JPH02184023A - Glow discharge precipitation method of multilayer structure - Google Patents

Glow discharge precipitation method of multilayer structure

Info

Publication number
JPH02184023A
JPH02184023A JP1303427A JP30342789A JPH02184023A JP H02184023 A JPH02184023 A JP H02184023A JP 1303427 A JP1303427 A JP 1303427A JP 30342789 A JP30342789 A JP 30342789A JP H02184023 A JPH02184023 A JP H02184023A
Authority
JP
Japan
Prior art keywords
glow discharge
reactor
nitrogen
voltage
deposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1303427A
Other languages
Japanese (ja)
Inventor
Dario Della Sala
ダリオ・デラ・サーラ
Ciro Ostrifate
チーロ・オストリファーテ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Agip SpA
Eni Tecnologie SpA
Original Assignee
Agip SpA
Eniricerche SpA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agip SpA, Eniricerche SpA filed Critical Agip SpA
Publication of JPH02184023A publication Critical patent/JPH02184023A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/515Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using pulsed discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process

Abstract

PURPOSE: To provide a multi-layer structure body without changing the composition of a gas mixture during deposition in a single reactor by using the gas mixture composed of the two kinds of gases selected from silane, germane, hydrocarbon and a gas containing nitrogen, changing a voltage applied to the electrode of the reactor during a deposition process and not changing the other parameters. CONSTITUTION: The reactor is deaerated while maintaining the temperature at 250 deg.C and then, the mixture of the germane and the silane is filled into the reactor. Then, the relative ratio of raw materials diluted by hydrogen beforehand is about germane 20% and silane 80%. The conditions are maintained fixed during the deposition. During discharge for about ten minutes, the layer of a Ge-Si alloy (for instance, the atom ratio of Ge: 0.4 and the atom ratio of Si: 0.6) is deposited. When about ten minutes elapses, the voltage at the electrode is reduced to about 400V, it is applied for about ten minutes further and the Ge-Si layer (the atom ratio of Si and Ge: 0.5) is obtained. Then, by alternately changing the voltage applied to the electrode between 1200V and 400V and keeping for a fixed time while the voltage is maintained at one of the values, the cyclic multi-layer structure body of Ge0.4 Si0.6 Ge0.5 Si0.5 is obtained.

Description

【発明の詳細な説明】 で構成されるアモルファス物質構造体を気相におけるプ
ラズマ析出により製造する方法にある。このような構造
体は、たとえばJ、1. Pankove編[半導体及
び半金属(Semiconductors and S
enimetals)JVol、 21. part、
 C,p、407. Academic Press 
(NY)1984に開示されているように、電子及び光
電子デバイスにおける用途を有する。
DETAILED DESCRIPTION OF THE INVENTION A method of manufacturing an amorphous material structure comprising: by plasma deposition in the gas phase. Such a structure may be, for example, J, 1. Edited by Pankove [Semiconductors and Semiconductors and Semiconductors
enimetals) JVol, 21. part,
C, p, 407. Academic Press
(NY) 1984, has applications in electronic and optoelectronic devices.

現在では、これら多相構造体をグロー放電によって製造
するに当たり、反応チャンバーに供給するガス流の流量
を変化させるか、又は基板を一方の反応チャンバーから
他の反応チャンバーに移動させると共に、これら反応チ
ャンバーのいずれか一方には、予め定められた一定のガ
ス混合物を存在させることが一般的である。電極間に、
ピーク・ピーク値103ないし10”Vを有する交流電
圧(周波数108ないし10’Hz)を印加することに
よってガスを解離させる。
Currently, these multiphase structures are manufactured by glow discharge by varying the flow rate of the gas flow supplied to the reaction chambers, or by moving the substrate from one reaction chamber to another, and by moving the substrates from one reaction chamber to another. It is common for a certain predetermined gas mixture to be present in either one of the two. between the electrodes,
The gas is dissociated by applying an alternating voltage (frequency 108 to 10'Hz) with a peak-to-peak value of 103 to 10''V.

前者の方法では、ガス流の流体力学的動揺を生ずるため
、各層の析出が生ずる前に完全に安定するまで待つ必要
があり、後者の方法では、チャンバーからチャンバーへ
サンプルを移すために無視できないインターバルが存在
する。
The former method creates hydrodynamic perturbations in the gas flow that require waiting until complete stabilization before deposition of each layer can occur, while the latter method requires non-negligible intervals to transfer the sample from chamber to chamber. exists.

これらの欠点は本発明によって解消される。本発明によ
る方法では、単一反応器において、析出の間にガス混合
物の組成を変化させることなく多層構造体を製造できる
These drawbacks are overcome by the present invention. The method according to the invention allows multilayer structures to be produced in a single reactor without changing the composition of the gas mixture during the deposition.

これによれば、本発明は、ケイ素、炭素、酸素、窒素、
ゲルマニウム、水素を含有する各種の組成のアモルファ
ス層を多数析出させるグロー放電法において、シラン、
ゲルマン、炭化水素、窒素含有ガス(たとえば窒素、五
酸化二窒素及び二酸化窒素、アンモニア)の中から選ば
れる異なる種類に属する2種のガスでなるガス混合物を
使用し:反応器の電極に印加する電圧を析出過程中に変
化させて、前記混合物を構成するガスの調節された解離
を誘発すると共に、調節された組成を有するケイ素、炭
素、酸素、窒素、ゲルマニウム、水素の連続層を析出さ
せ5各種の析出の間、他の反応器プレセツティングパラ
メーター(圧力、原料流量及び基板温度)のすべてを変
化させないことを特徴とする多層構造体のグロー放電析
出法に係る。
According to this, the present invention includes silicon, carbon, oxygen, nitrogen,
Silane, silane,
A gas mixture consisting of two gases belonging to different classes selected from germane, hydrocarbons, nitrogen-containing gases (e.g. nitrogen, dinitrogen pentoxide and nitrogen dioxide, ammonia) is used: applied to the electrodes of the reactor. The voltage is varied during the deposition process to induce a controlled dissociation of the gases making up the mixture and to deposit successive layers of silicon, carbon, oxygen, nitrogen, germanium, hydrogen with a controlled composition. The present invention relates to a glow discharge deposition method for multilayer structures, characterized in that all other reactor presetting parameters (pressure, raw material flow rate, and substrate temperature) are not changed during various depositions.

電圧が一定に維持されるインターバルを適切に設定する
ことにより、層の厚さを所望どおりにコントロールでき
、一方、電極に印加する電圧の値を適切に選択すること
によって、各層の組成を変化させることができる。従っ
て、この方法では、アモルファス物質の複数層をプラズ
マにより析出させ、特に下記構造体を形成する。
By appropriately setting the intervals during which the voltage is kept constant, the thickness of the layers can be controlled as desired, while the composition of each layer can be varied by appropriately choosing the value of the voltage applied to the electrodes. be able to. Accordingly, in this method, multiple layers of amorphous material are deposited by means of a plasma to form, inter alia, the structures described below.

St+−I Gem S1+−y Ge、 Slt−m
 Go、 ””Sx、−w Cx Sg−y c、 5
is−* Cm ・・・・5ll−1N*Si、□Ny
 511−m L・・・・Sg−Ilo、 511−y
 Oy S1t−m O*・・・・(ここで、x、y、
zは相互に異なる数であって、0ないし1である。) 真性な層に代って、ドープ層を得ることが望まれる場合
には、ホスフィン、アルシン又はジボランの如きドーピ
ングガスを二元混合物に添加する。
St+-I Gem S1+-y Ge, Slt-m
Go, ””Sx, -w Cx Sg-y c, 5
is-* Cm...5ll-1N*Si, □Ny
511-m L...Sg-Ilo, 511-y
Oy S1t-m O*...(Here, x, y,
z is a mutually different number, and is from 0 to 1. ) If it is desired to obtain a doped layer instead of an intrinsic layer, a doping gas such as phosphine, arsine or diborane is added to the binary mixture.

不活性ガス又は水素を使用して、二元混合物を希釈する
ことも可能である。
It is also possible to dilute the binary mixture using inert gas or hydrogen.

さらに、電極印加電圧の変化が鋭くなく、電圧が経時的
に増大又は低減方向に単一的に変化する場合、組成グラ
デイエンド又はドーピンググラディエンドを有する層を
生成できる。
Furthermore, if the change in the voltage applied to the electrodes is not sharp and the voltage changes uniformly in the increasing or decreasing direction over time, layers with compositional gradient ends or doping gradient ends can be produced.

電極電位の変動は100ないし100OOVの範囲内で
行われる。好適な条件下では、経時的な電圧変動は10
0ないし2000Vの範囲である。
The variation of the electrode potential is carried out within the range of 100 to 100 OOV. Under suitable conditions, the voltage variation over time is 10
It ranges from 0 to 2000V.

これら構造体が析出される基板としては、電子デバイス
又は光電子デバイスにおける多層構造体の使用目的に応
じて、たとえばガラス又は金属酸化物又は金属で被覆し
たガラスの如き各種のものを使用できる。
Depending on the intended use of the multilayer structure in electronic or optoelectronic devices, various substrates can be used on which these structures are deposited, such as glass or glass coated with metal oxides or metals.

以下の実施例は本発明をさらに説明するためのものであ
り、本発明はこれらに限定されない。
The following examples are intended to further illustrate the invention, but the invention is not limited thereto.

実施例1 膜厚を関数として原子組成を測定するため、薄いケイ素
板(サイズ:40X 40X O,3mm)でなる基板
を使用した。この基板をプラズマ析出用の反応器に導入
し、下記の如くして浄化した。
Example 1 To measure the atomic composition as a function of film thickness, a substrate consisting of a thin silicon plate (size: 40×40×0, 3 mm) was used. This substrate was introduced into a reactor for plasma deposition and purified as described below.

析出チャンバー内を10−’ トル以上の減圧下とし、
圧力300ミリトルの水素を流fi20secm(1分
当たりの標準cm”)で供給した。支持体を250℃に
加熱し、電極にピーク・ピーク値1200Vの交流を供
給しながら、水素中での放電により10分間浄化した。
The inside of the precipitation chamber is under reduced pressure of 10-' Torr or more,
Hydrogen at a pressure of 300 mTorr was supplied at a flow fi of 20 sec (standard cm" per minute). The support was heated to 250° C. and the electrodes were heated by discharging in hydrogen while supplying an alternating current of 1200 V peak-to-peak. Cleaned for 10 minutes.

浄化のための放電が終了したところで、温度を250℃
に維持したままで反応器を脱気し、ついで、ゲルマン(
G13H4)とシラン(Sin4)との混合物を総流量
20secm及び圧力100ミリトルで反応器に充填し
た。なお、これらのガス原料についてはいずれも、予め
水素により希釈比1・lOで希釈した。供給する原料の
相対割合は、ゲルマン20%及びシラン80%である。
When the discharge for purification is finished, the temperature is increased to 250℃.
The reactor was degassed while maintaining the germane (
A mixture of G13H4) and silane (Sin4) was charged into the reactor at a total flow rate of 20 sec and a pressure of 100 mTorr. Note that all of these gas raw materials were diluted in advance with hydrogen at a dilution ratio of 1·1O. The relative proportions of the raw materials fed are 20% germane and 80% silane.

これらの条件を、析出の間(析出は、13.56MHz
で発信する無線周波発生機により電極に電圧1200V
を印加することによって開始される)、一定に維持する
。10分間の放電の間、厚さ約1000人を有するゲル
マニウム−ケイ素合金(ゲルマニウムの原子割合:0.
4、ケイ素の原子割合:0.6)の層が析出された。1
0分経過時、電極における電圧の値を400■に低減さ
せ、この電圧をさらに10分間印加した。このようにし
て、厚さ700人のゲルマニウム−ケイ素層(ケイ素及
びゲルマニウムの原子割合:0.5)を得た。
These conditions were applied during precipitation (precipitation was performed at 13.56 MHz).
A voltage of 1200 V is applied to the electrodes by a radio frequency generator that transmits
) and kept constant. During a 10-minute discharge, a germanium-silicon alloy with a thickness of approximately 1000 m (atomic proportion of germanium: 0.
4. A layer with an atomic proportion of silicon: 0.6) was deposited. 1
At the end of 0 minutes, the value of the voltage at the electrodes was reduced to 400 μ and this voltage was applied for a further 10 minutes. In this way, a germanium-silicon layer with a thickness of 700 mm (atomic ratio of silicon and germanium: 0.5) was obtained.

電極に印加する電圧を1200V及び400■の間で交
互に変化させ、電圧がこれら値のいずれかの値に維持さ
れる間の時間を一定に保つことによって、Geo 4 
Sio、a G(3o、++ Sia、s  aの周期
性多層構造体(厚さ約1μII+)が得られた。
The Geo 4
A periodic multilayer structure (thickness approximately 1 μII+) of Sio, a G (3o, ++ Sia, sa) was obtained.

析出終了時、サンプルを冷却し、反応器から取出した。At the end of the precipitation, the sample was cooled and removed from the reactor.

厚さを関数としてオージェ分析によって測定した析出層
の組成を第1図のグラフの上方に示す。
The composition of the deposited layer, determined by Auger analysis as a function of thickness, is shown above the graph in FIG.

縦軸にケイ素又はゲルマニウムの割合を示している。線
1はケイ素に係り、線2はゲルマニウムに係る。これら
の線は、最も外側の層3から基板に直接接触する層4ま
で、組成がケイ素60%及びゲルマニウム40%とケイ
素50%及びゲルマニウム50%との間で交互に変化す
る10のケイ素−ゲルマニウム合金層が存在することを
示している。これらラインの最終部分(ケイ素100%
)は基板の組成を示している。
The vertical axis shows the proportion of silicon or germanium. Line 1 relates to silicon and line 2 relates to germanium. These lines consist of 10 silicon-germanium layers whose composition alternates between 60% silicon and 40% germanium and 50% silicon and 50% germanium, from the outermost layer 3 to the layer 4 in direct contact with the substrate. This indicates the presence of an alloy layer. The final part of these lines (100% silicon
) indicates the composition of the substrate.

この図のグラフの下方に、各層に対応して時間と電極電
圧との関係を示す。
Below the graph in this figure, the relationship between time and electrode voltage is shown for each layer.

実施例2 前記実施例1と同じ条件下で基板を浄化し、処理した。Example 2 The substrate was cleaned and processed under the same conditions as in Example 1 above.

しかしながら、この実施例では、反応ガスとしてシラン
−メタン混合物(圧力370ミリトル)を総流@20s
ccmで供給した。混合物の相対割合はメタン40%及
びシラン60%である。
However, in this example, a silane-methane mixture (370 mTorr pressure) was used as the reactant gas at a total flow rate of @20 s.
It was supplied in ccm. The relative proportions of the mixture are 40% methane and 60% silane.

電極に電圧1300Vを10分間印加することによって
膜の生長を開始させた。これらの条件下では、厚さ約8
00人の炭化ケイ素(炭素の原子割合:0.1゜ケイ素
の原子割合:0.9)の層が得られた。
Film growth was initiated by applying a voltage of 1300 V to the electrodes for 10 minutes. Under these conditions, the thickness of approximately 8
A layer of 0.00 silicon carbide (atomic proportion of carbon: 0.1°, atomic proportion of silicon: 0.9) was obtained.

ついで、電圧を600vに低下させ、この値に15分間
維持することによって、約400人のケイ素層が得られ
た。
A silicon layer of about 400 was then obtained by reducing the voltage to 600v and maintaining this value for 15 minutes.

この操作をさらに4回繰返すことによって、Si。。C
(+、ISI! の多層構造体(約6000人)を得た。
By repeating this operation four more times, Si. . C
(+, ISI! multilayer structure (approximately 6000 people) was obtained.

実施例1と同様に、厚さを関数とするオージェスペクト
ルを第2図に示す。この図において、線1はケイ素に係
り、線2は炭素に係る。符号3は最も外側の層を示し、
4は基板と直接接触する層を示す。第2図のグラフの下
方は、時間を関数とするピーク・ピーク電圧の値を示す
As in Example 1, the Auger spectrum as a function of thickness is shown in FIG. In this figure, line 1 pertains to silicon and line 2 pertains to carbon. Code 3 indicates the outermost layer;
4 indicates a layer in direct contact with the substrate. The lower part of the graph in FIG. 2 shows the value of peak-to-peak voltage as a function of time.

厚さを関数とする組成を示すチャートは、電圧−時間チ
ャードとの関連においては一致しておらず、構造体を構
成する2つの物質は相互に異なる生長速度(すなわち生
長時間に対する層の厚さの比)を有する。
The charts showing composition as a function of thickness do not agree in relation to the voltage-time chart, and the two materials making up the structure exhibit mutually different growth rates (i.e. layer thickness versus growth time). ratio).

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は、本発明の製法を実施する際の操作
条件及び得られた多層構造体の組成を示すグラフである
FIGS. 1 and 2 are graphs showing the operating conditions for implementing the manufacturing method of the present invention and the composition of the obtained multilayer structure.

Claims (1)

【特許請求の範囲】 1、ケイ素、炭素、酸素、窒素、ゲルマニウム、水素を
含有する各種の組成のアモルファス層を多数析出させる
グロー放電法において、シラン、ゲルマン、炭化水素、
窒素含有ガス(たとえば窒素、五酸化二窒素及び二酸化
窒素、アンモニア)の中から選ばれる異なる種類に属す
る2種のガスでなるガス混合物を使用し;反応器の電極
に印加する電圧を析出過程中に変化させて、前記混合物
を構成するガスの調節された解離を誘発すると共に、調
節された組成を有するケイ素、炭素、酸素、窒素、ゲル
マニウム、水素の連続層を析出させ;各種の析出の間、
他の反応器プレセッティングパラメーター(圧力、原料
流量及び基板温度)のすべてを変化させないことを特徴
とする、多層構造体のグロー放電析出法。 2、請求項1記載の方法において、前記反応体ガス混合
物にドーピングガスを添加する、多層構造体のグロー放
電析出法。 3、請求項1記載の方法において、前記反応体ガス混合
物を不活性ガスで希釈する、多層構造体のグロー放電析
出法。 4、請求項1−3のいずれか1項に記載の方法において
、電極に印加する電圧を経時的に徐々に増大させる、多
層構造体のグロー放電析出法。 5、請求項1−3いずれか1項に記載の方法において、
電圧を印加する電極の機能を経時時に徐々に低減させる
、多層構造体のグロー放電析出法。 6、請求項1−6いずれか1項に記載の方法において、
電極に印加する電圧が100ないし2000Vである、
多層構造体のグロー放電析出法。
[Claims] 1. In a glow discharge method in which a large number of amorphous layers of various compositions containing silicon, carbon, oxygen, nitrogen, germanium, and hydrogen are deposited, silane, germane, hydrocarbon,
A gas mixture consisting of two gases belonging to different classes chosen from nitrogen-containing gases (e.g. nitrogen, dinitrogen pentoxide and nitrogen dioxide, ammonia) is used; the voltage applied to the electrodes of the reactor is controlled during the deposition process. to induce a controlled dissociation of the gases constituting said mixture and to precipitate successive layers of silicon, carbon, oxygen, nitrogen, germanium, hydrogen with controlled compositions; during the various precipitations. ,
A method for glow discharge deposition of multilayer structures, characterized in that all other reactor presetting parameters (pressure, feed flow rate and substrate temperature) remain unchanged. 2. The method of claim 1, wherein a doping gas is added to the reactant gas mixture. 3. The method of claim 1, wherein the reactant gas mixture is diluted with an inert gas. 4. A method for glow discharge deposition of a multilayer structure according to any one of claims 1 to 3, wherein the voltage applied to the electrodes is gradually increased over time. 5. The method according to any one of claims 1 to 3,
A glow discharge deposition method for multilayer structures that gradually reduces the ability of the electrode to apply voltage over time. 6. The method according to any one of claims 1 to 6,
The voltage applied to the electrode is 100 to 2000V,
Glow discharge deposition method for multilayer structures.
JP1303427A 1988-11-25 1989-11-24 Glow discharge precipitation method of multilayer structure Pending JPH02184023A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
IT8822731A IT1227877B (en) 1988-11-25 1988-11-25 PROCEDURE FOR PLASMA DEPOSITION OF MULTIPLE LAYERS SIZED AMORPHOUS VARIABLE COMPOSITION
IT22731A/88 1988-11-25

Publications (1)

Publication Number Publication Date
JPH02184023A true JPH02184023A (en) 1990-07-18

Family

ID=11199778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1303427A Pending JPH02184023A (en) 1988-11-25 1989-11-24 Glow discharge precipitation method of multilayer structure

Country Status (12)

Country Link
JP (1) JPH02184023A (en)
BE (1) BE1003603A3 (en)
CH (1) CH677365A5 (en)
DE (1) DE3938956A1 (en)
DK (1) DK562789A (en)
ES (1) ES2019008A6 (en)
FR (1) FR2639653B1 (en)
GB (1) GB2225344B (en)
IT (1) IT1227877B (en)
LU (1) LU87626A1 (en)
NL (1) NL8902779A (en)
SE (1) SE8903769L (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2306510B (en) * 1995-11-02 1999-06-23 Univ Surrey Modification of metal surfaces
US6203898B1 (en) 1997-08-29 2001-03-20 3M Innovatave Properties Company Article comprising a substrate having a silicone coating

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4485125A (en) * 1982-03-19 1984-11-27 Energy Conversion Devices, Inc. Method for continuously producing tandem amorphous photovoltaic cells
EP0106637B1 (en) * 1982-10-12 1988-02-17 National Research Development Corporation Infra red transparent optical components
JPS6066422A (en) * 1983-09-21 1985-04-16 Kanegafuchi Chem Ind Co Ltd Manufacture of semiconductor
KR890004881B1 (en) * 1983-10-19 1989-11-30 가부시기가이샤 히다찌세이사꾸쇼 Plasma treating method and device thereof
DE3577730D1 (en) * 1984-03-03 1990-06-21 Stc Plc COATING PROCESS.
US4616597A (en) * 1984-10-31 1986-10-14 Rca Corporation Apparatus for making a plasma coating
US4637895A (en) * 1985-04-01 1987-01-20 Energy Conversion Devices, Inc. Gas mixtures for the vapor deposition of semiconductor material
GB2175016B (en) * 1985-05-11 1990-01-24 Barr & Stroud Ltd Optical coating
US4719123A (en) * 1985-08-05 1988-01-12 Sanyo Electric Co., Ltd. Method for fabricating periodically multilayered film
JP2686928B2 (en) * 1985-08-26 1997-12-08 アンリツ株式会社 Silicon-germanium mixed crystal thin film conductor
JPH0651909B2 (en) * 1985-12-28 1994-07-06 キヤノン株式会社 Method of forming thin film multilayer structure
GB8620346D0 (en) * 1986-08-21 1986-10-01 Special Research Systems Ltd Chemical vapour deposition of films
US4887134A (en) * 1986-09-26 1989-12-12 Canon Kabushiki Kaisha Semiconductor device having a semiconductor region in which either the conduction or valence band remains flat while bandgap is continuously graded
CH668145A5 (en) * 1986-09-26 1988-11-30 Inst Microtechnique De L Unive PROCESS AND INSTALLATION FOR DEPOSITION OF HYDROGEN AMORPHOUS SILICON ON A SUBSTRATE IN A PLASMA ENCLOSURE.
DE58904540D1 (en) * 1988-03-24 1993-07-08 Siemens Ag METHOD AND DEVICE FOR PRODUCING SEMICONDUCTOR LAYERS CONSISTING OF AMORPHOUS SILICON-GERMANIUM ALLOYS BY GLIMMENT CHARGING TECHNOLOGY, ESPECIALLY FOR SOLAR CELLS.

Also Published As

Publication number Publication date
IT8822731A0 (en) 1988-11-25
IT1227877B (en) 1991-05-14
LU87626A1 (en) 1990-06-12
FR2639653A1 (en) 1990-06-01
FR2639653B1 (en) 1991-06-21
GB2225344B (en) 1993-01-27
BE1003603A3 (en) 1992-05-05
NL8902779A (en) 1990-06-18
CH677365A5 (en) 1991-05-15
DK562789D0 (en) 1989-11-10
ES2019008A6 (en) 1991-05-16
GB8924713D0 (en) 1989-12-20
DK562789A (en) 1990-05-26
GB2225344A (en) 1990-05-30
SE8903769D0 (en) 1989-11-10
DE3938956A1 (en) 1990-05-31
SE8903769L (en) 1990-05-26

Similar Documents

Publication Publication Date Title
US6200893B1 (en) Radical-assisted sequential CVD
JPS6364993A (en) Method for growing elemental semiconductor single crystal thin film
JPH09312245A (en) Thin-film-deposited substrate and manufacture thereof
US4292343A (en) Method of manufacturing semiconductor bodies composed of amorphous silicon
JPH08973B2 (en) Deposited film formation method
JPS61234534A (en) Fabrication of silicon nitride coating
EP0240306B1 (en) Method for forming deposited film
JPH02184023A (en) Glow discharge precipitation method of multilayer structure
EP0240314B1 (en) Method for forming deposited film
JPH04137725A (en) Glass substrate polycrystalline silicon film
JPH0492893A (en) Vapor-phase synthesis of diamond thin film
JP2003034867A (en) TUBULAR SiC-COMPACT AND MANUFACTURING METHOD THEREFOR
JPH03257098A (en) Formation of diamond thin film
JPS60224783A (en) Production of silicon carbide coating
JPS6152120B2 (en)
JP2547741B2 (en) Deposition film manufacturing equipment
JP2659394B2 (en) Semiconductor thin film manufacturing method
JPH04137724A (en) Polycrystalline silicon film
JPS62167884A (en) Composite body having carbon film
JPS6117910B2 (en)
JPH0620952A (en) Manufacture of semiconductor film containing silicon as main ingredient
JPH071753B2 (en) Method for manufacturing semiconductor device
JPH0661192A (en) Manufacture of semiconductor thin film device
JPH0714780A (en) Formation of thin silicon film
JPH06168882A (en) Formation of polycrystal silicon thin film