JPH02192739A - Hetero junction field effect transistor - Google Patents

Hetero junction field effect transistor

Info

Publication number
JPH02192739A
JPH02192739A JP1270589A JP1270589A JPH02192739A JP H02192739 A JPH02192739 A JP H02192739A JP 1270589 A JP1270589 A JP 1270589A JP 1270589 A JP1270589 A JP 1270589A JP H02192739 A JPH02192739 A JP H02192739A
Authority
JP
Japan
Prior art keywords
layer
doped
doped gaas
gaas layer
gas channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1270589A
Other languages
Japanese (ja)
Inventor
Fumio Matsumoto
松本 史夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP1270589A priority Critical patent/JPH02192739A/en
Publication of JPH02192739A publication Critical patent/JPH02192739A/en
Pending legal-status Critical Current

Links

Landscapes

  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To prevent the sattering of electrons of a two-dimensional electron gas channel due to ionized impurity of an electron supply layer by arranging a region into which a conductivity type impurity is introduced, in the vicinity of a two-dimensional carrier gas channel of a semiconductor channel layer. CONSTITUTION:On a semiinsulative GaAs substrate 1, the following are grown in order; a non-doped GaAs layer 2, an Si-doped GaAs layer 3 and a non-doped GaAs layer 4. These layers constitute a semiconductor channel layer 13, and the Si-doped GaAs layer 3 turns to a region into which N-type impurity is introduced. In this constitution, by the effect of positive charge of the Si-doped GaAs layer 3, the two-dimensional electron gas distribution stretches in the direction so as to separate from a hetero junction interface, and electron of the two-dimensional electron gas channel 12 becomes hard to suffer scattering caused by ionized impurity of an Si-doped AlxGa1-xAs layer 6, so that the generation of noise can be reduced.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は、ヘテロ接合界面の2次元キャリアガスを利用
したヘテロ接合電界効果トランジスタに関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Industrial Application Field The present invention relates to a heterojunction field effect transistor that utilizes a two-dimensional carrier gas at a heterojunction interface.

(ロ)従来の技術 半導体結晶俵板上に、基板結晶より禁止帯幅の大きい半
導体の結晶を積層したヘテロ接合において、ある粂件丁
でヘテロ接合界面に2次元キャリアブスを形成すること
が知られいる。超高速半導体装置として最近注目を集め
ている高電子移動度トランジスタ(HEλIT)は、前
記へテロ接合界面の2次元tfガスを利用したヘテロ接
合電界効果トランジスタ(HJFET)の一種である(
例えばJpn、J、Appl、Phys、 19.  
I、225−L227.1980及び特公昭59−53
714号公報参照)。
(b) Conventional technology In a heterojunction in which semiconductor crystals with a forbidden band width larger than that of the substrate crystal are laminated on a semiconductor crystal bale plate, it is known that a two-dimensional carrier bus is formed at the heterojunction interface in a certain case. It's coming. The high electron mobility transistor (HEλIT), which has recently attracted attention as an ultra-high-speed semiconductor device, is a type of heterojunction field effect transistor (HJFET) that utilizes the two-dimensional TF gas at the heterojunction interface.
For example, Jpn, J. Appl, Phys, 19.
I, 225-L227.1980 and Special Publication No. 59-53
(See Publication No. 714).

第3図は、A!GaAs/GaAsヘテロ接合を用いた
従来のHE M Tの模式的断面図であり、同図により
、以下にその製造方法を説明する。
Figure 3 shows A! 1 is a schematic cross-sectional view of a conventional HEMT using a GaAs/GaAs heterojunction, and the manufacturing method thereof will be explained below with reference to the same figure.

まず、半絶縁性GaAs基板(21)上に、分子線エピ
タキシ(MBE)技術、または、有機金属エピタキシ(
八+0CVD)技術により、ノンドープGaAs層(2
2)を1μmのJ7さまで成長させ、該ノンドープGa
As層(22)ヒに、ノンドープA ’ x G a 
+ −n A s層(23)を0〜60人の厚さまで成
長させ、次に該ノンドープA (、G a 、、A 5
層(23)上にSiドープA ttG a +−,A 
S層(Si濃度: 0.5−2.OX 10 ”cm−
’)(24)を250〜450人の厚さまで成長させ、
さらに該SiドープAl−G a +−,As層(24
)上に S1ドープG a A s層 (Si濃度二0
、1−5.OX 10”am−”) (25)を100
−1500人の厚さまで成長させる。ここでAjGaA
S層の組成Xは、略0.3である。
First, on a semi-insulating GaAs substrate (21), molecular beam epitaxy (MBE) technology or organometallic epitaxy (
The non-doped GaAs layer (2
2) was grown to a J7 size of 1 μm, and the non-doped Ga
In the As layer (22), non-doped A' x Ga
+ −n A s layer (23) is grown to a thickness of 0 to 60 nm, and then the non-doped A (, G a ,, A 5
Si-doped A ttG a +−,A on layer (23)
S layer (Si concentration: 0.5-2.OX 10”cm-
') (24) to a thickness of 250 to 450 people,
Furthermore, the Si-doped Al-Ga +-, As layer (24
) on top of S1-doped GaAs layer (Si concentration 20
, 1-5. OX 10”am-”) (25) to 100
- Grow to a thickness of 1500 people. Here AjGaA
The composition X of the S layer is approximately 0.3.

その後、このようにして形成されたヘテロエピタキシャ
ル堪板上にAu−Ge/Ni等からなるオーミック金属
を蒸着し、リフトオフ法によりソース電極形成部、及び
ドレイン電極形成部に該金属を残し、1金化を行い、オ
ーミック領域をSiドープ°G a A s層(25)
、SiドープA ’ W G a +、As層(24)
、ノンドープALGa、−xAs層(23)、及びノン
ドープGaAs層(22)内に貫通させてソースを極(
26)、ドレインを極(27)を形成する。前記ソース
電極(2G)とドレインを極(27)間のSi ドープ
GaAs層(25)を一部除去し、リセス部(28)を
形成し、このリセス部(28)上にゲートを極(29)
を形成する。このゲートtfi!(29)は、AI又は
Ti/ P t / 、A u等を、ソース電極(26
)とドレイン電極(27)の間にリフトオフ法により、
選択的に被着することにより形成される。
Thereafter, an ohmic metal such as Au-Ge/Ni is vapor-deposited on the heteroepitaxial plate formed in this way, and the metal is left in the source electrode formation part and the drain electrode formation part by a lift-off method, and then one gold The ohmic region is Si-doped with GaAs layer (25).
, Si-doped A' W Ga +, As layer (24)
, the non-doped ALGa, -xAs layer (23), and the non-doped GaAs layer (22) to connect the source to the pole (
26), forming a drain pole (27); A part of the Si-doped GaAs layer (25) between the source electrode (2G) and the drain electrode (27) is removed to form a recess (28), and a gate electrode (29) is formed on this recess (28). )
form. This gate tfi! (29) uses AI or Ti/Pt/, Au, etc. as a source electrode (26
) and the drain electrode (27) by the lift-off method,
Formed by selective deposition.

L述した如き製造方法によI)作製されたHEMTにお
いては、ノンドープAl、G a 、−、A s層(2
3)とノンドープGaAs層(22)とのへテロ接合界
面のノンドープ(J a A s層(22)側に2次元
電子ガスチャンネル(30)が形成される。Siドープ
At。
In the HEMT manufactured by the manufacturing method as described above, non-doped Al, Ga, -, As layers (2
3) and the non-doped GaAs layer (22), a two-dimensional electron gas channel (30) is formed on the non-doped (J a As layer (22) side).Si-doped At.

Ga +−gA s層(24)がゲート電極(29)の
ショットキバリアφm、及びノンドープG a A s
層(22)とノンドープA ’ * G a 1− a
 A s 層(23)の電子親和力の差による伝導帯エ
ネルギー差△Ecにより空乏化し、正のイオン化不純物
により、該ヘテロ接合界面に負電荷を持つ電子が誘起さ
れ、該2次元電子ガスチャンネル(30)が形成される
The Ga + -gAs layer (24) serves as the Schottky barrier φm of the gate electrode (29) and the non-doped GaAs
Layer (22) and non-doped A'*G a 1- a
The A s layer (23) is depleted by the conduction band energy difference ΔEc due to the difference in electron affinity, and negatively charged electrons are induced at the heterojunction interface by the positively ionized impurities, and the two-dimensional electron gas channel (30 ) is formed.

ゲー)、lt極(29)の電界効果により、2次元電子
ガスチャンネル(30)を走行する電子を制御すること
により、第3図に示す装置は、HEMTとしてトランジ
スタ動作を行う。なお、SiドープAt。
The device shown in FIG. 3 performs a transistor operation as a HEMT by controlling the electrons traveling in the two-dimensional electron gas channel (30) by the electric field effect of the LT electrode (29). Note that Si-doped At.

G a 、−、As層(24)表面は、非常に活性で、
表面酸化や不純物吸着等が生じ、不安定になり易く良好
なオーミック電極形成が困難なので、Siドー7GaA
s層(25)を設けている。
The surface of the Ga,-,As layer (24) is very active,
Si-do-7GaA
An s layer (25) is provided.

第4図は、従来のHE M Tのゲート電極(29)−
8iドーフ゛A t、G a +−wA S層(24)
−ノンドープA 1.G a 1−IA s層(23)
−ノンドープGaAs層(22)に亘る伝導帯エネルギ
ー図である。図中B1領域はSiドープA ’ x G
 a +−g A s層(24)に、B、領域はノンド
ープA LG a 1−yA s層(23)に、B、領
域は2次元電子ガスチャンネル(30)に、B4領域は
ノンドープGaAs層(22)に夫々対応しており、禁
止帯幅は、B1及びB、領域が略1.80 eVB、及
びB4領域が1.43eVである。また、B。
Figure 4 shows the gate electrode (29) of a conventional HEMT.
8i dolphin A t, Ga + - wA S layer (24)
-Non-doped A 1. G a 1-IA s layer (23)
- Conduction band energy diagram across the non-doped GaAs layer (22). In the figure, the B1 region is Si-doped A' x G
a+-g As layer (24), B, region is non-doped ALG a 1-yA s layer (23), B, region is two-dimensional electron gas channel (30), B4 region is non-doped GaAs layer (22), and the forbidden band widths are approximately 1.80 eVB in the B1 and B regions, and 1.43 eV in the B4 region. Also, B.

領域とB、領域との界面、即ちAjGaAs/GaAs
ヘテロ接合界面の伝導帯エネルギー差は略0.32eV
である。ノンドープGaAs層(22)がノンドープで
あり、しかも、S1ドープAt。
Region and B, the interface between the region, that is, AjGaAs/GaAs
The conduction band energy difference at the heterojunction interface is approximately 0.32 eV
It is. The non-doped GaAs layer (22) is non-doped and S1-doped At.

Gap−、、As層(24)のイオン化不純物と分離さ
れるためイオン化不純物が極めて少なく、ソース電極(
26)とドレイン電極(27)との間に電圧を印加する
と電子はイオンによる散乱が少ないため高速でかつ低雑
音で動作する。
Since it is separated from the ionized impurities of the Gap-, As layer (24), there are very few ionized impurities, and the source electrode (
When a voltage is applied between the drain electrode (26) and the drain electrode (27), electrons operate at high speed and with low noise because they are less scattered by ions.

(ハ)発明が解決しようとする課題 Si  ドープA t、G a +−mA s層(24
)のSi ドープ濃度を高くすることにより、正のイオ
ン化不純物70度が高くなり、2次元電子ガスチャンネ
ル(30)の負電荷の電子はへテロ接合界面でSiドー
プALG a 、−、A s層(24)側にひき寄せら
れる。すなわち、2次元電子ガスチャンネル(30)の
負電荷の電子はSiドープALG a +−,A s層
(24)のイオン化不純物による影響を受は易く、散乱
が多くなる。スペーサ層であるノンドープAtヨG a
 1−xAs/l?(23)を厚くすることによりSi
ドープAれG a 1−HA s層(24)のイオン化
不純物による散乱の効果は低減できるものの、2次元電
子ガス濃度皇〕、はその分低下し、総合的に低雑音化は
達成できない。
(c) Problems to be Solved by the Invention Si-doped At, Ga + - mA s layer (24
), the positively ionized impurity 70 degrees becomes higher, and the negatively charged electrons in the two-dimensional electron gas channel (30) are transferred to the Si-doped ALGa,−,As layer at the heterojunction interface. (24) Being drawn to the side. That is, the negatively charged electrons in the two-dimensional electron gas channel (30) are easily affected by the ionized impurities in the Si-doped ALGa + -, As layer (24), resulting in increased scattering. Non-doped AtyoGa which is a spacer layer
1-xAs/l? By increasing the thickness of (23), Si
Although the effect of scattering due to ionized impurities in the doped AGa1-HAs layer (24) can be reduced, the two-dimensional electron gas concentration (24) is reduced accordingly, and overall noise reduction cannot be achieved.

(ニ)課題を解決するための手段 本発明は、半絶縁性結晶基板と、この半絶縁性結晶基板
上に設けられた半導体チャンネル層と、この半導体チャ
ンネル層上に設けられ一導電型の不純物が導入された電
子供給層と、この電子供給層Fに設けられた入力電極及
び出力電極と、前記入力1を極と前記出力電極の間の前
記電子供給層上に設けられた制9111を極とを備え、
前記半導体チャンネル層の前記電子供給層側に2次元キ
ャリアガスチャンネルが形成されるヘテロ接合電界効果
トランジスタにおいて、前記半導体チャンネル層の前記
2次元キャリアガスチャンネルの近傍に一導電型の不純
物が導入された領域を備えて成ることを特徴とするヘテ
ロ接合電界効果トランジスタである。
(d) Means for Solving the Problems The present invention provides a semi-insulating crystal substrate, a semiconductor channel layer provided on the semi-insulating crystal substrate, and an impurity of one conductivity type provided on the semiconductor channel layer. is introduced into the electron supply layer, an input electrode and an output electrode provided on the electron supply layer F, and a control 9111 provided on the electron supply layer between the input 1 and the output electrode. and
In a heterojunction field effect transistor in which a two-dimensional carrier gas channel is formed on the electron supply layer side of the semiconductor channel layer, an impurity of one conductivity type is introduced in the vicinity of the two-dimensional carrier gas channel of the semiconductor channel layer. A heterojunction field effect transistor characterized by comprising a region.

(ホ)作用 1tf供給層のN型不純物の濃度を高くするとヘテロ接
合界面の電界強度が強くなり、2次元電子ガス濃度11
 、が大きくなる一方、2次元電子ガスチャンネルの厚
さが狭くなってしまうが、本発明では、半導体チャンネ
ル層の2次元電子ガスチャンネル近傍にN型の不純物を
導入した領域を設けているため、この領域の正のイオン
化不純物が2次元電子ガスチャンネルを厚くするように
働く。
(e) Effect When the concentration of N-type impurities in the 1tf supply layer is increased, the electric field strength at the heterojunction interface becomes stronger, and the two-dimensional electron gas concentration 11
, becomes larger, while the thickness of the two-dimensional electron gas channel becomes narrower. However, in the present invention, a region into which an N-type impurity is introduced is provided near the two-dimensional electron gas channel in the semiconductor channel layer. Positively ionized impurities in this region act to thicken the two-dimensional electron gas channel.

即ち2次元t+ガス分布は前記領域の正電荷の働きによ
り、ヘテロ接合近傍から離間する方向に拡がる。
That is, the two-dimensional t+ gas distribution expands in a direction away from the vicinity of the heterojunction due to the action of positive charges in the region.

(へ)実施例 第1図は本発明に係るHEMTの模式的断面構造図であ
り、同図により以下にその製造方法を説明する。
(f) Example FIG. 1 is a schematic sectional view of the HEMT according to the present invention, and the manufacturing method thereof will be explained below with reference to the same figure.

まず、半絶縁性GaAs基板(半絶縁性結晶基板)(1
)上にMBE技術によりノンドープGaAs層(2)を
1μmの厚さまで成長させ、該ノンドープG a A 
s層(2)上にSiドープGaAs層(Si濃度I X
 10 ”cffl−’) (3)を100人の厚さま
で成長させ、該S1ド一プGaAs層(3)上にノンド
ープGaAs層(4)を150人の厚さまで成長させ、
該ノンドープGaAs層(4)上にノンドープA l 
x G a +−w A s層(5)を20人の厚さま
で成長させ、該ノンドープA l−G a +−xA 
s層(5)tl: S iドープA LG a 1.A
 s層(′1に子供給層)(Sii農度2 X 10 
”cm−’) (6)を350人の厚さまで成長させ、
該SiドープA l*Ga + −*As1l(6)h
にSiドープGaAs層(Si濃度3 X 10 l′
am−’) (7)を500人の厚さまで成長させるa
  A (r G a +−tA s層のAI組成Xは
、略o、25である。また、半導体チャンネル層(13
)は層(2)<3 )(4)で構成され、SiドープG
aAs層(3)がN型の不純物が導入された領域となる
First, a semi-insulating GaAs substrate (semi-insulating crystal substrate) (1
), a non-doped GaAs layer (2) is grown to a thickness of 1 μm by MBE technology, and the non-doped GaAs layer (2) is grown to a thickness of 1 μm.
Si-doped GaAs layer (Si concentration I
10 "cffl-') (3) to a thickness of 100 nm, and on the S1 doped GaAs layer (3), grow a non-doped GaAs layer (4) to a thickness of 150 nm;
Non-doped Al on the non-doped GaAs layer (4)
Grow the x Ga +-w As layer (5) to a thickness of 20 nm, and add the undoped Al-Ga +-x A
s layer (5) tl: Si doped A LG a 1. A
S layer (Children's income layer in '1) (Sii agricultural degree 2 x 10
``cm-') (6) to a thickness of 350 people,
The Si-doped Al*Ga + -*As1l(6)h
Si-doped GaAs layer (Si concentration 3 x 10 l'
am-') (7) to grow to a thickness of 500 people a
The AI composition X of the A
) is composed of layers (2)<3)(4), and Si-doped G
The aAs layer (3) becomes a region into which N-type impurities are introduced.

その後このようにして形成されたヘテロエピタキシャル
基板上にAu−Ge/Ni等からなるオーミック金属を
蒸着し、リフトオフ法によりソース電極形成部及びドレ
イン電極形成部に該金属を残し、合金化を行って、オー
ミック領域をS1ド一プGaAs層(7)、Siドープ
A’tG a 1−xA s層(6)、ノンドープA 
’ w G a l−t A s層(5)及びノンドー
プGaAs層(4)に貫通させてソース電極(入力電極
)(8)、ドレイン電極(出力電極)(9)を形成する
。このソース電極(8)とドレイン電極(9)との間に
SiドープGaAs層(7)の−部を除去しりセス部(
10)を形成し、このリセス部(10)上にゲートを極
(制御電極)(11)を形成する。
Thereafter, an ohmic metal such as Au-Ge/Ni is vapor-deposited on the heteroepitaxial substrate thus formed, and alloyed by a lift-off method, leaving the metal in the source electrode formation area and the drain electrode formation area. , the ohmic region is formed by S1-doped GaAs layer (7), Si-doped A'tG a 1-xA s layer (6), and non-doped A
A source electrode (input electrode) (8) and a drain electrode (output electrode) (9) are formed by penetrating the 'wGaltAs layer (5) and the non-doped GaAs layer (4). The negative part of the Si-doped GaAs layer (7) is removed between the source electrode (8) and the drain electrode (9).
A gate electrode (control electrode) (11) is formed on this recess (10).

ゲート1極(11)は、At又はTi−Pt−Au等を
用い、リフトオフ法により選択的に被着することにより
形成される。
The gate 1 pole (11) is formed by selectively depositing At or Ti-Pt-Au using a lift-off method.

上述したような製造方法で作製されたHEMTにおいて
は、ノンドープGaAs層(4)中のへテロ接合界面近
傍に2次元電子ガスチャンネル(2次元キャリアガスチ
ャンネル) (12)が形成される。
In the HEMT manufactured by the manufacturing method described above, a two-dimensional electron gas channel (two-dimensional carrier gas channel) (12) is formed near the heterojunction interface in the non-doped GaAs layer (4).

第2図は作製したHEMTのゲート電極(11)−5i
 ドープA 1.G a 、、A s層(6)−ノンド
ープA 1.G a 1−MA s層(5)−ノンドー
プGaAs層(4)−5iド一プGaAs層(3)−ノ
ンドープGaAs層(2)に亘る伝導体エネルギー図で
ある。図中A1領域は、SiドープA 1 、 Ga 
+ −m A s層(6)に、A2領域はノンドープA
 LG a 1−wA S層(5)に、A、領域は2次
元電子ガスチャンネル(12)に、A、領域はノンドー
プGaAs層(ただし、2次元電子ガスチャンネル(1
2)を除<)(4)に、A、領域はSiドープGaAs
層(3)に、A。
Figure 2 shows the gate electrode (11)-5i of the fabricated HEMT.
Dope A 1. Ga,, As layer (6) - non-doped A 1. It is a conductor energy diagram spanning the Ga1-MAs layer (5), the non-doped GaAs layer (4), the 5i-doped GaAs layer (3), and the non-doped GaAs layer (2). In the figure, the A1 region is Si-doped A 1 , Ga
+ -m As In the s layer (6), the A2 region is non-doped A
LG a 1-wA S layer (5), region A is the two-dimensional electron gas channel (12), region A is the non-doped GaAs layer (however, the two-dimensional electron gas channel (12)
2) except <) (4), A, region is Si-doped GaAs
In layer (3), A.

領域はノンドープGaAs層(2)に夫々対応しており
、禁止帯幅はA1、A、領域が1.74eV、A、−A
、領域が1.43 eVである。また、AIとA3領域
のへテロ接合界面での伝導帯エネルギー差ΔEcは略0
.26eVである。
The regions correspond to the non-doped GaAs layer (2), respectively, and the forbidden band widths are A1 and A, and the regions are 1.74 eV, A, and -A.
, the region is 1.43 eV. Furthermore, the conduction band energy difference ΔEc at the heterojunction interface between AI and A3 regions is approximately 0.
.. It is 26eV.

SiドープGaAs層(3)がない従来のHEMTでは
、2次元電子ガスチャンネル(12)の厚さは略80人
であったが、本発明では、前記厚さは略100人となり
、若干へテロ接合界面より基板側へ拡がる。即ち、本発
明では、SiドープGaAs層(3)の正電荷により、
2次元電子ガス分布かへテロ接合界面から離間する方向
に拡がる。よって、本発明のHEMTにあっては、2次
元電子ガスチャンネル(12)の電子がSiドープAl
、Ga1−zAs層(6)のイオン化不純物による散乱
を受けにくくなるので、雑音が低減する。本実施例のH
EMTでは最小雑音指数NFm1nを従来の1.2dB
から1 、0 d Bに低減できた。
In the conventional HEMT without the Si-doped GaAs layer (3), the thickness of the two-dimensional electron gas channel (12) was approximately 80 mm, but in the present invention, the thickness is approximately 100 mm, which is slightly heterogeneous. It spreads from the bonding interface toward the substrate side. That is, in the present invention, due to the positive charge of the Si-doped GaAs layer (3),
The two-dimensional electron gas distribution spreads away from the heterojunction interface. Therefore, in the HEMT of the present invention, the electrons in the two-dimensional electron gas channel (12) are
, the Ga1-zAs layer (6) is less susceptible to scattering due to ionized impurities, thereby reducing noise. H in this example
In EMT, the minimum noise figure NFm1n is lower than the conventional 1.2 dB.
It was possible to reduce it from 1.0 dB to 1.0 dB.

また、上述の実施例において、SiドープAt1Cy 
a + −+ A b層(6)を2領域とし、ヘテロ接
合糸i+’j側をS1ド一プ濃度3 x l Q ”a
m−”、厚さ100人、ゲート電極(11)側をSiド
ープ濃度0.7X I Q ”cm−’、厚さ350人
としてもよい。このHEMTでは最小雑音指数NFm1
oを0.8dBとすることができた。
Furthermore, in the above embodiment, Si-doped At1Cy
a + −+ A b layer (6) is divided into two regions, and the heterojunction yarn i+'j side is S1 doping concentration 3 x l Q ”a
The gate electrode (11) side may have a Si doping concentration of 0.7X IQ "cm-" and a thickness of 350 cm. In this HEMT, the minimum noise figure NFm1
o could be set to 0.8 dB.

I:Jしたよ−)にSiドープGaAs層(3)は2次
元電子ガス分布をヘテロ接合界面から離間する方向に拡
げる働きをするが、このSiドープGaA 8層(3)
のS1ドープ)濃度を極端に高くしたりまたは、極端に
厚くしたりすると最小雑音指数NFm1nは劣化してし
まう。これはSiドープGa、へ8層(3)のイオン化
不純物散乱が太き(なること、あるいはSiドープGa
As層(3)にチャンネルが形成されるなどの不都合が
生じるためである。従って、Si ドープGaAs層(
3)としてはSl ドーブン濃度としては、5 X 1
0 ”cm−’ −2x1018cm″′画、厚さ都市
では、50−300λが望ましい。
The Si-doped GaAs layer (3) serves to expand the two-dimensional electron gas distribution in the direction away from the heterojunction interface, but this Si-doped GaA 8 layer (3)
If the S1 doping) concentration is made extremely high or the thickness is made extremely thick, the minimum noise figure NFm1n deteriorates. This is because the ionized impurity scattering of the Si-doped Ga layer (3) is thicker (or the Si-doped Ga layer is thicker).
This is because problems such as formation of a channel in the As layer (3) occur. Therefore, the Si-doped GaAs layer (
3) is Sl Dove concentration is 5 x 1
0"cm-'-2x1018cm"', thickness is preferably 50-300λ in urban areas.

なお、本実施例ではSiドープA 1.Ga 、、A 
s層(6)のイオン化不純物による散乱を低減するため
にノンドープALG a 、−、A s層(5)を設け
たが、該@(5)を設けずに所望の特性を達成できるの
であれば核層(5)は必ずしも必要ではない。
In this example, Si-doped A1. Ga,,A
Although the non-doped ALGa,-,A s layer (5) was provided to reduce scattering due to ionized impurities in the s layer (6), if the desired characteristics could be achieved without providing the @(5), The nuclear layer (5) is not absolutely necessary.

また、本実施例ではSiドープG a 、A s層(3
)のイオン化不純物による散乱を低減するために、ノン
ドープGaAs層(・1)の厚さを2次元電子ガスチャ
ンネル(12)の厚さより略50人厚くしたが、所望の
特性を達成できるのであれば、必ずしも厚くしなくても
よい。
Furthermore, in this example, Si-doped Ga, As layers (3
) In order to reduce scattering due to ionized impurities, the thickness of the non-doped GaAs layer (.1) was made approximately 50 mm thicker than the thickness of the two-dimensional electron gas channel (12). , it does not necessarily have to be thick.

また、本実施例では良好なオーミックを形成するために
、SiドープGaAs層(7)を設けたが、核層(7)
を設けることなく所望の特性を達成できるのであれば核
層(7)は必ずしも必要ではない。
In addition, in this example, in order to form a good ohmic, a Si-doped GaAs layer (7) was provided, but the core layer (7)
The core layer (7) is not necessarily required if the desired characteristics can be achieved without providing the core layer (7).

さらに、本実施例では半導体チャンネル層(13)をノ
ンドープGaAs層(2)、 SiドープGaAS層(
3)、及びノンドープGaAs層(4)で構成したが、
ノンドープGaAs層(2)を設けすに構成してもよい
Furthermore, in this example, the semiconductor channel layer (13) is made of a non-doped GaAs layer (2), a Si-doped GaAS layer (
3) and a non-doped GaAs layer (4),
The non-doped GaAs layer (2) may also be provided.

上、述の実施例では各層の成長にはMBE法を用いたが
、急峻なヘテロ接合界面を形成できる方法、例えばMO
CVD技術等を用いることができる。
Although the MBE method was used to grow each layer in the above-mentioned example, other methods that can form a steep heterojunction interface, such as MO
CVD technology or the like can be used.

また、本弛明は、I nALAs−1nGaAsヘテロ
接合、InGaAs−1nPヘテロ接合等を用いた電界
効果トランジスタに適用できることは明らかである。
Furthermore, it is clear that the present invention can be applied to field effect transistors using InALAs-1nGaAs heterojunctions, InGaAs-1nP heterojunctions, and the like.

さらに、本発明は主として2次元電子ガスを用いたヘテ
ロ接合電界効果トランジスタについて説明したが、2次
元ホールガスを用いたヘテロ接合電界効果トランジスタ
に適用できることは明らかである。
Further, although the present invention has been mainly described with respect to a heterojunction field effect transistor using a two-dimensional electron gas, it is clear that the present invention can be applied to a heterojunction field effect transistor using a two-dimensional hole gas.

(ト)発明の効果 本51!明は、以上の説明から明らかなように、半導体
チャンネル層の2次元キャリアガスチャンネル近傍に電
子供給層に導入した不純物と同一導電型の不純物を導入
した領域を設けることにより、電子供給層を高不純物濃
度としても、2次元キャノアガスチャンネルかへテロ接
合界面にひき寄せられるのを抑制することができるので
、良好なマイクロ波特性を備えたヘテロ接合電界効果ト
ランジスタを提供することができる。
(g) Effects of invention book 51! As is clear from the above explanation, the electron supply layer is improved by providing a region in which impurities of the same conductivity type as the impurities introduced into the electron supply layer are introduced near the two-dimensional carrier gas channel of the semiconductor channel layer. Since the impurity concentration can be suppressed from being attracted to the two-dimensional canoa gas channel or the heterojunction interface, it is possible to provide a heterojunction field effect transistor with good microwave characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明に係るヘテロ接合電界効果トランジス
タの模式的断面図、第2図は本発明に係るヘテロ接合電
界効果トランジスタの伝導帯エネルギー図、第3図は従
来のへテロ接合電界効果トランジスタの模式的断面図、
第4図は従来のへテロ接合ty効果トランジスタの伝導
帯エネルギー図である。 (])・・・半絶縁性GaAs基板、 (2)・・・ノンドープGaAs層、 (3)−SiドープGaAs層、 (4)−3iド一プGaAs層、 (5)−・・ノンドープA LCr a +−mA s
層、(6)−S iドープA !、G a +−mA 
s層、(7)=−5iドープGaAs層、 (8)・・・ソース電極、 (9)・・・ドレイン電極、 (l])・・・ゲート電極、 (12)・・・2次元電子ガスチャンネル、(13)・
・・半導体チャンネル層。
FIG. 1 is a schematic cross-sectional view of a heterojunction field effect transistor according to the present invention, FIG. 2 is a conduction band energy diagram of a heterojunction field effect transistor according to the present invention, and FIG. 3 is a conventional heterojunction field effect transistor. A schematic cross-sectional view of a transistor,
FIG. 4 is a conduction band energy diagram of a conventional heterojunction TY effect transistor. (])...Semi-insulating GaAs substrate, (2)...Non-doped GaAs layer, (3)-Si-doped GaAs layer, (4)-3i doped GaAs layer, (5)-...Non-doped A LCr a + - mA s
layer, (6)-S i doped A! , G a +−mA
s layer, (7)=-5i doped GaAs layer, (8)...source electrode, (9)...drain electrode, (l])...gate electrode, (12)...two-dimensional electron Gas channel, (13)・
...Semiconductor channel layer.

Claims (1)

【特許請求の範囲】 1、半絶縁性結晶基板と、この半絶縁性結晶基板上に設
けられた半導体チャンネル層と、この半導体チャンネル
層上に設けられ一導電型の不純物が導入された電子供給
層と、この電子供給層上に設けれた入力電極及び出力電
極と、前記入力電極と前記出力電極の間の前記電子供給
層上に設けられた制御電極とを備え、前記半導体チャン
ネル層の前記電子供給層側に2次元キャリアガスチャン
ネルが形成されるヘテロ接合電界効果トランジスタにお
いて、 前記半導体チャンネル層の前記2次元キャリアガスチャ
ンネルの近傍に一導電型の不純物が導入された領域を備
えて成ることを特徴とするヘテロ接合電界効果トランジ
スタ。
[Claims] 1. A semi-insulating crystal substrate, a semiconductor channel layer provided on the semi-insulating crystal substrate, and an electron supply provided on the semiconductor channel layer into which impurities of one conductivity type are introduced. an input electrode and an output electrode provided on the electron supply layer, and a control electrode provided on the electron supply layer between the input electrode and the output electrode; A heterojunction field effect transistor in which a two-dimensional carrier gas channel is formed on the electron supply layer side, comprising a region in which an impurity of one conductivity type is introduced in the vicinity of the two-dimensional carrier gas channel of the semiconductor channel layer. A heterojunction field effect transistor characterized by:
JP1270589A 1989-01-20 1989-01-20 Hetero junction field effect transistor Pending JPH02192739A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1270589A JPH02192739A (en) 1989-01-20 1989-01-20 Hetero junction field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1270589A JPH02192739A (en) 1989-01-20 1989-01-20 Hetero junction field effect transistor

Publications (1)

Publication Number Publication Date
JPH02192739A true JPH02192739A (en) 1990-07-30

Family

ID=11812828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1270589A Pending JPH02192739A (en) 1989-01-20 1989-01-20 Hetero junction field effect transistor

Country Status (1)

Country Link
JP (1) JPH02192739A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0510705A2 (en) * 1991-04-26 1992-10-28 Sumitomo Electric Industries, Ltd. Field effect transistor
US5488237A (en) * 1992-02-14 1996-01-30 Sumitomo Electric Industries, Ltd. Semiconductor device with delta-doped layer in channel region

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0510705A2 (en) * 1991-04-26 1992-10-28 Sumitomo Electric Industries, Ltd. Field effect transistor
EP0510705A3 (en) * 1991-04-26 1995-05-24 Sumitomo Electric Industries
US5488237A (en) * 1992-02-14 1996-01-30 Sumitomo Electric Industries, Ltd. Semiconductor device with delta-doped layer in channel region

Similar Documents

Publication Publication Date Title
US5105241A (en) Field effect transistor
JPS60134481A (en) Semiconductor device
JPS6356710B2 (en)
JP3447438B2 (en) Field effect transistor
JPH023937A (en) Field effect transistor
JPH02192739A (en) Hetero junction field effect transistor
JPS61147577A (en) Complementary semiconductor device
JP3094500B2 (en) Field effect transistor
JP3119207B2 (en) Resonant tunnel transistor and method of manufacturing the same
JPH04208537A (en) Field-effect transistor
JPS63216380A (en) Semiconductor device
JPS61268069A (en) Semiconductor device
JPS63161677A (en) Field effect transistor
JP3077670B2 (en) Heterojunction field effect transistor
JPS609174A (en) Semiconductor device
JPS6012773A (en) Manufacture of semiconductor element
JP2614490B2 (en) Heterojunction field effect transistor
JPS61276269A (en) Hetero-junction type field-effect transistor
JPH0230149A (en) Hetero junction field effect transistor
JP2677808B2 (en) Field-effect transistor
JPH0327537A (en) Modulation-doped field effect transistor
JPH06252175A (en) Transistor having high electron mobility
JPH01199475A (en) Heterojunction field-effect transistor
JPH02192738A (en) Hetero junction field effect transistor
JPH01225368A (en) Semiconductor device