-29 1990-05-29 Texas Instruments Incorporated Trench bipolar transistor
JPH034539A (en) * 1989-06-01 1991-01-10 Matsushita Electric Ind Co Ltd Semiconductor device and its manufacture
US5057443A (en) * 1988-06-29 1991-10-15 Texas Instruments Incorporated Method for fabricating a trench bipolar transistor
US5177582A (en) * 1989-09-22 1993-01-05 Siemens Aktiengesellschaft CMOS-compatible bipolar transistor with reduced collector/substrate capacitance and process for producing the same
US5234844A (en) * 1988-03-10 1993-08-10 Oki Electric Industry Co., Inc. Process for forming bipolar transistor structure
US5235204A (en) * 1990-08-27 1993-08-10 Taiwan Semiconductor Manufacturing Company Reverse self-aligned transistor integrated circuit
JPH0917802A (en) * 1995-06-29 1997-01-17 Nec Corp Semiconductor and manufacture thereof
EP1794806A2 (en) * 2004-09-21 2007-06-13 International Business Machines Corporation METHOD OF COLLECTOR FORMATION IN BiCMOS TECHNOLOGY
JP2009156210A (en) * 2007-12-27 2009-07-16 Mitsubishi Electric Corp Blower device
US11276752B2 (en) 2019-08-19 2022-03-15 Stmicroelectronics (Crolles 2) Sas Method for forming a device comprising a bipolar transistor
US11355581B2 (en) 2019-08-19 2022-06-07 Stmicroelectronics (Crolles 2) Sas Device comprising a transistor

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4696097A (en) * 1985-10-08 1987-09-29 Motorola, Inc. Poly-sidewall contact semiconductor device method
US4908691A (en) * 1985-10-31 1990-03-13 International Business Machines Corporation Selective epitaxial growth structure and isolation
EP0306213A2 (en) * 1987-09-02 1989-03-08 AT&T Corp. Submicron bipolar transistor with edge contacts
US5234844A (en) * 1988-03-10 1993-08-10 Oki Electric Industry Co., Inc. Process for forming bipolar transistor structure
EP0332106A2 (en) * 1988-03-10 1989-09-13 Oki Electric Industry Company, Limited Bi-polar transistor structure and process for producing the same
US4926233A (en) * 1988-06-29 1990-05-15 Texas Instruments Incorporated Merged trench bipolar-CMOS transistor fabrication process
US4929996A (en) * 1988-06-29 1990-05-29 Texas Instruments Incorporated Trench bipolar transistor
US5057443A (en) * 1988-06-29 1991-10-15 Texas Instruments Incorporated Method for fabricating a trench bipolar transistor
JPH034539A (en) * 1989-06-01 1991-01-10 Matsushita Electric Ind Co Ltd Semiconductor device and its manufacture
US5177582A (en) * 1989-09-22 1993-01-05 Siemens Aktiengesellschaft CMOS-compatible bipolar transistor with reduced collector/substrate capacitance and process for producing the same
US5235204A (en) * 1990-08-27 1993-08-10 Taiwan Semiconductor Manufacturing Company Reverse self-aligned transistor integrated circuit
JPH0917802A (en) * 1995-06-29 1997-01-17 Nec Corp Semiconductor and manufacture thereof
EP1794806A2 (en) * 2004-09-21 2007-06-13 International Business Machines Corporation METHOD OF COLLECTOR FORMATION IN BiCMOS TECHNOLOGY
EP1794806A4 (en) * 2004-09-21 2011-06-29 Ibm METHOD OF COLLECTOR FORMATION IN BiCMOS TECHNOLOGY
JP2009156210A (en) * 2007-12-27 2009-07-16 Mitsubishi Electric Corp Blower device
US11276752B2 (en) 2019-08-19 2022-03-15 Stmicroelectronics (Crolles 2) Sas Method for forming a device comprising a bipolar transistor
US11355581B2 (en) 2019-08-19 2022-06-07 Stmicroelectronics (Crolles 2) Sas Device comprising a transistor
US11776995B2 (en) 2019-08-19 2023-10-03 Stmicroelectronics (Crolles 2) Sas Device comprising a transistor
US11804521B2 (en) 2019-08-19 2023-10-31 Stmicroelectronics (Crolles 2) Sas Device comprising a transistor

Similar Documents

Publication Publication Date Title
JPS6226590B2 (en)
US4794445A (en) Semiconductor device
JPS60117664A (en) Bipolar semiconductor device
JPS6118147A (en) Method of forming semiconductor device
KR900003835B1 (en) Semiconductor device
KR0159763B1 (en) Semiconductor device
US4579625A (en) Method of producing a complementary semiconductor device with a dielectric isolation structure
JPH07106412A (en) Semiconductor device and fabrication thereof
EP0076147A2 (en) Method of producing a semiconductor device comprising an isolation region
JPS5961181A (en) Manufacture of semiconductor device
JP2707646B2 (en) Method for manufacturing semiconductor device
JPH0812866B2 (en) Bipolar semiconductor device
JPS60235460A (en) Semiconductor device
JP2547755B2 (en) Semiconductor device and manufacturing method thereof
JP2531680B2 (en) Semiconductor device and manufacturing method thereof
JP2518357B2 (en) Semiconductor device and manufacturing method thereof
JPS58130555A (en) Semiconductor device
JPH0287621A (en) Manufacture of semiconductor device
JPS60245171A (en) Manufacture of semiconductor integrated circuit device
JPS61124175A (en) Semiconductor device and manufacture thereof
JPH0766284A (en) Manufacture of semiconductor device
JPS6148935A (en) Manufacture of semiconductor device
JPH01204469A (en) Semiconductor device
JPS6015971A (en) Manufacture of semiconductor device
JPH0682675B2 (en) Method for manufacturing semiconductor device