CH677365A5 - - Google Patents

Download PDF

Info

Publication number
CH677365A5
CH677365A5 CH4084/89A CH408489A CH677365A5 CH 677365 A5 CH677365 A5 CH 677365A5 CH 4084/89 A CH4084/89 A CH 4084/89A CH 408489 A CH408489 A CH 408489A CH 677365 A5 CH677365 A5 CH 677365A5
Authority
CH
Switzerland
Prior art keywords
voltage
electrodes
gases
deposition
silicon
Prior art date
Application number
CH4084/89A
Other languages
Italian (it)
Inventor
Sala Dario Della
Ciro Ostrifate
Original Assignee
Eniricerche Spa
Agip Spa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eniricerche Spa, Agip Spa filed Critical Eniricerche Spa
Publication of CH677365A5 publication Critical patent/CH677365A5/it

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/515Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using pulsed discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process

Description

5 5

10 10

15 15

20 20

25 25

30 30

35 35

40 40

45 45

50 50

55 55

60 60

65 65

CH 677 365 A5 CH 677 365 A5

Descrizione Description

Oggetto della presente invenzione è un procedimento per la preparazione via plasma in fase gassosa di strutture di materiali amorfi costituite da più strati sottili di diversa composizione che trovano applicazione pratica in dispositivi elettronici ed optoelettronici, come ad esempio descritto in «Semiconductors and Semimetals» voi. 21 part. C p. 407 J.I. Pankove ed., Academic Press (NY) 1984. The object of the present invention is a process for the preparation via plasma in the gas phase of structures of amorphous materials consisting of several thin layers of different composition which find practical application in electronic and optoelectronic devices, as for example described in "Semiconductors and Semimetals" vol. 21 part. C p. 407 J.I. Pankove ed., Academic Press (NY) 1984.

Attualmente per la preparazione di queste strutture multistrato mediante scarica a bagliore si usa variare i flussi dei gas immessi nella camera di reazione, oppure spostare il substrato da una camera di reazione ad un'altra, ciascuna contenente una miscela prefissata di gas. I gas vengono dissociati applicando una tensione alternata agli elettrodi (frequenza 103-107 Hz), con un valore picco-picco dell'ordine di 102-1Q3 volt. Currently for the preparation of these multilayer structures by glow discharge it is used to vary the flows of the gases introduced into the reaction chamber, or to move the substrate from one reaction chamber to another, each containing a predetermined mixture of gas. The gases are dissociated by applying an alternating voltage to the electrodes (frequency 103-107 Hz), with a peak-to-peak value of the order of 102-1Q3 volts.

Nel primo caso si introduce una perturbazione idrodinamica sul flusso dei gas ed é necessario attendere la completa stabilizzazione prima della deposizione di ciascun strato; nel secondo caso esiste un intervallo di tempo non trascurabile per trasferire il campione da una camera all'altra. In the first case, a hydrodynamic disturbance is introduced on the gas flow and it is necessary to wait for complete stabilization before the deposition of each layer; in the second case there is a not negligible time interval for transferring the sample from one chamber to another.

Questi inconvenienti sono stati superati dalla presente invenzione, che propone un procedimento per la realizzazione di multistrutture in un unico reattore senza variare la composizione delle miscele di gas durante la deposizione. These drawbacks have been overcome by the present invention, which proposes a process for the realization of multistructures in a single reactor without changing the composition of the gas mixtures during the deposition.

La presente invenzione propone pertanto un procedimento mediante scarica a bagliore per la deposizione di strati multipli amorfi di composizione variabile contenenti silicio, carbonio, ossigeno, azoto, germanio, idrogeno, caratterizzato dal fatto che: The present invention therefore proposes a process by means of a glow discharge for the deposition of multiple amorphous layers of variable composition containing silicon, carbon, oxygen, nitrogen, germanium, hydrogen, characterized in that:

- viene usata una miscela gassosa costituita da due gas appartenenti a due differenti classi scelte tra; silani, germani, idrocarburi e gas contenenti azoto; - a gas mixture consisting of two gases belonging to two different classes chosen from is used; silanes, mallards, hydrocarbons and nitrogen-containing gases;

la tensione agli elettrodi del reattore viene variata nel corso della deposizione in modo da indurre una dissociazione modulata di silicio, carbonio, ossigeno, azoto, germanio, idrogeno, e che the voltage at the reactor electrodes is varied during the deposition in order to induce a modulated dissociation of silicon, carbon, oxygen, nitrogen, germanium, hydrogen, and that

- tutti i parametri di regolazione del reattore diversi dalla tensione rimangono invariati durante la deposizione dei singoli strati. - all the reactor control parameters other than voltage remain unchanged during the deposition of the individual layers.

Fissando opportunamente gli intervalli di tempo in cui la tensione viene mantenuta costante, é possibile controllare a piacere lo spessore degli strati, mentre, scegliendo valori opportuni della tensione agli elettrodi è possibile variare la composizione del singolo strato. Il procedimento quindi prevede la deposizione via plasma di strati multipli di materiale amorfo realizzando in particolare strutture come le seguenti: By appropriately fixing the time intervals in which the voltage is kept constant, it is possible to control the thickness of the layers at will, while, by choosing appropriate values of the voltage at the electrodes, it is possible to vary the composition of the single layer. The process therefore involves the plasma deposition of multiple layers of amorphous material, in particular creating structures such as the following:

Yup

Ge • Ge •

Si Yes

Ge Ge

Si Yes

Ge Ge

1—X 1-X

X X

1-y y 1-y y

1—z z 1 — z z

Si Yes

C C

Si c Yes c

Si Yes

C C

1—X 1-X

X X

1-y y 1-y y

1—z z 1 — z z

Si Yes

N N

Si Yes

N N

Si Yes

N N

1—X 1-X

X X

1-y y 1-y y

1-z z 1-z z

Si Yes

O OR

Si o Yes o

Si Yes

0 0

1—X 1-X

X X

1-y y 1-y y

1-z z 1-z z

in cui x, ed y, .z,... sono numeri diversi tra loro e compresi tra 0 e 1. wherein x, and y, .z, ... are different numbers between them and between 0 and 1.

Se gli strati invece che intrinseci si desidera che siano drogati è necessario aggiungere alla miscela binaria gas droganti quali fosfina, arsina o diborano. La miscela binaria può essere diluita usando gas inerti o idrogeno. If the layers, instead of intrinsic, are to be doped, it is necessary to add doping gases such as phosphine, arsine or diborane to the binary mixture. The binary mixture can be diluted using inert gases or hydrogen.

Inoltre, se la variazione della tensione di alimentazione degli elettrodi non viene cambiata bruscamente ma monotonamente crescente o decrescente in funzione del tempo, si possono produrre degli strati con gradienti di composizione o di drogaggio. Furthermore, if the variation in the supply voltage of the electrodes is not changed abruptly but monotonically increasing or decreasing as a function of time, layers with composition or doping gradients can be produced.

Le variazioni di tensione degli elettrodi avvengono nell'intervallo 100-10 000 V. Nelle condizioni preferite la variazione di tensione nel tempo è compresa tra 100 e 2000 V. The voltage variations of the electrodes occur in the range 100-10 000 V. In the preferred conditions the voltage variation over time is between 100 and 2000 V.

I substrati su cui queste strutture possono essere depositate sono molto vari, come ad esempio vetro oppure vetro ricoperto di ossidi metallici oppure metallo, in funzione dell'uso dei multistrati in componenti elettronici o optoelettronici. The substrates on which these structures can be deposited are very varied, such as for example glass or glass covered with metal oxides or metal, depending on the use of multilayers in electronic or optoelectronic components.

L'invenzione verrà illustrata dagli esempi che seguono e dai disegni allegati, in cui: The invention will be illustrated by the following examples and the attached drawings, in which:

La Fig. 1 rappresenta, nella propria parte superiore, la composizione del multistrato depositato, e, nella propria parte inferiore, il diagramma temporale della tensione agli elettrodi, con riferimento ai dati dell'Esempio 1, e Fig. 1 represents, in its upper part, the composition of the deposited multilayer, and, in its lower part, the time diagram of the voltage at the electrodes, with reference to the data of Example 1, and

La Fìg. 2 rappresenta, analogamente, i dati relativi all'Esempio 2. The Fig. 2 represents, similarly, the data relating to Example 2.

2 2

5 5

10 10

15 15

20 20

25 25

30 30

35 35

40 40

45 45

50 50

55 55

60 60

CH 677 365 A5 CH 677 365 A5

Esempio 1 Example 1

Per effettuare una misura diagnostica di composizione atomica in funzione dello spessore del film si usa in substrato costituito da una lastrina di silicio di 40x40x0,3 mm. Esso viene introdotto nel reattore per deposizioni in plasma e pulito nel modo seguente. Nella camera di deposizione viene fatto il vuoto migliore di 10~7 Torr e poi introdotto idrogeno al flusso di 20 sccm (centimetri cubici standard al minuto) alla pressione di 300 m Torr, Il supporto viene scaldato fino a 250°C e pulito per 10 minuti mediante scarica in idrogeno, fornendo agli elettrodi tensione alternata di 1200 V picco-picco. To carry out a diagnostic measurement of atomic composition according to the thickness of the film, it is used in a substrate consisting of a silicon plate of 40x40x0.3 mm. It is introduced into the plasma deposition reactor and cleaned as follows. A vacuum better than 10 ~ 7 Torr is made in the deposition chamber and then hydrogen is introduced to the flow of 20 sccm (standard cubic centimeters per minute) at the pressure of 300 m Torr, The support is heated up to 250 ° C and cleaned for 10 minutes by hydrogen discharge, supplying the electrodes with an alternating voltage of 1200 V peak-peak.

Finita la scarica di pulizia, mantenendo la temperatura di 250°C, si fa il vuoto e poi si introduce nel reattore una miscela di germano (Ge H4) e Silano (Si H4) entrambi prediluiti 1:10 in idrogeno con una pressione di 100 m Torr e un flusso totale di 20 sccm. I rapporti relativi dei flussi sono fissati al 20% per il germano e all'80% per il Silano. Tutte queste condizioni sono mantenute costanti durante la deposizione, che inizia fornendo una tensione di 1200 V agli elettrodi mediante un generatore a radiofrequenza che oscilla a 13.56 MHz. Mantenendo la scarica per 10 minuti si ha la deposizione di una lega germanio-silicio, in cui la frazione atomica di germanio è 0,4 e quella del silicio 0,6, di spessore di circa 1000 A. Alla fine dei 10 minuti il valore della tensione agli elettrodi viene portato a 400 V per altri 10 min: in tale modo si ottiene uno strato di lega germanio-silicio di 700 A di spessore, ma in cui la frazione atomica sia del silicio che del germanio è 0,5. Once the cleaning discharge is finished, keeping the temperature of 250 ° C, the vacuum is made and then a mixture of germane (Ge H4) and Silane (Si H4) are introduced into the reactor, both prediluted 1:10 in hydrogen with a pressure of 100 m Torr and a total flow of 20 sccm. The relative flow ratios are set at 20% for the mallard and 80% for the silane. All these conditions are kept constant during the deposition, which begins by supplying a voltage of 1200 V to the electrodes by means of a radio frequency generator that oscillates at 13.56 MHz. By keeping the discharge for 10 minutes there is the deposition of a germanium-silicon alloy, in which the atomic fraction of germanium is 0.4 and that of silicon 0.6, with a thickness of about 1000 A. At the end of the 10 minutes the value of the voltage at the electrodes is brought to 400 V for another 10 min: in this way we obtain a germanium-silicon alloy layer 700 A thick, but in which the atomic fraction of both silicon and germanium is 0.5.

Proseguendo nell'alternare la tensione agli elettrodi tra 1200 e 400 V e mantenendo costanti i tempi in cui la tensione è mantenuta sui due valori di tensione, si ottiene un multistrato periodico del tipo By continuing to alternate the voltage between the electrodes between 1200 and 400 V and keeping the times in which the voltage is maintained on the two voltage values constant, a periodic multilayer of the type is obtained

Ge Si Ge Si Ge Si Ge Si

0,4 0,6 0,5 0,5 5 0.4 0.6 0.5 0.5 5

di circa 1 micrometro di spessore. about 1 micrometer thick.

Alla fine della deposizione il campione viene raffreddato ed estratto dal reattore. At the end of the deposition the sample is cooled and extracted from the reactor.

Nella fig. 1, parte superiore, è riportata la composizione del multistrato depositato, misurata mediante analisi Auger in funzione dello spessore. In ordinata è riportata la percentuale di silicio o germanio. La traccia 1 si riferisce al silicio e la traccia 2, al germanio. Le tracce mostrano i dieci strati di lega silicio-germanio, a composizione alternata tra 60% di Si con 40% di germanio e 50% di silicio e 50% di germanio, a partire dallo strato più superficiale 3 fino a quello a diretto contatto con il substrato 4. L'ultima parte delle tracce (con il 100% di silicio) mostra la composizione del sottostante substrato. In fig. 1, upper part, the composition of the deposited multilayer is shown, measured by Auger analysis as a function of thickness. The ordinate shows the percentage of silicon or germanium. Track 1 refers to silicon and track 2 to germanium. The traces show the ten layers of silicon-germanium alloy, with an alternating composition of 60% Si with 40% germanium and 50% silicon and 50% germanium, starting from the most superficial layer 3 up to the one in direct contact with substrate 4. The last part of the traces (with 100% silicon) shows the composition of the underlying substrate.

Nella parte bassa della figura è riportato, in corrispondenza degli strati, il diagramma temporale della tensione agli elettrodi. In the lower part of the figure is reported, in correspondence of the layers, the time diagram of the voltage at the electrodes.

Esempio 2 Example 2

Un substrato viene pulito e trattato nelle stesse condizioni dell'esempio 1. A substrate is cleaned and treated under the same conditions as in Example 1.

In questo caso però II gas reattivo è una miscela di Silano e metano con una pressione di 370 m Torr e un flusso totale di 20 sccm. I rapporti relativi dei flussi sono fissati al 40% per il metano e al 60% per il Silano. In this case, however, the reactive gas is a mixture of Silane and methane with a pressure of 370 m Torr and a total flow of 20 sccm. The relative flow ratios are set at 40% for methane and 60% for silane.

La crescita del film inizia fornendo per 10 min. una tensione agli elettrodi di 1300 V. In queste condizioni si ottiene uno strato di circa 800 A di carburo di silicio in cui la frazione atomica del carbonio è 0,1 e quella del silicio 0,9. The growth of the film begins by providing for 10 min. a voltage at the electrodes of 1300 V. Under these conditions a layer of about 800 A of silicon carbide is obtained in which the atomic fraction of the carbon is 0.1 and that of the silicon 0.9.

Successivamente abbassando la tensione a 600 V e mantenendola per 15 min. su questo valore si ottiene uno strato di circa 400 A di silicio. Subsequently lowering the voltage to 600 V and keeping it for 15 min. on this value a layer of about 400 A of silicon is obtained.

Ripetendo l'ultimo procedimento per altre 4 volte si ottiene un multistrato del tipo By repeating the last procedure 4 more times, a multilayer of the type is obtained

Si C Si Yes C Yes

0,9 0,1 1 5 0.9 0.1 1 5

di circa 6000 A di spessore. about 6000 A thick.

In Fig. 2 è riportato lo spettro Auger in funzione dello spessore analogamente all'esempio 1. La traccia 1 è relativa al silicio e la 2 al carbonio; 3 è lo strato più superficiale e 4 quello a diretto contatto con il substrato. La parte inferiore di Fig. 2 mostra il valore della tensione picco-picco in funzione del tempo. Fig. 2 shows the Auger spectrum as a function of the thickness similar to example 1. The trace 1 is relative to the silicon and the 2 to the carbon; 3 is the most superficial layer and 4 the one in direct contact with the substrate. The lower part of Fig. 2 shows the peak-to-peak voltage value as a function of time.

Il diagramma della composizione in funzione dello spessore è sfasato rispetto a quello della tensione in funzione dei tempo, in quanto i due materiali che compongono la struttura possiedono velocità di crescita (cioè rapporto spessore dello strato/tempo di crescita) diverse tra loro. The diagram of the composition as a function of thickness is out of phase with respect to that of tension as a function of time, since the two materials that make up the structure have different growth speeds (i.e. layer thickness / growth time ratio).

3 3

CH 677 365 A5 CH 677 365 A5

Claims (6)

Rivendicazioniclaims 1. Procedimento mediante scarica a bagliore per la deposizione di strati multipli amorfi di composizione variabile contenenti silicio, carbonio, ossigeno, azoto, germanio, idrogeno, caratterizzato dal fatto che:1. Glow discharge method for the deposition of multiple amorphous layers of variable composition containing silicon, carbon, oxygen, nitrogen, germanium, hydrogen, characterized in that: 5 — viene usata una miscela gassosa costituita da due gas appartenenti a due differenti classi scelte tra: silani, germani, idrocarburi e gas contenenti azoto;5 - a gaseous mixture is used consisting of two gases belonging to two different classes chosen from: silanes, germans, hydrocarbons and nitrogen-containing gases; — la tensione agli elettrodi del reattore viene variata nel corso della deposizione in modo da indurre una dissociazione modulata di silicio, carbonio, ossigeno, azoto, germanio, idrogeno, e che- the voltage at the reactor electrodes is varied during the deposition in order to induce a modulated dissociation of silicon, carbon, oxygen, nitrogen, germanium, hydrogen, and that - tutti i parametri di regolazione del reattore diversi dalla tensione rimangono invariati durante la deposi-10 zione dei singoli strati.- all the reactor control parameters other than voltage remain unchanged during the deposition of the individual layers. 2. Procedimento secondo la rivendicazione 1, caratterizzato dal fatto che la miscela di gas reattivi é addizionata con gas droganti.2. Process according to claim 1, characterized in that the mixture of reactive gases is added with dopant gases. 3. Procedimento secondo la rivendicazione 1, caratterizzato dal fatto che la miscela di gas reattivi é diluita con gas inerti.3. Process according to claim 1, characterized in that the mixture of reactive gases is diluted with inert gases. 15 15 4. Procedimento secondo una qualsiasi delle rivendicazioni 1, 2 e 3, caratterizzato dal fatto che la tensione di alimentazione degli elettrodi vien fatta aumentare gradualmente in funzione del tempo.Method according to any one of claims 1, 2 and 3, characterized in that the supply voltage of the electrodes is gradually increased as a function of time. 5. Procedimento secondo una qualsiasi delle rivendicazioni 1, 2 e 3, caratterizzato dal fatto che la tensione di alimentazione agli elettrodi vien fatta diminuire gradualmente in funzione del tempo.Method according to any one of claims 1, 2 and 3, characterized in that the supply voltage to the electrodes is gradually decreased as a function of time. 6. Procedimento secondo una qualsiasi delle rivendicazioni 1, 2, 3, 4, 5, caratterizzato dal fatto che la 20 tensione agli elettrodi vien fatta variare tra 100 V e 2000 V.Method according to any one of claims 1, 2, 3, 4, 5, characterized in that the voltage at the electrodes is varied between 100 V and 2000 V. 2525 3030 3535 4040 4545 5050 5555 6060 6565 44
CH4084/89A 1988-11-25 1989-11-13 CH677365A5 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
IT8822731A IT1227877B (en) 1988-11-25 1988-11-25 PROCEDURE FOR PLASMA DEPOSITION OF MULTIPLE LAYERS SIZED AMORPHOUS VARIABLE COMPOSITION

Publications (1)

Publication Number Publication Date
CH677365A5 true CH677365A5 (en) 1991-05-15

Family

ID=11199778

Family Applications (1)

Application Number Title Priority Date Filing Date
CH4084/89A CH677365A5 (en) 1988-11-25 1989-11-13

Country Status (12)

Country Link
JP (1) JPH02184023A (en)
BE (1) BE1003603A3 (en)
CH (1) CH677365A5 (en)
DE (1) DE3938956A1 (en)
DK (1) DK562789A (en)
ES (1) ES2019008A6 (en)
FR (1) FR2639653B1 (en)
GB (1) GB2225344B (en)
IT (1) IT1227877B (en)
LU (1) LU87626A1 (en)
NL (1) NL8902779A (en)
SE (1) SE8903769L (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2306510B (en) * 1995-11-02 1999-06-23 Univ Surrey Modification of metal surfaces
US6203898B1 (en) 1997-08-29 2001-03-20 3M Innovatave Properties Company Article comprising a substrate having a silicone coating

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4485125A (en) * 1982-03-19 1984-11-27 Energy Conversion Devices, Inc. Method for continuously producing tandem amorphous photovoltaic cells
EP0106637B1 (en) * 1982-10-12 1988-02-17 National Research Development Corporation Infra red transparent optical components
JPS6066422A (en) * 1983-09-21 1985-04-16 Kanegafuchi Chem Ind Co Ltd Manufacture of semiconductor
KR890004881B1 (en) * 1983-10-19 1989-11-30 가부시기가이샤 히다찌세이사꾸쇼 Plasma treating method and device thereof
DE3577730D1 (en) * 1984-03-03 1990-06-21 Stc Plc COATING PROCESS.
US4616597A (en) * 1984-10-31 1986-10-14 Rca Corporation Apparatus for making a plasma coating
US4637895A (en) * 1985-04-01 1987-01-20 Energy Conversion Devices, Inc. Gas mixtures for the vapor deposition of semiconductor material
GB2175016B (en) * 1985-05-11 1990-01-24 Barr & Stroud Ltd Optical coating
US4719123A (en) * 1985-08-05 1988-01-12 Sanyo Electric Co., Ltd. Method for fabricating periodically multilayered film
JP2686928B2 (en) * 1985-08-26 1997-12-08 アンリツ株式会社 Silicon-germanium mixed crystal thin film conductor
JPH0651909B2 (en) * 1985-12-28 1994-07-06 キヤノン株式会社 Method of forming thin film multilayer structure
GB8620346D0 (en) * 1986-08-21 1986-10-01 Special Research Systems Ltd Chemical vapour deposition of films
US4887134A (en) * 1986-09-26 1989-12-12 Canon Kabushiki Kaisha Semiconductor device having a semiconductor region in which either the conduction or valence band remains flat while bandgap is continuously graded
CH668145A5 (en) * 1986-09-26 1988-11-30 Inst Microtechnique De L Unive PROCESS AND INSTALLATION FOR DEPOSITION OF HYDROGEN AMORPHOUS SILICON ON A SUBSTRATE IN A PLASMA ENCLOSURE.
DE58904540D1 (en) * 1988-03-24 1993-07-08 Siemens Ag METHOD AND DEVICE FOR PRODUCING SEMICONDUCTOR LAYERS CONSISTING OF AMORPHOUS SILICON-GERMANIUM ALLOYS BY GLIMMENT CHARGING TECHNOLOGY, ESPECIALLY FOR SOLAR CELLS.

Also Published As

Publication number Publication date
JPH02184023A (en) 1990-07-18
IT8822731A0 (en) 1988-11-25
IT1227877B (en) 1991-05-14
LU87626A1 (en) 1990-06-12
FR2639653A1 (en) 1990-06-01
FR2639653B1 (en) 1991-06-21
GB2225344B (en) 1993-01-27
BE1003603A3 (en) 1992-05-05
NL8902779A (en) 1990-06-18
DK562789D0 (en) 1989-11-10
ES2019008A6 (en) 1991-05-16
GB8924713D0 (en) 1989-12-20
DK562789A (en) 1990-05-26
GB2225344A (en) 1990-05-30
SE8903769D0 (en) 1989-11-10
DE3938956A1 (en) 1990-05-31
SE8903769L (en) 1990-05-26

Similar Documents

Publication Publication Date Title
Butler et al. Thin film diamond growth mechanisms
Harris et al. Methyl versus acetylene as diamond growth species
Brüggert et al. Chemistry and kinetics of chemical vapor deposition of pyrocarbon: VI. influence of temperature using methane as a carbon source
EP0230788A1 (en) Method for preparation of multi-layer structure film
Gheeraert et al. Defects and stress analysis of the Raman spectrum of diamond films
Nakashima et al. Epitaxial growth of SiC film on silicon substrate and its crystal structure
Chen et al. The structure and properties of amorphous diamond-like carbon films deposited by helicon wave plasma chemical vapor deposition
CH677365A5 (en)
Watanabe et al. Superlattice structures from diamond
John et al. IR attenuated total reflectance studies of dc biased growth of diamond films
Li et al. OMVPE growth mechanism for GaP using tertiarybutylphosphine and trimethylgallium
Ray et al. Amorphous carbon films prepared by the “dip” technique: Deposition and film characterization
McDaniel et al. Coupled gas and surface reactions in the organometallic vapor-phase epitaxy of cadmium telluride
Nagasawa et al. Heteroepitaxial growth and ESR evaluation of 3C-SiC
US4761302A (en) Fluorination of amorphous thin-film materials with xenon fluoride
Baldwin Jr et al. Growth rate studies of CVD diamond in an RF plasma torch
Hirose Growth and characterization of amorphous hydrogenated silicon
Bou et al. Kinetics of chemical reactions in hydrocarbon-hydrogen plasmas for diamond deposition
Jonas et al. Stability of aC: N: H layers deposited by RF plasma enhanced CVD
Zeger et al. Theoretical study of cubic structures based on fullerene carbon clusters: C 28 C and (C 28) 2
Yoder Diamond in the USA
Butzke et al. Study of growth kinetics in silicon gas source molecular beam epitaxy with disilane using RHEED intensity oscillations
Zhao et al. Modeling and experimental study of SiH4/GeH4/H2 gas discharge for hydrogenated silicon germanium deposition by RF PECVD
Marcinauskas et al. Deposition of carbon structures at atmospheric pressure by plasma jet
Watanabe et al. Superlattices from diamond

Legal Events

Date Code Title Description
PL Patent ceased