JPS6012773A - Manufacture of semiconductor element - Google Patents

Manufacture of semiconductor element

Info

Publication number
JPS6012773A
JPS6012773A JP11950783A JP11950783A JPS6012773A JP S6012773 A JPS6012773 A JP S6012773A JP 11950783 A JP11950783 A JP 11950783A JP 11950783 A JP11950783 A JP 11950783A JP S6012773 A JPS6012773 A JP S6012773A
Authority
JP
Japan
Prior art keywords
layer
substrate
gaas
semiconductor
semiconductor layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11950783A
Other languages
Japanese (ja)
Other versions
JPH028450B2 (en
Inventor
Seiji Nishi
清次 西
Haruhisa Kinoshita
木下 治久
Masahiro Akiyama
秋山 正博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP11950783A priority Critical patent/JPS6012773A/en
Publication of JPS6012773A publication Critical patent/JPS6012773A/en
Publication of JPH028450B2 publication Critical patent/JPH028450B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7781Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with inverted single heterostructure, i.e. with active layer formed on top of wide bandgap layer, e.g. IHEMT

Abstract

PURPOSE:To obtain the titled element of high speed having a small contact resistance and the high mobility of a two-dimensional electron gas by a method wherein the first and second semiconductor layers of different band gaps are formed by lamination on a substrate, and the substrate temperature during the formation of a hetero junction is set less than the temperature for evaporation of a surface oxide film, when the element the channel of which is the boundary surface of the junction is manufactured by modulation doping to the first semiconductor layer. CONSTITUTION:A GaAs buffer layer 12, an AlGaAs buffer layer 13, an Si doped AlGaAs layer 14, the first semiconductor layer, with modulation doping selectively carried out, and a non-doped GaAs layer 15 the second semiconductor layer are formed by lamination on the GaAs substrate 11 by a molecular ray epitaxial method, resulting in the generation of the hetero junction 22 between the layers 14 and 15. Next, the source and drain regions 20 and 21 coming into the layer 14 are formed by a normal method. In this construction, the substrate temperature during the formation of the junction 22 is set less than the temperature for evaporation of the oxide film produced on the surface by 20-180 deg.C, which causes the increase of the mobility of the two-dimensional electron gas of the channel layer 19 in the layer 15.

Description

【発明の詳細な説明】 (発明の技術分野) 本発明は高速半導体素子特にヘテロ接合境界面に形成さ
れた二次元電子層をチャネルとする半導体素子の製造方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field of the Invention) The present invention relates to a method for manufacturing a high-speed semiconductor device, particularly a semiconductor device in which a two-dimensional electron layer formed at a heterojunction interface serves as a channel.

(従来技術の説明) 従来よ)珪素を主体とした高速集積回路が知られている
。しかしながら最近この従来の高速集積回路に代わシ、
分子線エピタキシー(MBE )法或いは有機金属熱分
解(yIDC■)法で形成したGaAs/GaAtAs
のへテロ接合を有効に利用した半導体素子を用いた超高
速集積回路が提案されている。
(Description of Prior Art) High-speed integrated circuits mainly made of silicon are known. However, recently, instead of this conventional high-speed integrated circuit,
GaAs/GaAtAs formed by molecular beam epitaxy (MBE) or organometallic pyrolysis (yIDC)
Ultrahigh-speed integrated circuits using semiconductor elements that effectively utilize heterojunctions have been proposed.

第1図及び第2図はこのような超高速“集積回路#11
ithいられる従来の半導体素子の一例の構造及び轡腔
製造方法を説明するための断面図である。
Figures 1 and 2 show such an ultra-high-speed integrated circuit #11.
FIG. 2 is a cross-sectional view for explaining the structure and cavity manufacturing method of an example of a conventional semiconductor device.

第1図はGaAs/AtGaAgのへテロ接合境界面(
以下単にヘテロ界面と称する)における高移動二次元電
子ガスをチャネル層とする従来の電界効果トランジスタ
(以下単にFETと称する)を示す。こ、のFET素子
はQaA3基板1上に高純度GaAs層2゜AtGaA
s層3を分子線エピタキシー法(以下単ニMBE法と称
する)によシ順次に連続成長させた後、このAAGaA
sAtaAs層ス電極4.ドレイン電極5及びダート電
極6を形成している。尚、点線8及び9で囲まれた領域
はソース領域及びドレイン領域として夫々作用する領域
である。このように構成されたFET素子は高速FET
として動作する。
Figure 1 shows the GaAs/AtGaAg heterojunction interface (
1 shows a conventional field effect transistor (hereinafter simply referred to as FET) in which a channel layer is a highly mobile two-dimensional electron gas at a heterointerface (hereinafter simply referred to as a heterointerface). This FET element has a high purity GaAs layer 2°AtGaA on a QaA3 substrate 1.
After sequentially growing the s-layer 3 by the molecular beam epitaxy method (hereinafter referred to as single MBE method), this AAGaA
sAtaAs layer electrode 4. A drain electrode 5 and a dirt electrode 6 are formed. Note that the regions surrounded by dotted lines 8 and 9 are regions that act as a source region and a drain region, respectively. The FET element configured in this way is a high-speed FET.
operates as

これは、バンドギャップ(禁制帯幅)の小さい高純度G
aASの半導体層と、バンドギャップの大きいAtGa
Asの半導体層とを交互に成長させた超格子構造又は両
生導体層の単一のへテロ接合構造において、不純物の変
調ドーピングすなわちAtGaAs層にのみ選択的にn
型のドーピングを行うとGaAsとAtGaAsとの電
子、親和力の差によ、il) AtGaAs層の電子が
高純度G aAs層に移シ、ヘテロ界面にm11図に破
線7で示すように二次元的に広がった電子ガスのがAA
GaAs層3であるため、ゲート6のショットキ接合の
特性が不安定となるばかりか、AAGaAs層3のキャ
リア数が多いため、ダート電圧によって二次電子ガスの
濃度を変調するためにはAIG aA s層3の厚さを
精密に制御しなくてはならないという欠点があった。さ
らに、AtGaAs層を介して二次元電子ガスにオーム
性電極を形成するため、接触抵抗が大きくなるという欠
点もあった。
This is a high-purity G with a small band gap (forbidden band width).
aAS semiconductor layer and AtGa with a large band gap
In a superlattice structure in which As semiconductor layers are grown alternately or in a single heterojunction structure of amphibic conductor layers, modulated doping of impurities, that is, selective n-doping only in the AtGaAs layer.
When type doping is performed, due to the difference in electron affinity between GaAs and AtGaAs, electrons in the AtGaAs layer are transferred to the high-purity GaAs layer, creating a two-dimensional structure at the hetero interface as shown by the broken line 7 in Fig. The electron gas that spread to AA is
Since it is a GaAs layer 3, not only the properties of the Schottky junction of the gate 6 become unstable, but also the number of carriers in the AAGaAs layer 3 is large. A drawback is that the thickness of layer 3 must be precisely controlled. Furthermore, since an ohmic electrode is formed on the two-dimensional electron gas via the AtGaAs layer, there is also the drawback that contact resistance increases.

他方、第1図のFET素子のへテロ接合を形成する半導
体層を入れ替えた第2図に示すような従来の他のFET
素子が提案されておシ、この素子においては、GaAs
基板11上に、MBE法によ−9、GaAsバッファ一
層J 2 、 AAGaAsバッファ一層13.n型A
tGaAs層14.高純度GaAs層15を連続的に成
長させた後、高純度GaAs層15上にソース電極16
、ドレイン電極17及びダート電極18を夫々形成した
構造となっている。ここにおいて、点線20及び2ノで
囲まれた領域は通常の半導体製造技術で形成されている
ソース及びドレインとしこ、の第2図に示す構造のFE
T素子は第1図に示した′構造のFETの有する欠点を
除゛去するが、文献刊ml物r Journal of
 Apptied Physics J Vol、53
゜1(r、2’−1982年2月の第1030頁〜第1
033頁に掲載されたH、Morkoc、T、J−Dr
ummond及びR,Fi 5cher等による論文の
記載(特に第3図)からも明らかなように、二次元電子
ガス19の移動度は同一条件下て成長させた第1図のF
ET素子の二次元電子ガス7の移動度より遥かに低く、
例えば、成長時の基板614度600−680℃の範囲
で得られた後者のqkの平均移動度は約90,000 
cm2/ V+であるのに対し前者の680℃の基板温
度までの範囲で得られた78°I(の移動度は2,00
0 (7n2/ Vs程度で、最大700℃の基板温度
での8.500 Crn2/Vsであシ、特に前者のす
なわち第2図に示す構造のFET素子の移動度はMBE
法による成長時の基板温度に著しく依存することが判っ
た。
On the other hand, another conventional FET as shown in FIG. 2 in which the semiconductor layer forming the heterojunction of the FET element in FIG. 1 is replaced.
A device has been proposed, in which GaAs
On the substrate 11, -9, one GaAs buffer layer J 2 , one AAGaAs buffer layer 13 . n-type A
tGaAs layer 14. After continuously growing the high purity GaAs layer 15, a source electrode 16 is placed on the high purity GaAs layer 15.
, a drain electrode 17 and a dart electrode 18 are formed, respectively. Here, the regions surrounded by dotted lines 20 and 2 are the sources and drains formed by normal semiconductor manufacturing technology, and are the FE of the structure shown in FIG. 2.
Although the T element eliminates the drawbacks of the FET with the structure shown in FIG.
Applied Physics J Vol, 53
゜1(r, 2'-February 1982, pages 1030-1
Published on page 033 H, Morkoc, T, J-Dr.
As is clear from the description in the paper by ummond, R. Fi 5cher, etc. (particularly in FIG. 3), the mobility of the two-dimensional electron gas 19 is higher than that of F in FIG. 1 grown under the same conditions.
It is much lower than the mobility of the two-dimensional electron gas 7 of the ET element,
For example, the average mobility of the latter qk obtained with the substrate at 614 degrees during growth in the range of 600-680 degrees Celsius is approximately 90,000.
cm2/V+, whereas the former's mobility of 78°I (obtained in the range up to a substrate temperature of 680°C is 2,00
0 (about 7n2/Vs, and 8.500 Crn2/Vs at a maximum substrate temperature of 700°C. In particular, the former, that is, the mobility of the FET element with the structure shown in Figure 2, is MBE
It was found that the growth rate was significantly dependent on the substrate temperature during growth by the method.

従来、MBFJ法によってGaAs基板上にGaAs或
いはAtGaAsの膜を成長させる場合、GaAs基板
上の表面酸化膜が蒸発するのを確認して膜の成長を行S
、Judaprawira、C,E、C,Wood及び
り、F、Eastman等による論文及びr Appl
ied Physcs Letter J Vol。
Conventionally, when growing a GaAs or AtGaAs film on a GaAs substrate by the MBFJ method, the film was grown after confirming that the surface oxide film on the GaAs substrate had evaporated.
, Judaprawira, C. E., C. Wood, F. Eastman et al. and r Appl.
ied Physics Letter J Vol.

38、A6,1981年3月15日の第427頁〜第4
29頁に掲載されたP、D、Kirchner、J、M
、WoodatA、J’、L。
38, A6, March 15, 1981, pp. 427-4
Published on page 29 P, D, Kirchner, J, M
,WoodatA,J',L.

Freeo’ut及びG、D、Pettit等による論
文からも明らかなように、AtGaAs膜の成長に関し
ては基板温度が高いほど良い膜が出来ることが報告され
ている。
As is clear from the paper by Freeo'ut, G., D., and Pettit, it has been reported that the higher the substrate temperature, the better the growth of AtGaAs films.

しかしながら、第2図に示す構造のFET素子の場合に
は前述したように成長時の基板温度を700℃と高く設
定しても78°にでの移動度は8,500t1n2/v
s程度であシ、この素子を高速半導体素子に適用するに
は移動度が低すぎる欠点がある。
However, in the case of the FET element with the structure shown in Fig. 2, even if the substrate temperature during growth is set as high as 700°C as described above, the mobility at 78° is 8,500t1n2/v.
However, the mobility is too low for this device to be applied to high-speed semiconductor devices.

(発明の目的) 本発明は上述した従来の半導体素子の欠点に鑑みなされ
たもので、その目的は高純度GaAs層の厚さの精密な
制御を必要とせず、接触抵抗が小さくしかも二次元電子
ガスの移動度が高い高速半導体素子の製造方法を提供す
ることにある。
(Objects of the Invention) The present invention was made in view of the above-mentioned drawbacks of conventional semiconductor devices, and its purpose is to eliminate the need for precise control of the thickness of the high-purity GaAs layer, to reduce contact resistance, and to provide two-dimensional electronic An object of the present invention is to provide a method for manufacturing a high-speed semiconductor device with high gas mobility.

(発明の構成) 1の目的の達成を図るため、本発明による方法−7,;
、11.ヘテロ接合形成時の基板温度を、この基板の枦
ト酸化膜の蒸発温度より低い温度とすることを有機とす
る。
(Structure of the Invention) In order to achieve the object 1, method-7 according to the present invention;
, 11. Organic means that the substrate temperature during the formation of a heterojunction is lower than the evaporation temperature of the oxide film of this substrate.

・この基板温度は蒸発温度を基準として約20℃〜18
0℃低い温度範囲に設定するのが好適である。1 又、この基板をGaAs基板とし、第一半導体層をAi
naA s層とし、第二半導体層をGaA 8層とする
ことが出来る。
・This substrate temperature is approximately 20°C to 18°C based on the evaporation temperature.
It is preferable to set the temperature to a temperature range lower than 0°C. 1 Also, this substrate is a GaAs substrate, and the first semiconductor layer is Ai.
The second semiconductor layer can be an 8-layer GaA layer.

(実施例の説明) 以下、図面によシ本発明の実施例につき説明する。(Explanation of Examples) Embodiments of the present invention will be described below with reference to the drawings.

本発明は上述した第2図に示す構造のFET素子に対応
する構造を有する半導体素子の製造に係るものであシ、
従ってこの第2図を再び用いて本発明の一実施例である
FET素子につき説明する。
The present invention relates to the manufacture of a semiconductor element having a structure corresponding to the FET element having the structure shown in FIG.
Therefore, referring to FIG. 2 again, an FET element which is an embodiment of the present invention will be explained.

第2図に示すように、MBE法を用いて、GaAS基板
11上にこの基板側から順次に約1000Xの厚さのG
aAsバッファ層12.約1o、o OXのAAGaA
aノぐッファ層13.第−半導体層としての約500X
の厚さの珪素ドープAAGaAs層14.第二半導体層
としての約5,0OOXの厚さのノンドープGaAs層
15を連続成長させ、珪素ドープALGaAs層14と
ノン’+y旧プGaAs層15とのへテロ接合22を形
成する。
As shown in FIG. 2, using the MBE method, a layer of about 1000X thick G is sequentially placed on the GaAS substrate 11 from this substrate side.
aAs buffer layer 12. AAGaA of about 1 o, o OX
a no guffa layer 13. Approximately 500X as the second semiconductor layer
a silicon-doped AAGaAs layer 14. A non-doped GaAs layer 15 having a thickness of about 5,000 x is continuously grown as a second semiconductor layer to form a heterojunction 22 between the silicon-doped ALGaAs layer 14 and the non'+y old doped GaAs layer 15.

傭、て通常の半導体装置の製造技術を用いて、71杯4
;及びドレイン用の領域(点線20. 、21で囲まれ
た領域)と、ノンドープGaAs層15上のソース電極
16.ドレイン電極17及びりゝ−ト電極18とを形成
する。このように形成された半導体素子では、ヘテロ接
合22の境界面に存在する二次元電子ガス19によシチ
ャネル層が形成され、このチャネル層をケ゛−ト電極1
8の印加電圧によシ制御してソース電極16からドレイ
ン電極17に流れる電流を変調することが出来る。
Using ordinary semiconductor device manufacturing technology, 71 cups4
; and a drain region (region surrounded by dotted lines 20. and 21), and a source electrode 16. on the non-doped GaAs layer 15. A drain electrode 17 and a right electrode 18 are formed. In the semiconductor device formed in this way, a channel layer is formed by the two-dimensional electron gas 19 existing at the interface of the heterojunction 22, and this channel layer is connected to the gate electrode 1.
The current flowing from the source electrode 16 to the drain electrode 17 can be modulated by controlling the applied voltage of 8.

ところで、既に説明した通シ、この半導体素子を高速素
子とするためにはチャネル層19を形成する二次元電子
ガスの移動度を高くすることが必要であシ、この移動度
は成長時の基板温度と関係するものであった。そこでこ
の出願の発明者はこの移動度と成長時の基板温度との関
係を実験により調べたところ、第3図に示すような関係
があることが判った。この第3図は横軸を二次元電子ガ
スが形成されるヘテロ界面形成時の基板温度(℃)とし
、縦軸をシートキャリア数が5 X I O” cIn
−2の二次元電子ガスの液体窒素温度(77°K)にお
けるホール移動度としてプロットして示した図であイ、
−1この場合、基板温度をGaAs表面酸化膜が蒸発6
!14+、’m度(To)を基準として示す。この実験
結看よ19、基板温度を約To−20℃〜’ro−i8
Q℃の興亜で77°にのホール移動度が40.000 
an2/V −5ee−8’lとなることが判った。
By the way, as already explained, in order to make this semiconductor device a high-speed device, it is necessary to increase the mobility of the two-dimensional electron gas forming the channel layer 19. It was related to temperature. Therefore, the inventor of this application conducted an experiment to investigate the relationship between this mobility and the substrate temperature during growth, and found that there is a relationship as shown in FIG. In this Figure 3, the horizontal axis represents the substrate temperature (°C) at the time of formation of the hetero interface where a two-dimensional electron gas is formed, and the vertical axis represents the number of sheet carriers 5 X I O” cIn
This is a diagram plotting the hole mobility of the two-dimensional electron gas at -2 at the liquid nitrogen temperature (77°K).
-1 In this case, the GaAs surface oxide film evaporates when the substrate temperature is 6
! 14+, 'm degrees (To) are shown as a reference. The result of this experiment is 19. The substrate temperature is about To-20℃~'ro-i8
The Hall mobility at 77° in Koa at Q℃ is 40.000
It was found that an2/V-5ee-8'l.

この第3図に示すような関係が得られるのは、MBE法
による成長中の珪素ドーパン)(Si)の表面蓄積効果
が基板温度の低下に従って少なくなり、この基板温度を
下げるとこれに応じて移動度が上がシ、又基板温度をさ
らに下げるとヘテロ界面の平坦さが悪くなシ移動度が下
がることに起因すると思われる。
The relationship shown in Figure 3 is obtained because the surface accumulation effect of silicon dopant (Si) during growth by the MBE method decreases as the substrate temperature decreases, and as the substrate temperature decreases, the effect increases accordingly. This is thought to be due to the fact that the mobility increases, and when the substrate temperature is further lowered, the flatness of the hetero interface deteriorates, causing the mobility to decrease.

そこで本発明においては、上述したMBE法を用いて珪
素ドープAAGaAs層14とノンドープGaAs層J
5とのへテロ界面を成長させる時の基板温度をGaAs
の表面酸化膜が蒸発する温度を基準とじてとの蒸発温度
よシも低い温度、特にこの蒸発温度を ゛基準として約
20℃〜180℃下の温度範囲に設定するのが好適であ
る。
Therefore, in the present invention, the silicon-doped AAGaAs layer 14 and the non-doped GaAs layer J are formed using the above-mentioned MBE method.
The substrate temperature when growing the hetero interface with GaAs
It is preferable to set the temperature lower than the evaporation temperature based on the temperature at which the surface oxide film evaporates, particularly in the range of about 20° C. to 180° C. below the evaporation temperature.

(発明の効果) このように本発明によれば基板の上側にMBE法てこの
基板側からバンドギャップの大きい第一半導体層である
n型AtGaAs層14とバンドギャップの小さい第二
半導体層である高純度GaAs層15とのへテロ界面を
成長させる時の基板温度を上述しkQうに表面酸化物で
ある膜の蒸発温度よシ約T!、や1℃〜180亡低い温
度範囲に設定するので、この胞p・にして形成された半
導体素子のへテロ界面にシける二次元電子ガスの移動度
を高くすることが出来、従ってこの二次元電子層すなわ
ち電子ガス層9をチャネル層として使用する高速度の半
導体層+1を実現することが出来る。
(Effects of the Invention) According to the present invention, the n-type AtGaAs layer 14, which is the first semiconductor layer with a large band gap, and the second semiconductor layer with a small band gap are formed on the upper side of the substrate from the substrate side of the MBE method. The substrate temperature when growing the heterointerface with the high-purity GaAs layer 15 is kQ, which is about T! compared to the evaporation temperature of the surface oxide film. , or 1°C to 180°C, it is possible to increase the mobility of the two-dimensional electron gas that reaches the hetero-interface of the semiconductor element formed by this cell p. A high-speed semiconductor layer +1 using the dimensional electron layer or electron gas layer 9 as a channel layer can be realized.

又、本発明による方法に従って製造された半導体素子例
えばFET素子の構造では、デート電極18を高純度Q
aAs層15上に形成するので、n型のAAGaAs層
14の表面にダート電極を形成したようにダート電極に
加えた電圧がイオン化したドナー不純物によって減少す
ることはなく、この印加電圧が直接二次元電子ガス層に
伝えられる。このため高純度GaAs層15の厚さを精
密に制御する必要はなく、高い相互コンダクタンスが得
られる〇又FET素子表面がGaAs層15であるため
ダート電極18のショットキ接合づ特性が安定になると
共に、ソース電極16.ドレイン電極170オーム性電
極を形成しやすく、その抵抗値も小さくしやすい。さら
に、GaAsはAtGaAsに対して安定であシ、信頼
性の高い素子を実現出来る。
Further, in the structure of a semiconductor device, such as an FET device, manufactured according to the method according to the present invention, the date electrode 18 is made of a high purity Q
Since it is formed on the aAs layer 15, the voltage applied to the dart electrode is not reduced by ionized donor impurities, unlike when a dart electrode is formed on the surface of the n-type AAGaAs layer 14, and this applied voltage is directly applied to the two-dimensional The electrons are transmitted to the gas layer. Therefore, there is no need to precisely control the thickness of the high-purity GaAs layer 15, and high mutual conductance can be obtained.Also, since the FET element surface is the GaAs layer 15, the Schottky junction characteristics of the dart electrode 18 are stabilized. , source electrode 16. Drain electrode 170 It is easy to form an ohm electrode, and its resistance value can be easily reduced. Furthermore, GaAs is more stable than AtGaAs, and a highly reliable device can be realized.

(変形例の説明) 本発明は上述した実施例にのみ限定されるものでhなく
多くの変更又は変形を行い得ること明らか!j田ある。
(Description of Modifications) It is clear that the present invention is not limited to the embodiments described above and can be modified and modified in many ways! There is a field.

例えば本発明を電界効果トランジスタに得き説明したが
、他の高移動度デバイスや超高層〜波デバイスにも適用
出来る。
For example, although the invention has been described with reference to field effect transistors, it can also be applied to other high mobility devices and very high wave devices.

又、上述した実施例とは異なり、基板上に直接第一半導
体層を形成した構造としてもよいし、或いは又ヘテロ接
合を超格子構造としてもよい。
Further, unlike the above-described embodiments, the first semiconductor layer may be formed directly on the substrate, or the heterojunction may have a superlattice structure.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のGaAs −AB:1aAgヘテロ界面
における高移動度二次元電子ガスをチャネル層とする電
界効果トランジスタを示す断面図、 第2図は従来及び本発明による半導体素子の製造方法の
説明に供する第1図と同様な電界効果トランジスタでは
あるが第1図とは構造が異なる電界効果トランジスタの
一実施例を示す図式的拡大断面図、 第3図は本発明の説明に供する一第2図に示した電界効
果トランジスタの製造時における基板温度と糸−ル移動
度との関係を示す特性曲線図である。 11・・・基板(例えばGaAa基板)、12・・・バ
ッファ一層(例えばGaAa )、13・・・バッファ
一層(例えばALGaAs )、14・・・第一半導体
層(例えばn型AtGaAs層)、15・・・第二半導
体層(例えば高純度GaAs層)、16・・・ソース電
4L J 7・・・ドレイン電極、18・・・り)IE
4tlii、’19・・・二次元電子ガス(i、’+、
<%チャネル層)、2o・・・ソース領域の境界を示I
繍N、21・・・ダート領域の境界を示す線。 特許出願人工業技術院長 川 1)裕 部第1図
FIG. 1 is a cross-sectional view showing a conventional field effect transistor having a high mobility two-dimensional electron gas as a channel layer at the GaAs-AB:1aAg heterointerface. FIG. 2 is an explanation of the conventional method and the method of manufacturing a semiconductor device according to the present invention. FIG. 3 is a diagrammatic enlarged sectional view showing an embodiment of a field effect transistor similar to that in FIG. 1 but having a structure different from that in FIG. 1; FIG. 3 is a characteristic curve diagram showing the relationship between substrate temperature and yarn mobility during manufacture of the field effect transistor shown in the figure. 11... Substrate (e.g. GaAa substrate), 12... One buffer layer (e.g. GaAa), 13... One buffer layer (e.g. ALGaAs), 14... First semiconductor layer (e.g. n-type AtGaAs layer), 15 ...Second semiconductor layer (for example, high-purity GaAs layer), 16...Source electrode 4L J 7...Drain electrode, 18...Ri) IE
4tlii, '19... Two-dimensional electron gas (i, '+,
<% channel layer), 2o... Indicates the boundary of the source region I
Embroidery N, 21...A line indicating the boundary of the dirt area. Patent applicant: Director of the Agency of Industrial Science and Technology Kawa 1) Hirobe Figure 1

Claims (1)

【特許請求の範囲】 1、基板の上側に分子線エピタキシー法で該基板側から
バンドギャップの異なる第−及び第二半導体層をこの順
序で成させて両生導体層間にヘテロ接合を形成する工程
と、前記第一半導体層に変調ドーピングを選択的に行う
工程とを用い、ヘテロ接合境界面の二次元電子層をチャ
ネルとする半島体、素子を製造するに当シ、前記へテロ
接合形成精!の・基板温度を該基板の表面酸化膜の蒸発
温度よ准1低い温度とすることを特徴とする半導体素子
の複造方法。 −2,前記基板温度を前記表面酸化膜蒸発温度を基準と
して約20℃〜180℃低い温度範囲に設定す、ること
を特徴とする特許請求の範囲第1項記載の半゛導体素子
の製造方法。 3、前記基板をGaAs基板とし、前記第一半導体層を
AtGaAs層とし及び前記第二半導体層をGaAs層
としたことを特徴とする特許請求の範囲第1項又は第2
項記載の半導体素子の製造方法。
[Claims] 1. A step of forming a first and second semiconductor layer having different bandgaps in this order from the substrate side using molecular beam epitaxy on the upper side of the substrate to form a heterojunction between both conductor layers. , selectively modulating doping the first semiconductor layer, and manufacturing a peninsula device having a two-dimensional electron layer at the heterojunction interface as a channel. A method for manufacturing a semiconductor device, characterized in that the substrate temperature is approximately 1 lower than the evaporation temperature of the surface oxide film of the substrate. -2. Manufacturing of a semiconductor device according to claim 1, characterized in that the substrate temperature is set in a temperature range approximately 20°C to 180°C lower than the surface oxide film evaporation temperature. Method. 3. Claim 1 or 2, characterized in that the substrate is a GaAs substrate, the first semiconductor layer is an AtGaAs layer, and the second semiconductor layer is a GaAs layer.
A method for manufacturing a semiconductor device as described in Section 1.
JP11950783A 1983-07-02 1983-07-02 Manufacture of semiconductor element Granted JPS6012773A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11950783A JPS6012773A (en) 1983-07-02 1983-07-02 Manufacture of semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11950783A JPS6012773A (en) 1983-07-02 1983-07-02 Manufacture of semiconductor element

Publications (2)

Publication Number Publication Date
JPS6012773A true JPS6012773A (en) 1985-01-23
JPH028450B2 JPH028450B2 (en) 1990-02-23

Family

ID=14762969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11950783A Granted JPS6012773A (en) 1983-07-02 1983-07-02 Manufacture of semiconductor element

Country Status (1)

Country Link
JP (1) JPS6012773A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01199474A (en) * 1988-02-04 1989-08-10 Matsushita Electric Ind Co Ltd Heterojunction type field-effect transistor
JPH02275642A (en) * 1989-04-17 1990-11-09 Hitachi Cable Ltd Field-effect transistor
JPH05198600A (en) * 1991-08-21 1993-08-06 Hughes Aircraft Co Manufacture of inversion modulation-doped hetero-structure
US6050217A (en) * 1997-08-26 2000-04-18 Murata Manufacturing Co., Ltd. Parallel plate plasma CVD apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5752126A (en) * 1980-09-16 1982-03-27 Oki Electric Ind Co Ltd Compound semiconductor device
JPS5913376A (en) * 1982-07-13 1984-01-24 Nippon Telegr & Teleph Corp <Ntt> Semiconductor thin film having hetero junction
JPS59106158A (en) * 1982-12-10 1984-06-19 Fujitsu Ltd Manufacture of semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5752126A (en) * 1980-09-16 1982-03-27 Oki Electric Ind Co Ltd Compound semiconductor device
JPS5913376A (en) * 1982-07-13 1984-01-24 Nippon Telegr & Teleph Corp <Ntt> Semiconductor thin film having hetero junction
JPS59106158A (en) * 1982-12-10 1984-06-19 Fujitsu Ltd Manufacture of semiconductor device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01199474A (en) * 1988-02-04 1989-08-10 Matsushita Electric Ind Co Ltd Heterojunction type field-effect transistor
JPH02275642A (en) * 1989-04-17 1990-11-09 Hitachi Cable Ltd Field-effect transistor
JPH05198600A (en) * 1991-08-21 1993-08-06 Hughes Aircraft Co Manufacture of inversion modulation-doped hetero-structure
US6050217A (en) * 1997-08-26 2000-04-18 Murata Manufacturing Co., Ltd. Parallel plate plasma CVD apparatus

Also Published As

Publication number Publication date
JPH028450B2 (en) 1990-02-23

Similar Documents

Publication Publication Date Title
JPH024140B2 (en)
JP2611735B2 (en) Heterojunction FET
JP2689057B2 (en) Static induction semiconductor device
US5981986A (en) Semiconductor device having a heterojunction
JP2804041B2 (en) Field-effect transistor
JPS6012773A (en) Manufacture of semiconductor element
JP3447438B2 (en) Field effect transistor
JPH06188271A (en) Field effect transistor
US6043143A (en) Ohmic contact and method of manufacture
JP3119207B2 (en) Resonant tunnel transistor and method of manufacturing the same
JP2811753B2 (en) Speed modulation type field effect transistor
JPH09237889A (en) Semiconductor crystal laminate and semiconductor device using the laminate
JP2800770B2 (en) Field effect transistor and method of manufacturing the same
JP3158467B2 (en) InAlAs / InGaAs heterojunction structure field effect transistor
JP2689877B2 (en) Heterojunction FET manufacturing method
JP2800457B2 (en) Semiconductor device
JP2715868B2 (en) Field effect transistor
JP3423812B2 (en) HEMT device and manufacturing method thereof
JP2680812B2 (en) Semiconductor device
JP3121671B2 (en) Method for manufacturing semiconductor device
JPH01120871A (en) Semiconductor device
JPH08264558A (en) Compound semiconductor device and fabrication thereof
JPH01183155A (en) Hetero junction bipolar transistor
JPH07120792B2 (en) Semiconductor device
JPH06232178A (en) High electron mobility transistor and its integrated circuit