JPS61147533A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS61147533A
JPS61147533A JP26990784A JP26990784A JPS61147533A JP S61147533 A JPS61147533 A JP S61147533A JP 26990784 A JP26990784 A JP 26990784A JP 26990784 A JP26990784 A JP 26990784A JP S61147533 A JPS61147533 A JP S61147533A
Authority
JP
Japan
Prior art keywords
film
opening
vapor phase
si3n4
etching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26990784A
Other languages
Japanese (ja)
Inventor
Hiroyuki Wakabayashi
若林 博之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP26990784A priority Critical patent/JPS61147533A/en
Publication of JPS61147533A publication Critical patent/JPS61147533A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Bipolar Transistors (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE:To suppress the damage of an element to the minimum limit by forming an SiO2 film under an Si3N4 film by a vapor phase growing method. CONSTITUTION:A hole for drawing an electrode is formed at an SiO2 film 8 formed on the surface of a substrate. An SiO2 film 14 is entirely grown by a vapor phase growing method, and an Si3N4 film 10 is grown by a reduced pressure vapor phase growing method. Then, the films 10, 14 of the hole are removed by dry etching to form holes. The, electrodes 11, 12, 13 are formed. Since the SiO2 film under the Si3N4 film is formed by a vapor phase growing method, the thickness of the SiO2 film of the hole of the diffused region is the same.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体装置の製造方法に関し、特に集積回路
のパターン加工方法に係り、更に詳しくは5isNa膜
のドライエツチング方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of manufacturing a semiconductor device, and more particularly to a method of patterning an integrated circuit, and more particularly to a method of dry etching a 5isNa film.

〔従来の技術〕[Conventional technology]

半導体集積回路の高性能化に伴い、パターンサイズの微
細化が、年々進められている。微細パターン加工技術の
中で、最も重要な技術はエツチング技術である。従来の
溶液(ウェット)エツチングでは、5in2やMは高分
子材料であるフォトレジストをマスクとして、エツチン
グできるが、5isN4や多結晶シリコンの場合は、エ
ツチング時に、レジストが溶液に対して耐性が悪く、第
2図(a)〜(e)に示す方法が用いられている。すな
わち、密着性を改善する為、多結晶シリコンの場合は表
面を酸化し、Si3N4膜30の場合は気相成長法によ
りSiO2膜38全38し、フォトレジスト31を形成
する。次に第2図(b)に示すようにフォトレジスト3
1をマスクとして5in2膜38をエツチングする。次
いで、第2図(e)に示すように、形成さ:rLfcS
iOz膜38をマスクとして再び溶液で多結晶シリコン
又はS i 3N4膜をエツチングするという極めて複
雑な工程を必要としていた。
As the performance of semiconductor integrated circuits improves, pattern sizes are becoming smaller year by year. Among the fine pattern processing techniques, the most important technique is the etching technique. In conventional solution (wet) etching, 5in2 and M can be etched using a photoresist, which is a polymeric material, as a mask, but in the case of 5isN4 and polycrystalline silicon, the resist has poor resistance to the solution during etching. The method shown in FIGS. 2(a) to 2(e) is used. That is, in order to improve adhesion, in the case of polycrystalline silicon, the surface is oxidized, and in the case of the Si3N4 film 30, the entire SiO2 film 38 is grown by vapor phase growth, and a photoresist 31 is formed. Next, as shown in FIG. 2(b), a photoresist 3 is applied.
1 as a mask, the 5in2 film 38 is etched. Then, as shown in FIG. 2(e), rLfcS is formed.
This required an extremely complicated process of etching the polycrystalline silicon or Si3N4 film again with a solution using the iOz film 38 as a mask.

さらに、Si3N4膜のエツチングには、通常160℃
前後の熱リン酸(H3POりにより行なわ扛るが、リン
酸中に含まれる水分の量が変化することで、エツチング
速度が変動し、又、高温であるため取扱いに危険を伴な
っていた。
Furthermore, etching of Si3N4 film is usually carried out at 160°C.
Etching is performed using hot phosphoric acid (H3PO) before and after the etching process, but the rate of etching fluctuates due to changes in the amount of water contained in the phosphoric acid, and the high temperature makes handling dangerous.

そこで、ウェットエツチングに代わり、ドライエツチン
グが提案されている。第3図(a) 、 (b)は従来
のドライエツチングを説明するために工程順に示した断
面図である。第3図(a)に示すように、ドライエツチ
ングではレジスト31をマスクとしてSi3N4膜30
を直接エツチングができるのでホトレジストマスクは直
接5isN4膜上に形成されている。すなわち製造工程
の簡略化がはかれる。それと同時にパターン加工寸法精
度が向上し、又溶液を用いないので、公害の問題が少な
い為、急速に使用されるようになった。第3図(b)は
エツチング後の断面図である。
Therefore, dry etching has been proposed in place of wet etching. FIGS. 3(a) and 3(b) are cross-sectional views shown in the order of steps to explain conventional dry etching. As shown in FIG. 3(a), in dry etching, the Si3N4 film 30 is etched using the resist 31 as a mask.
Since the photoresist mask can be directly etched, the photoresist mask is formed directly on the 5isN4 film. In other words, the manufacturing process can be simplified. At the same time, the dimensional accuracy of pattern processing improved, and since no solution was used, there were fewer pollution problems, so it rapidly came into use. FIG. 3(b) is a sectional view after etching.

Si3N4はLOCO8に於ける選択酸化のマスクとシ
テ、又、ヘレット表面のパッジページ冒ン膜トして広く
関われている。この他に重金鵡汚染による特性変動を防
ぐ目的で第4図(e)に示す構造が提案されている。こ
れは、熱SiO2膜90表面を減圧気相成長法等により
成長させた5iaN4膜10で覆い重金属汚染を防止し
たものである。
Si3N4 is widely used as a mask and material for selective oxidation in LOCO8, and as a pad page attack film on the Hellet surface. In addition, a structure shown in FIG. 4(e) has been proposed for the purpose of preventing characteristic fluctuations due to heavy metal contamination. This is to prevent heavy metal contamination by covering the surface of a thermal SiO2 film 90 with a 5iaN4 film 10 grown by low pressure vapor phase growth or the like.

第4図(a)〜(e)は従来の前記した第4図(e)の
半導体装置の製造方法を説明するために工程順に示した
断面図である。
FIGS. 4(a) to 4(e) are cross-sectional views shown in order of steps to explain the conventional method of manufacturing the semiconductor device shown in FIG. 4(e).

まず、第4図(a)に示す構造は一般的なNPN)ラン
ジスタのベース、エミッタ、コレクタとなる領域が形成
された状態を示し、図において、1はP型半導体基板、
2はN型高濃度埋込層、3はN型エピタキシャル層、4
はP型分離In、5はP型ベース領域、6はN型エミッ
タ領域、7はN型コレクタ電極引出し用領域、8はSt
ow膜である。
First, the structure shown in FIG. 4(a) shows a state in which regions that will become the base, emitter, and collector of a general NPN transistor are formed. In the figure, 1 is a P-type semiconductor substrate;
2 is an N-type high concentration buried layer, 3 is an N-type epitaxial layer, 4
is P-type isolation In, 5 is P-type base region, 6 is N-type emitter region, 7 is N-type collector electrode extraction region, 8 is St
It is an ow film.

次に、第4図(b)に示すように、SiO2膜8に電極
引き出し用の開口部を設ける。
Next, as shown in FIG. 4(b), openings for leading out the electrodes are provided in the SiO2 film 8.

次に、第4図(e)に示すように、その後酸化して開口
部に500A以下のS iOg膜9を設け、さらに減圧
気相成長法によ1lJsisN4膜10を成長させる。
Next, as shown in FIG. 4(e), an SiOg film 9 of 500A or less is formed in the opening by oxidation, and a 1lJsisN4 film 10 is further grown by low pressure vapor deposition.

Stow膜9はSi3N4膜をSt  の上に直接成長
させると、Si表面の結晶性が悪くなるのを防ぐ為に設
けられている。S iOz膜9は一般には900℃前後
の比較的低温で酸化して形成さnる。
The Stow film 9 is provided to prevent the crystallinity of the Si surface from deteriorating when the Si3N4 film is grown directly on St 2 . The SiOz film 9 is generally formed by oxidation at a relatively low temperature of around 900°C.

次に、第4図(d)に示すように、レジストをマスクと
して開口部のSi3N4膜10及びSing膜9をドラ
イエツチングする。5isN4や8i(hはCF4+0
2でのプラズマエツチング法やCF4+H2でのりアク
ティブイオンエツチング法等によりエツチングされる。
Next, as shown in FIG. 4(d), the Si3N4 film 10 and the Sing film 9 in the openings are dry etched using the resist as a mask. 5isN4 or 8i (h is CF4+0
Etching is performed by a plasma etching method using 2 or a glue active ion etching method using CF4+H2.

次に、第4図(e)に示すように、M等を付着して、電
極を形成する。
Next, as shown in FIG. 4(e), M or the like is attached to form an electrode.

図において、11はエミッタ電極、12はベース電極、
13はコレクタ電極である。
In the figure, 11 is an emitter electrode, 12 is a base electrode,
13 is a collector electrode.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

第4図(e)で形成されたSi3N4膜10の下地のS
iO2膜9はエミッタ領域の開口部上とベース領域の開
口部上とでは厚さが異なる。エミッタ開口部上の方がS
 ioz膜が厚くなる。例えば表面不純物濃度がI X
 10”cm−3のエミッタ領域と、表面不純物濃度が
I X 10110l8’iベース領域を900℃の温
度で乾燥雰囲気中で酸化した場合、エミッタ領域表面に
形成されるSiO2膜の厚さは’::300A。
The underlying S of the Si3N4 film 10 formed in FIG. 4(e)
The iO2 film 9 has different thicknesses above the opening in the emitter region and above the opening in the base region. The upper part of the emitter opening is S.
The ioz film becomes thicker. For example, the surface impurity concentration is I
When an emitter region of 10"cm-3 and a base region with a surface impurity concentration of I x 10110l8'i are oxidized in a dry atmosphere at a temperature of 900°C, the thickness of the SiO2 film formed on the surface of the emitter region is ': :300A.

又、ベース領域表面はTh100Aとなる。Further, the surface of the base region becomes Th100A.

従って、5ixN4膜10 、SiO2膜9をドライエ
ツチングした場合、エミッタ領域の開口部がジャストエ
ツチングされた時には、ベース領域の開口部は、すでに
オーバーエツチングになっている。
Therefore, when the 5ixN4 film 10 and the SiO2 film 9 are dry-etched, when the opening in the emitter region is just etched, the opening in the base region is already over-etched.

エミッタ領域の開口部を完全にエツチングしなければな
らない為、通常さらにエツチングを行なっている。従っ
てベース領域の開口部は、かなりオーバーエツチングさ
れ、Si表面がひどくアタックされている。これは特性
上、信頼性上好ましくない。
Further etching is usually performed because the opening in the emitter region must be completely etched. The openings in the base region are therefore significantly overetched and the Si surface is severely attacked. This is unfavorable in terms of characteristics and reliability.

本発明は、上記欠点を除き、容易に、素子へのダメージ
を低減した5isNa膜のドライエツチング方法を提供
することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a dry etching method for a 5isNa film that eliminates the above-mentioned drawbacks and easily reduces damage to devices.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の半導体装置の製造方法は、素子の形成さnた半
導体基板の表面を覆う第1のSiO2膜にコンタクト用
開口部を設ける工程と、開口部の設けられた該半導体基
板の表面に気相成長法により第2の5iO2piを形成
する工程と、該第2のS iOz膜の表面にSi3N4
膜を形成する工程と、前記開口部に形成された前記Si
3N4膜および前記第2のSiO2膜にドライエツチン
グにより開口部を設ける工程とを含んで構成される。
The method for manufacturing a semiconductor device of the present invention includes the step of providing a contact opening in a first SiO2 film covering the surface of a semiconductor substrate on which an element is formed, and the step of providing a contact opening on the surface of the semiconductor substrate provided with the opening. A step of forming a second 5iO2pi film by a phase growth method, and a step of forming a Si3N4 film on the surface of the second SiOz film.
A step of forming a film, and a step of forming the Si formed in the opening.
The method includes a step of forming openings in the 3N4 film and the second SiO2 film by dry etching.

〔実施例〕〔Example〕

次に、本発明の実施例について、図面を参照して説明す
る。第1図(a)〜(e)は本発明の一実施例を説明す
るために工程順に示した断面図である。
Next, embodiments of the present invention will be described with reference to the drawings. FIGS. 1(a) to 1(e) are cross-sectional views shown in order of steps to explain an embodiment of the present invention.

まず、第1図(a)に示すように、一般的なNPNトラ
ンジスタのエミッタ領域6、ペース領域5、コレクタ電
極引き出し領域7が形成され、前記領域を含む基板表面
に形成されたS i02膜8に電極引き出し用の開口部
を設けた状態を示している。
First, as shown in FIG. 1(a), an emitter region 6, a space region 5, and a collector electrode lead-out region 7 of a general NPN transistor are formed, and an Si02 film 8 formed on the substrate surface including the regions is formed. The figure shows a state in which an opening for drawing out the electrode is provided.

なおその他の符号は従来例と同一部分は同一符号を付し
である。
In addition, other reference numerals are given to the same parts as in the conventional example.

次に、第1図(b)に示すように、気相成長法によす5
in2膜14を300A程度全面に成長させ、さらに減
圧気相成長法等によす5iaN4膜10を成長させる。
Next, as shown in FIG. 1(b), 5
The in2 film 14 is grown to a thickness of about 300A over the entire surface, and the 5iaN4 film 10 is further grown by low pressure vapor phase growth or the like.

次に、第1図(C)に示すように、レジストをマスクと
して開口部のSi3N4膜10及びSiO2膜14をド
ライエツチングにより除去し開口部を形成する。
Next, as shown in FIG. 1C, the Si3N4 film 10 and SiO2 film 14 in the opening are removed by dry etching using the resist as a mask to form an opening.

次に、第1図(d)に示すように、M等の電極金属を付
着させた後、エミッタ電極11、ペース電極12、コレ
クタ電極13を形成すれば、本実施例は完成する。
Next, as shown in FIG. 1(d), after depositing an electrode metal such as M, an emitter electrode 11, a pace electrode 12, and a collector electrode 13 are formed to complete the present embodiment.

〔発明の効果〕〔Effect of the invention〕

以上説明したとおり、本発明によれば、Si3N4膜の
下地のSiO2膜は気相成長法により形成されているた
め、拡散領域の開口部の5tOz膜の厚さは同一である
。従って、開口部のSi3N4膜及び5t(h膜をドラ
イエツチングしても、素子に与えるダメージを豐小限に
抑えることができる。
As explained above, according to the present invention, since the SiO2 film underlying the Si3N4 film is formed by vapor phase growth, the thickness of the 5tOz film at the opening of the diffusion region is the same. Therefore, even if the Si3N4 film and the 5t(h film) in the opening are dry-etched, damage to the element can be kept to a minimum.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(d)は本発明の一実施例を説明するた
めに工程順に示した断面図、第2図(a)〜(C)、第
3図(a) 、 (b)は従来のウェットエツチングと
ドライエツチング方法を説明するための工程順に示した
断面図、第4図(&)〜(、)は従来の半導体装置の製
造方法を説明するために工程順に示しだ断面図である。 l・・・・・・P型半導体基板、2・・・・・・N型高
濃度埋込層、3・・・・・・N型エピタキシャル層、4
・・・・・・P型分離層、5・・・・・・P型ベース領
域、6・・・・・・N型エミッタ領域、7・・・・・・
N型コレクタ電極引き出し領域、8・・・・・・5i0
2 vs  9・・・・・・熱SiO2膜、10・・・
・・・5isN4膜、11・・・・・・エミッタ電極、
12・・・・・・ペース電極、13・−・・・・コレク
タ電極、14・・・・・・CVDSiO2膜。 ¥1j )1副 茅2回        隼31ffl )4回
FIGS. 1(a) to (d) are cross-sectional views shown in the order of steps to explain an embodiment of the present invention, FIGS. 2(a) to (C), and FIGS. 3(a) and (b). 4 are cross-sectional views shown in the order of steps to explain the conventional wet etching and dry etching methods, and FIGS. It is. l...P-type semiconductor substrate, 2...N-type high concentration buried layer, 3...N-type epitaxial layer, 4
...P type separation layer, 5 ... P type base region, 6 ... N type emitter region, 7 ...
N-type collector electrode extraction area, 8...5i0
2 vs 9...Thermal SiO2 film, 10...
...5isN4 film, 11...emitter electrode,
12...Pace electrode, 13...Collector electrode, 14...CVDSiO2 film. ¥1j) 1 sub-mochi 2 times Hayabusa 31ffl) 4 times

Claims (1)

【特許請求の範囲】[Claims] 素子の形成された半導体基板の表面を覆う第1のSiO
_2膜にコンタクト用開口部を設ける工程と、開口部の
設けられた該半導体基板の表面に気相成長法により第2
のSiO_2膜を形成する工程と、該第2のSiO_2
膜の表面にSi_3N_4膜を形成する工程と、前記開
口部に形成された前記Si_3N_4膜および前記第2
のSiO_2膜にドライエッチングにより開口部を設け
る工程とを含むことを特徴とする半導体装置の製造方法
A first SiO layer covering the surface of the semiconductor substrate on which the element is formed.
_2 A step of providing a contact opening in the film, and a step of forming a second contact hole on the surface of the semiconductor substrate provided with the opening by vapor phase growth.
a step of forming a second SiO_2 film;
a step of forming a Si_3N_4 film on the surface of the film; and a step of forming the Si_3N_4 film formed in the opening and the second
A method for manufacturing a semiconductor device, comprising the step of forming an opening in the SiO_2 film by dry etching.
JP26990784A 1984-12-21 1984-12-21 Manufacture of semiconductor device Pending JPS61147533A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26990784A JPS61147533A (en) 1984-12-21 1984-12-21 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26990784A JPS61147533A (en) 1984-12-21 1984-12-21 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS61147533A true JPS61147533A (en) 1986-07-05

Family

ID=17478880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26990784A Pending JPS61147533A (en) 1984-12-21 1984-12-21 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS61147533A (en)

Similar Documents

Publication Publication Date Title
US4775644A (en) Zero bird-beak oxide isolation scheme for integrated circuits
US4579625A (en) Method of producing a complementary semiconductor device with a dielectric isolation structure
JPS6252950B2 (en)
JPS61147533A (en) Manufacture of semiconductor device
JPS618944A (en) Semiconductor device and manufacture thereof
JPS61172346A (en) Semiconductor integrated circuit device
JPH079930B2 (en) Method for manufacturing semiconductor device
JP2848746B2 (en) Method for manufacturing semiconductor device
GB2072945A (en) Fabricating semiconductor devices
JPS5893252A (en) Semiconductor device and manufacture thereof
JPH0313745B2 (en)
JPS6387741A (en) Manufacture of semiconductor device
JPS59149030A (en) Manufacture of semiconductor device
JPS639150A (en) Manufacture of semiconductor device
JPH0462178B2 (en)
KR950021519A (en) Manufacturing method of homojunction and heterojunction dipole transistor
JPH0443663A (en) Semiconductor device and its manufacture
JPS6030150A (en) Manufacture of semiconductor device
JPH054810B2 (en)
JPH01189951A (en) Manufacture of bipolar semiconductor integrated device
JPH0576767B2 (en)
JPS60193358A (en) Manufacture of semiconductor device
JPS6154256B2 (en)
JPH02119258A (en) Manufacture of semiconductor device
JPS6316903B2 (en)