JP3729913B2 - Hydrogen storage alloy electrode - Google Patents

Hydrogen storage alloy electrode Download PDF

Info

Publication number
JP3729913B2
JP3729913B2 JP04058296A JP4058296A JP3729913B2 JP 3729913 B2 JP3729913 B2 JP 3729913B2 JP 04058296 A JP04058296 A JP 04058296A JP 4058296 A JP4058296 A JP 4058296A JP 3729913 B2 JP3729913 B2 JP 3729913B2
Authority
JP
Japan
Prior art keywords
hydrogen storage
storage alloy
electrode
durability
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04058296A
Other languages
Japanese (ja)
Other versions
JPH09213320A (en
Inventor
俊樹 兜森
隆彰 宮木
勝廣 寺尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Original Assignee
Japan Steel Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd filed Critical Japan Steel Works Ltd
Priority to JP04058296A priority Critical patent/JP3729913B2/en
Publication of JPH09213320A publication Critical patent/JPH09213320A/en
Application granted granted Critical
Publication of JP3729913B2 publication Critical patent/JP3729913B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【0001】
【発明の属する技術分野】
本発明は、水素吸蔵合金を電極として用いた水素吸蔵合金電極に関するものである。
【0002】
【従来の技術】
水素吸蔵合金電極は、その水素吸収・放出反応を利用して各種用途に利用されており、その応用例の一つとして電池用の電極として使用されている。
ところで、最近では携帯用コンピュータや携帯電話などが益々普及し、これに伴い、高容量二次電池の需要が増しており、上記水素吸蔵合金電極も高容量二次電池用の材料として注目されている。たとえば、水素吸蔵合金を負極として用いたニッケル/水素二次電池は、現在広く用いられているニッカド電池よりも高エネルギー密度を示すため、精力的に開発、商品化が進められており、上記ニッケル/水素二次電池用の負極材料としては、MmNi5系や(TiZr)Ni系、ZrV2系水素吸蔵材料が多く使用されている。
【0003】
【発明が解決しようとする問題点】
なお、水素吸蔵合金を用いたニッケル/水素二次電池では、水素吸蔵合金がアルカリ電解液に哂されることにより合金表面が腐食したり、過充電により陽極から発生する酸素が合金表面を覆って水素進入を妨げたり、繰り返し水素吸収・放出によって合金が微粉化して導電性が低下したりして徐々に放電容量が低下する(耐久性が低下する)という問題がある。
これらの現象を改善するために、MmNi5系合金では、Co、MnあるいはAl等を添加し、(TiZr)Ni系、ZrV2系では、Co、Mn、V等の元素を添加して、充放電繰り返し特性を向上させる等して耐久性を向上させる試みがなされているが、放電特性を維持したまま十分に耐久性を向上させるまでには至っていない。
【0004】
本発明は、上記事情を背景としてなされたものであり、放電特性を損なうことなく、耐久性を十分に向上させた水素吸蔵合金電極を提供するものである。
【0005】
【課題を解決するための手段】
上記課題を解決するため本発明の水素吸蔵合金電極は、結晶構造がC14あるいはC15ラーベスの構造からなり、かつ下記一般式を有する水素吸蔵合金を用いたことを特徴とする。
Nix−y−z−w−vNb
ただし、
A:Zr、Tiの一種または2種
B:Co、Mn、Cr、Feの一種以上
C:Al、Cuの一種または二種
1.5<x<2.5、0<y<1.0、0<z<0.2、0≦w<1.0、0<v<0.3、x−y−z−w−v>0.8
【0006】
【発明の実施の形態】
本発明の水素吸蔵合金電極は常法により製造することができ、所望の電池用電極として使用することができる。
そして本発明に用いられる水素吸蔵合金電極は、電気化学的な水素吸蔵量が多く、高い放電容量を示す。しかも、この放電容量は水素の繰り返し吸放出によっても低下が少なく、長期間にわたって安定して使用することができる。本発明で用いられるNbは耐久性の向上に顕著な効果があり、同じく耐久性の向上に効果があるCo等に比べて数分の一程度の少量の添加で同程度の効果が得られる。
次に本発明に用いられる水素吸蔵合金の組成限定の理由を以下に説明する。
【0007】
C14あるいはC15ラーベス構造
A群(Zr,Tiの一種または二種)
A群の元素(Zr,Ti)はNiとともに基本成分となるものであり、その量比は基本の1である。
【0008】
Ni(量比x)
A群の元素とともに基本成分となるNiの基本的な量比はxであり、その一部がV、NbとB群、C群で置換される。C14あるいはC15では化学量論組成となるNiの値は2であるが、化学量論組成から若干ずれた値でも、C14あるいはC15構造を維持して所望の電気特性を得ることができる。ただしNiの量比xが1.5以下あるいは2.5以上になると、上記構造を維持できなくなり、これに伴って電気特性も低下するので、xを1.5<x<2.5の範囲に限定する。
V(量比y)
Vには水素吸蔵量を増加させる効果があるがその量比yが1.0を越えると電気化学的に放電できなくなるのでyを0<y<1.0の範囲に限定する。
【0009】
Nb(量比z)
Niの一部をNbで置換することにより耐久性が向上する。ただし、Nbの量比zが0.2以上になると電気容量の低下が著しくなるため、0<z<0.2の範囲に限定する。
B群(Co、Mn、Cr、Feの一種以上、量比w)
Niの一部をCo、Mn、Cr、Feの3価の遷移金属群で置換することにより、合金の水素化特性を自由に制御することが可能である。そして、電池用材料として必要な常温での1気圧以下の平衡解離圧を確保し、また微粉化性を低減し、さらに電解溶液中での耐食性を高めることが可能となり、結果として耐久性を向上させることが可能となる。ただし、その量比wが、1.0以上になると、相対的なNi量の減少による耐食性が低下し、結果として、電池の耐久性が悪くなるため、量比wを0≦w<1.0の範囲に限定する。
【0010】
C群(Al、Cuの一種以上、量比v)
Niの一部をAl、Cuの一種以上で置換する。これらの元素は合金の平衡解離圧を低下させ、また、Niの一部を3価の遷移金属群で置換することによりP−C−T曲線におけるプラトーの平坦性が悪化するのを改善する。ただし、その量比vが0.3を越えるような多量の置換を行うと、水素吸収量の低下、電気容量の低下を招くため、vを0<v<0.3の範囲に限定する。ただし、NiのV、Nb、B群、C群による置換量はx−y−z−w−v>0.8になるようにする。0.8よりも小さいと電気容量が低下してしまう。
【0011】
【実施例】
以下に本発明の実施例を比較例と対比しつつ説明する。
発明材および比較材について、表1に示す組成となるよう秤量した後、アーク式真空溶解装置の水冷式銅坩堝内に収納し、高純度Arガス雰囲気下でアーク溶解した。得られた合金は、大気中で数十μm程度まで粉砕した。
次いで、重量比において、上記粉末19%とNi粉末(3〜7μm)78%とフッ素樹脂3%とを混合し、直径2cmの円形ペレットとした。このペレットをNi網(50メッシュ)で挟んで電池の負極用電極とした。
【0012】
上記電極の対極には焼結式Ni極を用い、電解液には、6M KOH水溶液を使用し、参照極には酸化水銀電極を用いて電池を構成した。充放電試験は、25℃の恒温浴槽中にて、初期には0.2Cで6時間充電した後、0.2Cにて終始電圧−0.7V(vs参照極)まで放電させた。最大放電容量に達した後は、0.5Cで2.5時間充電した後、0.5Cにて放電を行った。上記操作を1サイクルとして、繰り返し充放電を行い、各サイクル毎の放電容量を測定した。
【0013】
表1に、本発明材および比較材の最大放電容量と、100サイクル時と20サイクル時の放電容量の比を示した。なお、この放電容量の比が大きい程、耐久性が優れていると言えるため、この比を耐久性の指標とした。
その結果、実施例の電極を用いた電池では表1に示すように高い放電容量が得られており、また相当の繰り返し操作を行っても放電容量の低下は少なく(100サイクル時と20サイクル時の放電容量の比が90%以上)、耐久性に優れている。一方、比較例の電極を用いた電池では実施例とくらべ、容量、耐久性共に劣っている。
【0014】
【表1】

Figure 0003729913
【0015】
【発明の効果】
以上説明したように、本発明の水素吸蔵合金電極によれば、該電極に用いるC14あるいはC15のラーベス構造からなる水素吸蔵合金に、Nbを少量含有させたので、放電容量を損なうことなく(一部は放電容量を高めて)耐久性を向上させることができる。したがって、高性能で繰り返しの充放電にも性能の低下が少ない電池が得られる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a hydrogen storage alloy electrode using a hydrogen storage alloy as an electrode.
[0002]
[Prior art]
The hydrogen storage alloy electrode is used for various uses by utilizing the hydrogen absorption / release reaction, and is used as an electrode for a battery as one of its application examples.
By the way, recently, portable computers and mobile phones are becoming more and more popular, and accordingly, the demand for high-capacity secondary batteries is increasing, and the hydrogen storage alloy electrode is also attracting attention as a material for high-capacity secondary batteries. Yes. For example, a nickel / hydrogen secondary battery using a hydrogen storage alloy as a negative electrode has a higher energy density than a nickel-cadmium battery that is widely used at present. Therefore, the nickel / hydrogen secondary battery has been vigorously developed and commercialized. / As a negative electrode material for a hydrogen secondary battery, MmNi 5 system, (TiZr) Ni system, and ZrV 2 system hydrogen storage material are often used.
[0003]
[Problems to be solved by the invention]
In nickel / hydrogen secondary batteries using a hydrogen storage alloy, the surface of the alloy is corroded when the hydrogen storage alloy is immersed in an alkaline electrolyte, or oxygen generated from the anode by overcharging covers the surface of the alloy. There is a problem that the discharge capacity is gradually reduced (durability is lowered) due to hindering hydrogen entry or repeated alloy absorption and release to make the alloy fine powder and lower the conductivity.
In order to improve these phenomena, Co, Mn, Al, or the like is added to the MmNi 5 alloy, and elements such as Co, Mn, V, etc. are added to the (TiZr) Ni alloy and ZrV 2 alloy. Attempts have been made to improve durability by, for example, improving discharge repetition characteristics, but the durability has not been sufficiently improved while maintaining discharge characteristics.
[0004]
The present invention has been made against the background of the above circumstances, and provides a hydrogen storage alloy electrode with sufficiently improved durability without impairing discharge characteristics.
[0005]
[Means for Solving the Problems]
In order to solve the above problems, the hydrogen storage alloy electrode of the present invention is characterized in that a hydrogen storage alloy having a crystal structure of C14 or C15 Laves and having the following general formula is used .
A 1 Ni xy-z-w-v V y Nb z B w C v
However,
A: One or two kinds of Zr and Ti B: One or more kinds of Co, Mn, Cr and Fe C: One or two kinds of Al and Cu 1.5 <x <2.5, 0 <y <1.0, 0 <z <0.2, 0 ≦ w <1.0, 0 <v <0.3, xyz-wv> 0.8
[0006]
DETAILED DESCRIPTION OF THE INVENTION
The hydrogen storage alloy electrode of this invention can be manufactured by a conventional method, and can be used as a desired battery electrode.
And the hydrogen storage alloy electrode used for this invention has many electrochemical hydrogen storage amounts, and shows high discharge capacity. In addition, the discharge capacity hardly decreases even when hydrogen is repeatedly absorbed and released, and can be used stably over a long period of time. Nb used in the present invention has a remarkable effect in improving the durability, and the same effect can be obtained by adding a small amount of about a fraction of that of Co or the like, which is also effective in improving the durability.
Next, the reason for limiting the composition of the hydrogen storage alloy used in the present invention will be described below.
[0007]
C14 or C15 Laves structure group A (one or two of Zr and Ti)
A group element (Zr, Ti) is a basic component together with Ni, and its quantity ratio is 1 as a basic.
[0008]
Ni (quantity ratio x)
The basic quantity ratio of Ni as a basic component together with the elements of the A group is x, and a part thereof is replaced with V, Nb and the B group and the C group. In C14 or C15, the value of Ni that is the stoichiometric composition is 2. However, even if the value is slightly deviated from the stoichiometric composition, the C14 or C15 structure can be maintained and desired electrical characteristics can be obtained. However, when the quantity ratio x of Ni is 1.5 or less or 2.5 or more, the above structure cannot be maintained, and the electrical characteristics are also lowered accordingly. Therefore, x is in the range of 1.5 <x <2.5. Limited to.
V (quantity ratio y)
V has the effect of increasing the amount of hydrogen occluded, but if the amount ratio y exceeds 1.0, it becomes impossible to perform electrochemical discharge, so y is limited to the range of 0 <y <1.0.
[0009]
Nb (quantity ratio z)
The durability is improved by replacing a part of Ni with Nb. However, when the amount ratio z of Nb is 0.2 or more, the electric capacity is remarkably reduced, so the range is limited to 0 <z <0.2.
Group B (one or more of Co, Mn, Cr, Fe, quantity ratio w)
By replacing part of Ni with a trivalent transition metal group of Co, Mn, Cr, and Fe, it is possible to freely control the hydrogenation characteristics of the alloy. And, it is possible to secure an equilibrium dissociation pressure of 1 atm or less at room temperature, which is necessary for battery materials, to reduce pulverization, and to improve corrosion resistance in the electrolytic solution, resulting in improved durability. It becomes possible to make it. However, when the amount ratio w is 1.0 or more, the corrosion resistance due to the relative decrease in Ni amount is lowered, and as a result, the durability of the battery is deteriorated. Therefore, the amount ratio w is set to 0 ≦ w <1. Limited to a range of zero.
[0010]
Group C (one or more of Al and Cu, quantity ratio v)
A part of Ni is replaced with one or more of Al and Cu. These elements reduce the equilibrium dissociation pressure of the alloy, and improve the deterioration of plateau flatness in the PCT curve by substituting a part of Ni with a trivalent transition metal group. However, if a large amount of substitution is performed such that the amount ratio v exceeds 0.3, the hydrogen absorption amount and the electric capacity are decreased, so v is limited to the range of 0 <v <0.3. However, the substitution amount of Ni by V, Nb, B group, and C group is set so that xyzwv> 0.8. If it is smaller than 0.8, the electric capacity is lowered.
[0011]
【Example】
Examples of the present invention will be described below in comparison with comparative examples.
Inventive materials and comparative materials were weighed to have the compositions shown in Table 1, and then stored in a water-cooled copper crucible of an arc type vacuum melting apparatus, and arc melted in a high purity Ar gas atmosphere. The obtained alloy was pulverized to about several tens of μm in the atmosphere.
Next, in a weight ratio, 19% of the powder, 78% of Ni powder (3 to 7 μm), and 3% of a fluororesin were mixed to obtain a circular pellet having a diameter of 2 cm. The pellet was sandwiched between Ni nets (50 mesh) to form a negative electrode for a battery.
[0012]
A sintered Ni electrode was used for the counter electrode of the electrode, a 6M KOH aqueous solution was used for the electrolyte, and a mercury oxide electrode was used for the reference electrode. In the charge / discharge test, the battery was initially charged at 0.2 C for 6 hours in a constant temperature bath at 25 ° C., and then discharged at 0.2 C to a voltage of −0.7 V (vs reference electrode) throughout. After reaching the maximum discharge capacity, the battery was charged at 0.5C for 2.5 hours and then discharged at 0.5C. The above operation was set as one cycle, charging / discharging was repeated, and the discharge capacity for each cycle was measured.
[0013]
Table 1 shows the maximum discharge capacity of the inventive material and the comparative material and the ratio of the discharge capacity at 100 cycles and 20 cycles. In addition, since it can be said that durability is excellent, so that this ratio of discharge capacity is large, this ratio was made into the parameter | index of durability.
As a result, in the battery using the electrode of the example, a high discharge capacity was obtained as shown in Table 1, and the discharge capacity was hardly decreased even when repeated operations were repeated (100 cycles and 20 cycles). The discharge capacity ratio is 90% or more) and is excellent in durability. On the other hand, the battery using the electrode of the comparative example is inferior in both capacity and durability as compared with the example.
[0014]
[Table 1]
Figure 0003729913
[0015]
【The invention's effect】
As described above, according to the hydrogen storage alloy electrode of the present invention, since a small amount of Nb is contained in the hydrogen storage alloy having a C14 or C15 Laves structure used in the electrode , the discharge capacity is not impaired (one The portion can increase the discharge capacity) and improve the durability. Therefore, a battery having high performance and little deterioration in performance even during repeated charge / discharge can be obtained.

Claims (1)

結晶構造がC14あるいはC15のラーベス構造からなり、かつ下記一般式を有する水素吸蔵合金を用いたことを特徴とする水素吸蔵合金電極
Nix−y−z−w−vNb
ただし、
A:Zr、Tiの一種または2種
B:Co、Mn、Cr、Feの一種以上
C:Al、Cuの一種または二種
1.5<x<2.5、0<y<1.0、0<z<0.2、0≦w<1.0、0<v<0.3、x−y−z−w−v>0.8
A hydrogen storage alloy electrode using a hydrogen storage alloy having a Laves structure with a crystal structure of C14 or C15 and having the following general formula
A 1 Ni xy-z-w-v V y Nb z B w C v
However,
A: One or two kinds of Zr and Ti B: One or more kinds of Co, Mn, Cr and Fe C: One or two kinds of Al and Cu 1.5 <x <2.5, 0 <y <1.0, 0 <z <0.2, 0 ≦ w <1.0, 0 <v <0.3, xyz-wv> 0.8
JP04058296A 1996-02-02 1996-02-02 Hydrogen storage alloy electrode Expired - Fee Related JP3729913B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04058296A JP3729913B2 (en) 1996-02-02 1996-02-02 Hydrogen storage alloy electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04058296A JP3729913B2 (en) 1996-02-02 1996-02-02 Hydrogen storage alloy electrode

Publications (2)

Publication Number Publication Date
JPH09213320A JPH09213320A (en) 1997-08-15
JP3729913B2 true JP3729913B2 (en) 2005-12-21

Family

ID=12584495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04058296A Expired - Fee Related JP3729913B2 (en) 1996-02-02 1996-02-02 Hydrogen storage alloy electrode

Country Status (1)

Country Link
JP (1) JP3729913B2 (en)

Also Published As

Publication number Publication date
JPH09213320A (en) 1997-08-15

Similar Documents

Publication Publication Date Title
JP2771592B2 (en) Hydrogen storage alloy electrode for alkaline storage batteries
JP2680669B2 (en) Hydrogen storage alloy electrode for alkaline storage battery
JP2752970B2 (en) Hydrogen storage electrode
JP2004220994A (en) Alkaline storage battery
JP2004273346A (en) Hydrogen storage alloy for alkali storage battery, and alkali storage battery
JP3729913B2 (en) Hydrogen storage alloy electrode
US5591394A (en) Zirconium-based hydrogen storage alloy useable for negative electrodes for secondary battery
JPS62271349A (en) Hydrogen occlusion electrode
JPH0953136A (en) Hydrogen storage alloy and hydrogen storage alloy electrode
JPH0562429B2 (en)
JPS62249358A (en) Hydrogen storage electrode
JP2740175B2 (en) Hydrogen storage alloy electrode for alkaline storage batteries
JP2004285406A (en) Hydrogen storage alloy and electrode for nickel-hydrogen battery using the same
US5552246A (en) Materials for hydrogen storage, hydride electrodes and hydride batteries
JPH0650634B2 (en) Hydrogen storage electrode
KR100264343B1 (en) A high-capability and high-performance hrdrogen storage alloy for secondary battery electrode which contains zirconium
JP2000239769A (en) Rare earth hydrogen storage alloy and electrode using it
JPH0675398B2 (en) Sealed alkaline storage battery
JPS61214360A (en) Sealed alkaline storage battery
JPH11307088A (en) Alkaline secondary battery negative electrode and alkaline secondary battery
JPH06145849A (en) Hydrogen storage alloy electrode
JPH0953135A (en) Hydrogen storage alloy and hydrogen storage alloy electrode
JPS62249357A (en) Hydrogen storage electrode
JPH0953137A (en) Hydrogen storage alloy and hydrogen storage alloy electrode
JPH10152739A (en) Hydrogen storage alloy and electrode for nickel-hydrogen battery using it

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20020918

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050809

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051005

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050830

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081014

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091014

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091014

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101014

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101014

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111014

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111014

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121014

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121014

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131014

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees