JPH02174063A - Hydrogen storage electrode - Google Patents

Hydrogen storage electrode

Info

Publication number
JPH02174063A
JPH02174063A JP63330666A JP33066688A JPH02174063A JP H02174063 A JPH02174063 A JP H02174063A JP 63330666 A JP63330666 A JP 63330666A JP 33066688 A JP33066688 A JP 33066688A JP H02174063 A JPH02174063 A JP H02174063A
Authority
JP
Japan
Prior art keywords
hydrogen storage
alloy
amount
alloys
elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63330666A
Other languages
Japanese (ja)
Inventor
Tetsuo Sakai
哲男 境
Hiroshi Ishikawa
博 石川
Akihiko Kato
明彦 加藤
Tokuichi Hazama
狭間 徳一
Shizuo Sakamoto
坂本 静男
Hiroyuki Kawashima
弘之 川島
Keizo Sakaguchi
坂口 景三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurimoto Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Kurimoto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Kurimoto Ltd filed Critical Agency of Industrial Science and Technology
Priority to JP63330666A priority Critical patent/JPH02174063A/en
Publication of JPH02174063A publication Critical patent/JPH02174063A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/383Hydrogen absorbing alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To increase both the initial electric capacity and cycle life by using an alloy with the specific composition concurrently containing Nd, Zr, Co and Al elements and constituted with part of La quantity by an Nd element and a Zr element and constituted with part of Ni quantity by a Co element and an Al element. CONSTITUTION:A hydrogen storage alloy is used for a negative. The hydrogen storage alloy is expressed by a formula La1-x-yNdxZryNiaCobAlc and concurrently contains Nd, Zr, Co and Le elements, part of La quantity is substituted by an Nd element and a Zr element, and part of Ni quantity is substituted by a Co element and an Al element. In the formula, (x), (y), (a), (b) and (c) are set to 0.10<=x<=0.20, 0.05<=y<=0.15, a+b+c=5, 3.5<=a<=4.0, 0.5<=b<=1.1, and 0.4<=c<=0.5. An hydrogen storage electrode with a large charge/discharge capacity and little characteristic deterioration after repeated charge/discharge cycles is obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、水素吸蔵合金を負極とし、酸化ニッケル電橋
を正極とするニッケルー水素二次電池に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a nickel-hydrogen secondary battery that uses a hydrogen storage alloy as a negative electrode and a nickel oxide bridge as a positive electrode.

〔従来技術とその課題〕[Conventional technology and its issues]

エネルギー貯蔵容量の向上を図るため、負極として可逆
的に水素を吸蔵・放出する水素吸蔵合金を用い、吸蔵し
た水素を活物質とする二次電池が提案されているが、充
放電容量が大きく、かつ、電気化学的な水素の吸蔵・放
出サイクルの長期繰り返しにおいても特性が劣化しない
水素吸蔵合金で、しかも、合金価格の安いものが未だ開
発されていない、これは、以前から検討されている水素
吸蔵合金がLaNi5系を基本にCo等の高価な添加元
素を大量に用いるものが主流となっているためである。
In order to improve energy storage capacity, a secondary battery has been proposed that uses a hydrogen storage alloy that reversibly stores and releases hydrogen as a negative electrode, and uses the stored hydrogen as an active material, but it has a large charge/discharge capacity. In addition, a hydrogen storage alloy whose properties do not deteriorate even after repeated electrochemical hydrogen storage and desorption cycles over a long period of time, and which is inexpensive, has not yet been developed. This is because the mainstream storage alloy is based on the LaNi5 system and uses a large amount of expensive additive elements such as Co.

たとえば、今までに見出された水素吸蔵合金の中で電池
の充放電容量が比較的高く、繰り返し寿命も比較的長い
とされるものとして、フィリップス社で開発されたLa
N1z、 5coz、 4AI11.1合金やLao、
 5Ndo、 Jig、 5(:O!、 4Sio、 
+合金が知られている(フィリップス・ジャーナル・オ
ブ・リサーチ。
For example, La, which was developed by Philips, is said to have a relatively high battery charge/discharge capacity and a relatively long cycle life among the hydrogen storage alloys discovered so far.
N1z, 5coz, 4AI11.1 alloy and Lao,
5Ndo, Jig, 5(:O!, 4Sio,
+ alloys are known (Philips Journal of Research.

38S、 p、1−94.1984)。これらの合金で
は合金の酸化や微粉化による特性劣化を防止する目的で
、高価なCo元素が相当量含有されている。、しかし、
Ni元素を多量のCo元素で置換すると水素吸Rfの低
下を招き、水素−ニッケル二次電池に期待されている利
点である高エネルギー密度という特徴を損なう原因とな
っている。
38S, p, 1-94.1984). These alloys contain a considerable amount of the expensive Co element in order to prevent property deterioration due to oxidation and pulverization of the alloy. ,but,
Substituting a large amount of Co element for Ni element causes a decrease in hydrogen absorption Rf, which causes loss of the feature of high energy density, which is an expected advantage of hydrogen-nickel secondary batteries.

本願発明は以上に述べた課題を解決するために充放電容
量が大きくかつ、充放電サイクルを繰り返しても特性劣
化の少ない水素吸蔵電極の提供を目的とする。
In order to solve the above-mentioned problems, the present invention aims to provide a hydrogen storage electrode that has a large charge/discharge capacity and exhibits less deterioration in characteristics even after repeated charge/discharge cycles.

〔課題を解決するための手段] 本願発明に係る水素吸蔵電極は、その構成する合金が、
組成式La+−x−yNd、1ZryNiicObA1
cで表され、Nd、 Zr、 Co及びA1元素を同時
に含有し、La量の一部をNd元素とZr元素で、Ni
量の一部をCo元素とA1元素で置換することを特徴と
する水素吸蔵合金で0.10≦χ≦0.20.0.05
≦y≦0.10、a+b+c=5.3.5≦a≦4.0
.0.5≦b≦1.1.0.4≦c≦0.5の各範囲で
示されるものとすることによって前記の課題を解決した
[Means for Solving the Problems] The hydrogen storage electrode according to the present invention has an alloy comprising:
Composition formula La+-x-yNd, 1ZryNiicObA1
It is represented by c and contains Nd, Zr, Co and A1 elements at the same time, part of the amount of La is Nd element and Zr element, and Ni
0.10≦χ≦0.20.0.05 in a hydrogen storage alloy characterized by replacing a part of the amount with Co element and A1 element.
≦y≦0.10, a+b+c=5.3.5≦a≦4.0
.. The above-mentioned problem was solved by setting the range of 0.5≦b≦1, 1, 0.4≦c≦0.5.

(作用〕 水素吸蔵合金として上記組成式で示されるように、La
元素の一部をNd元素とZr元素で、Ni元素の一部を
Co元素とA1元素で同時に置換した合金を電極に用い
ることにより、実施例で具体的に例示するように、繰り
返し使用後も電気容量の低下が小さいため300サイク
ル後の容量としては従来の技術をはるかに凌駕する水素
吸蔵電極を作製することができた。また、この合金は高
価なCo元素の含有量が少ないため、今までに開発され
ている合金に比べて安価に提供することができる。
(Function) As shown in the above compositional formula as a hydrogen storage alloy, La
By using an alloy in which some of the elements are replaced with Nd and Zr elements, and some of the Ni elements are replaced with Co and A1 elements for the electrode, the alloy remains stable even after repeated use, as specifically illustrated in Examples. Since the decrease in electric capacity was small, a hydrogen storage electrode with a capacity far superior to that of conventional technology after 300 cycles could be produced. Furthermore, since this alloy has a low content of the expensive Co element, it can be provided at a lower price than alloys developed so far.

〔実施例〕〔Example〕

重版の純度99.5%以上のLa、 Nd、 Zr、 
Ni、 Co+AIの金属を用い、本発明の実施例とな
る合金を含めて、表1に示すような各種の水素吸蔵合金
を、アルゴンアーク溶解炉で作製した。すべての合金は
A1元素を含有しているが、この添加量によって合金の
平衡水素解離圧が60°Cで大気圧以下の値となるよう
調整した。これらの合金を機械的に粉砕した後、無電解
メツキ法により合金粉末の表面に約20重量%に相当す
る銅被覆層を形成した。次に、こうして得られた銅被覆
Cマイクロカプセル化)水素吸蔵合金に結着剤としてフ
ッ素樹脂(四フッ化エチレン・フッ化プロピレン共重合
体、樹脂添加量: 10wt%相当)を加え、冷間プレ
スにより直径13mm、重さ300a+Hの成形体とし
た。これを集電体としてのニッケルメツシュで両側から
挟み、温度300℃にてホットプレス形成することによ
り水素吸蔵電極を作製した。
Reprint purity of 99.5% or higher La, Nd, Zr,
Various hydrogen storage alloys as shown in Table 1, including alloys serving as examples of the present invention, were produced using Ni, Co+AI metals in an argon arc melting furnace. All alloys contain the A1 element, and the amount added was adjusted so that the equilibrium hydrogen dissociation pressure of the alloys was below atmospheric pressure at 60°C. After mechanically pulverizing these alloys, a copper coating layer corresponding to about 20% by weight was formed on the surface of the alloy powder by electroless plating. Next, a fluororesin (tetrafluoroethylene/fluoropropylene copolymer, resin addition amount: equivalent to 10 wt%) was added as a binder to the copper-coated C microencapsulated hydrogen storage alloy obtained in this way, and cold A molded article having a diameter of 13 mm and a weight of 300 a+H was formed by pressing. This was sandwiched between nickel meshes as current collectors from both sides, and hot-pressed at a temperature of 300° C. to produce a hydrogen storage electrode.

これらの水素吸蔵電極を負極とし、正極に焼結型の酸化
ニッケル電極を、照合電極として酸化水銀電極を用い、
6N水酸化カリウム溶液を電解液とする試験用電池を組
み立てた。なお、いずれの試験用電池も電池容量が負極
の容量に依存する負極規制タイプとした。これらの試験
用電池を温度20°Cの恒温室内に置いて、充電電流4
0mAで2.5時間充電し、0.5時間休止した後、放
電電流20mAで電圧が照合電極に対して−0,6vに
低下するまで放電するといったサイクルで長期間充放電
繰り返し試験を行った。各種合金についての結果を表1
に示す。
These hydrogen storage electrodes were used as negative electrodes, sintered nickel oxide electrodes were used as positive electrodes, and mercury oxide electrodes were used as reference electrodes.
A test battery was assembled using a 6N potassium hydroxide solution as an electrolyte. Note that all test batteries were negative electrode regulated types in which the battery capacity depends on the capacity of the negative electrode. These test batteries were placed in a constant temperature room at a temperature of 20°C, and a charging current of 4
A long-term charge/discharge cycle was conducted by charging at 0 mA for 2.5 hours, resting for 0.5 hours, and then discharging at a discharge current of 20 mA until the voltage decreased to -0.6 V with respect to the reference electrode. . Table 1 shows the results for various alloys.
Shown below.

以下余白 比較例1の合金(LaNiz、 5coz、 aAlo
、 +)はフィリップス社で開発された組成をもつもの
であるが、初期放電容量は265mAh/g程度、30
0サイクル経過後の放電容量残存率は約71%である。
Below are the alloys of Comparative Example 1 (LaNiz, 5coz, aAlo
, +) has a composition developed by Philips, but the initial discharge capacity is about 265 mAh/g, 30
The remaining discharge capacity after 0 cycles is about 71%.

このCo元素の含有量を少なくすると比較例2.3に示
すように、初期放電容量は高くなるが、容量残存率は低
くなってしまう。そこで、Co元素含有量を半分とした
比較例2の合金(LaNi 3.5Co1. zAIo
、 3)をベースにLaの一部をNc1元素で置換した
ところ、比較例4及び5に示すように、その置換量が多
くなるほど初期放電容量は低くなるが、サイクル寿命は
向上する(頃向があった。また比較例6及び7に示すよ
うに、Laの一部をZr元素で置換したところ、Nd置
換の場合と同様、その置換量の増加とともに初期放電容
量は低くなるが、サイクル寿命は向上する傾向が見られ
た。同様に、Co元素含存置をさらに半分とした比較例
3の合金(LaNia、 0C60,6AI11. a
)をベースにLaの一部をZr元素で置換したものが比
較例8及び9であるが、その置換量の増加とともに初期
放電容量は低下するものの、サイクル寿命は向上する傾
向が見られた。この場合、Nd元素とZr元素の置換効
果を初期放電容量低下とサイクル寿命向上の観点から比
較すると、Zr元素の置換効果の方が、Nd元素による
効果より大きい。
As shown in Comparative Example 2.3, when the content of this Co element is reduced, the initial discharge capacity increases, but the capacity remaining rate decreases. Therefore, the alloy of Comparative Example 2 with half the Co element content (LaNi 3.5Co1.zAIo
, 3), when part of La was replaced with Nc1 element, as shown in Comparative Examples 4 and 5, the larger the amount of substitution, the lower the initial discharge capacity, but the cycle life improved (around Furthermore, as shown in Comparative Examples 6 and 7, when part of La was replaced with Zr element, as with Nd replacement, the initial discharge capacity decreased as the amount of substitution increased, but the cycle life decreased. Similarly, the alloy of Comparative Example 3 (LaNia, 0C60, 6AI11.a) in which the Co element content was further halved
Comparative Examples 8 and 9 are those based on 200% La based on Zr element substituted with a part of La, and although the initial discharge capacity decreased as the amount of substitution increased, the cycle life tended to improve. In this case, when comparing the substitution effects of Nd and Zr elements from the viewpoints of reducing initial discharge capacity and improving cycle life, the substitution effect of Zr element is greater than the effect of Nd element.

以上、比較例5及び7に示すようにCo元素の置換量を
組成式で2.4から1.2へと半減させても、La元素
のごく一部をNdやZr元素で置換することで比較例1
のLaN1z、 5coz、 4AIO11系合金と同
程度の電気容量とサイクル寿命を実現することができた
が、その性能を大幅に越えることはできなかった。
As shown in Comparative Examples 5 and 7, even if the amount of Co element substitution is halved from 2.4 to 1.2 in the composition formula, replacing a small portion of La element with Nd or Zr element Comparative example 1
Although we were able to achieve the same electrical capacity and cycle life as the LaN1z, 5coz, and 4AIO11-based alloys, we were unable to significantly exceed their performance.

そこで、Nd元素とZr元素を同時にLa元素の一部と
置換したところ電極寿命を顕著に向上させることができ
た。実施例1.2及び3の各合金は比較例2の組成をほ
ぼベースにLa元素の一部をNd元素とZr元素とで同
時に置換したものである。実施例1及び2の合金は、比
較例7の合金と比較して、また、実施例3の合金は、比
較例6の合金に比較して、10%以上容量残存率が向上
していることがわかる。また、実施例4.5及び6の各
合金は、初期放電容量を高くするため、Co元素の置換
量をさらに減らした比較例3の合金をベースにしたもの
である。実施例4の合金は、比較例8に比べて、実施例
5及び6の合金は、比較例9の合金に比較して、初期放
電容量が多少低くなっているものの、サイクル寿命は大
きく改善されている。このようにZr元素の単独置換だ
けでは十分とはいえなかったサイクル寿命がNd元素を
複合置換することにより、顕著に向上することがわかっ
た。この効果は、実施例4.5.6に見られるように、
Co元素含有量が低い範囲において顕著であることがわ
かる。
Therefore, when part of the La element was replaced with the Nd element and the Zr element at the same time, the electrode life could be significantly improved. Each of the alloys of Examples 1, 2 and 3 was based on the composition of Comparative Example 2, in which part of the La element was replaced with the Nd element and the Zr element at the same time. The capacity retention rate of the alloys of Examples 1 and 2 is improved by 10% or more compared to the alloy of Comparative Example 7, and the alloy of Example 3 is compared to the alloy of Comparative Example 6. I understand. Further, each of the alloys of Examples 4, 5 and 6 was based on the alloy of Comparative Example 3 in which the amount of Co element substitution was further reduced in order to increase the initial discharge capacity. Although the alloy of Example 4 has a slightly lower initial discharge capacity than the alloy of Comparative Example 8, and the alloys of Examples 5 and 6 have a slightly lower initial discharge capacity than the alloy of Comparative Example 9, the cycle life is greatly improved. ing. As described above, it has been found that the cycle life, which was not sufficient when only the Zr element was substituted alone, is significantly improved by the combined substitution with the Nd element. This effect, as seen in Example 4.5.6,
It can be seen that this is noticeable in a range where the Co element content is low.

そこで、Nd元素又はZr元素の単独置換の場合にはC
o元素の置換量が1.0程度必要であったが、NdとZ
r元素の複合置換の場合、Co元素の置換量は0.5程
度とさらに低くしても高いサイクル寿命が得られること
がわかった。そのため、実施例4及び5に示す電極のよ
うに初期電気容量、サイクル寿命ともに比較例1の電極
を越える性能を持つものを得ることができた。
Therefore, in the case of single substitution of Nd element or Zr element, C
The amount of substitution of o element was required to be about 1.0, but Nd and Z
In the case of complex substitution of r element, it was found that a high cycle life can be obtained even if the amount of Co element substitution is lowered to about 0.5. Therefore, it was possible to obtain electrodes shown in Examples 4 and 5, which had performance superior to the electrode of Comparative Example 1 in both initial capacitance and cycle life.

〔発明の効果〕〔Effect of the invention〕

このように、ニッケル/水素二次電池の負極として、N
d、 Zr、 Co及びA1元素を同時に含有し、La
量の一部をNd元素とZr元素で、Ni量の一部をCo
元素とA1元素で置換した一般式La+−x−yNdx
zryN+aCo、A1c表される合金において、0.
10≦x≦0.20.0.05≦y≦0.10. a+
b+c=5.3.5≦a≦4.0.0.5≦b≦1.1
.0.4≦c≦0.5の範囲の合金を用いると、繰り返
し使用後も電気容量の低下が小さいため、300サイク
ル後の容量としては従来のLaN1g、 5cOz、 
s系合金の性能をはるかに凌駕し、かつ低価格の電極が
得られ、実用的価値の高いものである。
In this way, N
d, Zr, Co and A1 elements at the same time, La
Part of the amount is Nd element and Zr element, and part of the Ni amount is Co.
General formula La+-x-yNdx substituted with element and A1 element
In the alloy represented by zryN+aCo, A1c, 0.
10≦x≦0.20.0.05≦y≦0.10. a+
b+c=5.3.5≦a≦4.0.0.5≦b≦1.1
.. If an alloy in the range of 0.4≦c≦0.5 is used, the decrease in capacitance will be small even after repeated use, so the capacity after 300 cycles will be the same as the conventional LaN 1g, 5cOz,
It is possible to obtain an electrode that far exceeds the performance of s-based alloys and is inexpensive, so it has high practical value.

Claims (1)

【特許請求の範囲】[Claims] 一般式La_1_−_x_−_yNd_xZr_yNi
_aCo_bAl_cで表され、Nd、Zr、Co及び
Al元素を同時に含有し、La量の一部をNd元素とZ
r元素で、Ni量の一部をCo元素とA1元素で置換す
ることを特徴とする水素吸蔵合金で0.10≦x≦0.
20、0.05≦y≦0.15、a+b+c=5、3.
5≦a≦4.0、0.5≦b≦1.1、0.4≦c≦0
.5の各範囲で示される合金を用いた水素吸蔵電極。
General formula La_1_-_x_-_yNd_xZr_yNi
It is expressed as _aCo_bAl_c and contains Nd, Zr, Co and Al elements at the same time, and a part of the amount of La is Nd element and Z
A hydrogen storage alloy characterized by replacing a part of the Ni amount with Co element and A1 element with r element, and 0.10≦x≦0.
20, 0.05≦y≦0.15, a+b+c=5, 3.
5≦a≦4.0, 0.5≦b≦1.1, 0.4≦c≦0
.. A hydrogen storage electrode using an alloy shown in each range of 5.
JP63330666A 1988-12-26 1988-12-26 Hydrogen storage electrode Pending JPH02174063A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63330666A JPH02174063A (en) 1988-12-26 1988-12-26 Hydrogen storage electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63330666A JPH02174063A (en) 1988-12-26 1988-12-26 Hydrogen storage electrode

Publications (1)

Publication Number Publication Date
JPH02174063A true JPH02174063A (en) 1990-07-05

Family

ID=18235228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63330666A Pending JPH02174063A (en) 1988-12-26 1988-12-26 Hydrogen storage electrode

Country Status (1)

Country Link
JP (1) JPH02174063A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5284619A (en) * 1990-03-24 1994-02-08 Japan Storage Battery Company, Limited Hydrogen absorbing electrode for use in nickel-metal hydride secondary batteries

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6089066A (en) * 1983-10-21 1985-05-18 エヌ・ベ−・フイリツプス・フル−イランペンフアブリケン Electrochemical cell

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6089066A (en) * 1983-10-21 1985-05-18 エヌ・ベ−・フイリツプス・フル−イランペンフアブリケン Electrochemical cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5284619A (en) * 1990-03-24 1994-02-08 Japan Storage Battery Company, Limited Hydrogen absorbing electrode for use in nickel-metal hydride secondary batteries

Similar Documents

Publication Publication Date Title
JPS60241652A (en) Electrochemical electrode employing metal hydride
JPH02174063A (en) Hydrogen storage electrode
JPS62249358A (en) Hydrogen storage electrode
JP2740175B2 (en) Hydrogen storage alloy electrode for alkaline storage batteries
JPH02220354A (en) Hydrogen storage electrode
JP2847874B2 (en) Hydrogen storage electrode
JPH0797497B2 (en) Hydrogen storage electrode
JPH03289042A (en) Hydrogen storage electrode
JP3065713B2 (en) Hydrogen storage electrode and nickel-hydrogen battery
JPH0561336B2 (en)
JP3587213B2 (en) Negative electrode active material for air-Ga primary battery and air-Ga primary battery using the same
JP2847873B2 (en) Hydrogen storage electrode
JP3082341B2 (en) Hydrogen storage electrode
JPS61233966A (en) Manufacture of sealed nickel-hydrogen storage battery
JPH0357158A (en) Hydrogen storage electrode for alkaline storage battery
KR100255291B1 (en) Zirconium and titanium alloy for hydrogen accumulation with minimum silver
JP3729913B2 (en) Hydrogen storage alloy electrode
JP3462673B2 (en) Manufacturing method of hydrogen storage alloy electrode
JPH02148568A (en) Hydrogen occludent electrode
JPS62249357A (en) Hydrogen storage electrode
JPH0953137A (en) Hydrogen storage alloy and hydrogen storage alloy electrode
JPH0953135A (en) Hydrogen storage alloy and hydrogen storage alloy electrode
JPH03274239A (en) Hydrogen occluding electrode
JPH0582125A (en) Hydrogen occluding alloy electrode
JPS6119059A (en) Hydrogen occlusion electrode