JPH0357158A - Hydrogen storage electrode for alkaline storage battery - Google Patents

Hydrogen storage electrode for alkaline storage battery

Info

Publication number
JPH0357158A
JPH0357158A JP1192979A JP19297989A JPH0357158A JP H0357158 A JPH0357158 A JP H0357158A JP 1192979 A JP1192979 A JP 1192979A JP 19297989 A JP19297989 A JP 19297989A JP H0357158 A JPH0357158 A JP H0357158A
Authority
JP
Japan
Prior art keywords
hydrogen storage
alloy
alkaline
hydrogen
storage battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1192979A
Other languages
Japanese (ja)
Other versions
JPH0750605B2 (en
Inventor
Atsushi Furukawa
淳 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Battery Co Ltd
Original Assignee
Furukawa Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Battery Co Ltd filed Critical Furukawa Battery Co Ltd
Priority to JP1192979A priority Critical patent/JPH0750605B2/en
Publication of JPH0357158A publication Critical patent/JPH0357158A/en
Publication of JPH0750605B2 publication Critical patent/JPH0750605B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To obtain an alkaline storage battery having a long cycle life by using a negative electrode made of a MmNiCo base hydrogen storage alloy containing Al, Si, Cr, W, and Ge. CONSTITUTION:A hydrogen storage alloy indicated in the general formula, MmNiaCobAcBd (wherein Mm is misch metal, A is at least one element selected from the group comprising Al, Si, and Cr, and B is at least one element selected from the group of W and Ge.) is used as a negative electrode of an alkaline storage battery. This alloy has a CaCu5 hexagonal system structure and the relation of 4.5<=a+b+c+d<=5.5 must be satisfied to keep high performance of the hydrogen storage alloy.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、アルカリ蓄電池の負極として用いられ、水素
を可逆的に吸蔵、放出する水素吸蔵合金から成るアルカ
リ蓄電池用水素吸蔵電極に関する, 〔従来の技術〕 従来、各種の電気又は電子応用機器の電源と1 3 してアルカリ蓄電池が広く用いられている。該アルカリ
蓄電池のうち、最も広く使用されているのは、ニッケル
ーカドミウム蓄電池であるが、更に、高エネルギー密度
を有し、無公害の新しい二次電池として、最近、水素を
可及的に吸蔵、放出する水素吸蔵合金を負極として用い
るアルカリ蓄電池が開発されている.この水素吸蔵合金
は、カドミウムと同じ取り扱いで電池の@極として楕成
でき、実際の放電可能な容量密度をカドミウムよりも大
きくできることから、高エネルギー密度で無公害のアル
カリ蓄電池として有望である.この種の水素吸蔵合金電
極として、LaN+s合金、LaN+2COs合金など
の水素吸蔵合金を用いたものは公知である. 〔発明が解決しようとする課題〕 上記の合金を水素吸蔵合金をアルカリ蓄電池の負極とし
て用いた場合、サイクル寿命が短い欠点がある. 〔課題を解決するための手段〕 本発明は、力hる上記従来のアルカリW電池用水索吸蔵
電極を改善(、サイクル寿命の著しく増大したアルカリ
蓄電池用水素吸蔵電極を提供するもので、一般式Hff
iNi. Cob A. B.+  (但し、Mnはミ
ッシュメタル、Aは^1、Si及びCrから成る群より
撰ばれた少なくとも一種、BはW及びGeから成る群よ
り撰ばれた少なくとも一種、且つ4.5≦a+b+c+
d≦5.5、0<c≦1、0<d≦O、5)で表される
水素吸蔵合金から戊る.上記の構成の水素吸蔵合金電極
をアルカリ蓄電池の負極として用いるときは、合金腐食
による特性劣化か小さく、サイクル寿命の長いアルカリ
蓄電池をもたらす。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a hydrogen storage electrode for an alkaline storage battery, which is used as a negative electrode of an alkaline storage battery and is made of a hydrogen storage alloy that reversibly stores and releases hydrogen. [Technology] Conventionally, alkaline storage batteries have been widely used as power sources for various electrical or electronic applied devices. Among these alkaline storage batteries, the most widely used is the nickel-cadmium storage battery, but recently, as a new secondary battery that has high energy density and is non-polluting, it has been developed to absorb as much hydrogen as possible. Alkaline storage batteries have been developed that use hydrogen-absorbing alloys as negative electrodes. This hydrogen-absorbing alloy can be used in the same way as cadmium to form an ellipsoid as the @ electrode of a battery, and the actual dischargeable capacity density can be made larger than that of cadmium, making it promising as a high-energy-density, pollution-free alkaline storage battery. As this type of hydrogen storage alloy electrode, electrodes using hydrogen storage alloys such as LaN+s alloy and LaN+2COs alloy are known. [Problems to be Solved by the Invention] When the above hydrogen storage alloy is used as the negative electrode of an alkaline storage battery, there is a drawback that the cycle life is short. [Means for Solving the Problems] The present invention provides a hydrogen storage electrode for alkaline storage batteries that improves the above-mentioned conventional water storage electrode for alkaline W batteries and has a significantly increased cycle life. Hff
iNi. Cob A. B. + (However, Mn is misch metal, A is ^1, at least one selected from the group consisting of Si and Cr, B is at least one selected from the group consisting of W and Ge, and 4.5≦a+b+c+
d≦5.5, 0<c≦1, 0<d≦O, 5). When the hydrogen storage alloy electrode having the above structure is used as a negative electrode of an alkaline storage battery, an alkaline storage battery with a long cycle life and less property deterioration due to alloy corrosion is produced.

〔実施例〕〔Example〕

次に、本発明の実施例につき説明する.市販のtug(
例えば、La:30重量%、Ce:45重量%、Nd:
15重量%、Pr:5重量%他) Ni.Coの他に、
A1とWを撰択し、下記第1表に列挙する夫々の組成成
分と組戒比で夫々秤量、配合し、次でアルゴンアーク溶
解炉で加熱溶融して11種類の合金を得た.これらの合
金を夫々機械的に32μm以下に粉砕し、夫々の組戊或
分と原子数比をもつ各種組或の11種類の水素吸蔵合金
粉末を得た.これら11種類の合金粉末の夫々について
、導電材として旧粉を20重量%、結着剤としてフッ素
樹脂粉末を5重量%添加し、混合してフッ素樹脂繊維化
させた後、粉砕して得られた各混合物を、ニッゲル金網
上に均一な厚さに積層し、it/aJで加圧或形し、夫
々の水素吸蔵合金電極板を作製した.このようにして得
られた11種類の水素吸蔵合金電極板の夫々を負極とし
、これに放電容量が10001IAHの公知の焼結式ニ
ッケル電極板を正極として組み合わせ、アルカリ電解液
として水酸化カリウム水溶液を用いて11種類の密閉型
セルNO1〜llQ11を作製した。
Next, examples of the present invention will be explained. Commercially available tug (
For example, La: 30% by weight, Ce: 45% by weight, Nd:
15% by weight, Pr: 5% by weight, etc.) Ni. In addition to Co.
A1 and W were selected, weighed and blended according to the respective composition components and composition ratios listed in Table 1 below, and then heated and melted in an argon arc melting furnace to obtain 11 types of alloys. Each of these alloys was mechanically crushed to a size of 32 μm or less to obtain 11 types of hydrogen-absorbing alloy powders with various compositions and atomic ratios. For each of these 11 types of alloy powder, 20% by weight of the old powder as a conductive material and 5% by weight of fluororesin powder as a binder were added, mixed to form fluororesin fibers, and then crushed. Each of the mixtures was layered to a uniform thickness on a Niggel wire mesh, and pressed and shaped at it/aJ to produce each hydrogen storage alloy electrode plate. Each of the 11 types of hydrogen storage alloy electrode plates obtained in this way was used as a negative electrode, and a known sintered nickel electrode plate with a discharge capacity of 10001 IAH was combined as a positive electrode, and a potassium hydroxide aqueous solution was added as an alkaline electrolyte. Using this method, 11 types of closed cells NO1 to 11Q11 were produced.

これらのセルNQ1〜N011につき、0.20の電流
で6時間充電した後、0,5Cの電流でセル電圧が1.
OVになるまで放電するという条件で充放電サイクル試
験を行い、初期容量の60%までの低下で寿命とするサ
イクル寿命を調べた,セルNQ1〜Nll11の各セル
の初期の放電容量( nAH/1)とサイクル寿命(回
冫を下記第1表に示す.第1表 これから明らかなように、セルNQ6〜馳9のサイクル
寿命は200回以上であったに対し、従来の組成をもつ
水素合金1K極を使・用したセル社!及びNQ2は、そ
のサイクル寿命は僅か20及び30と著しく短い.又、
比較用の組或をもつ電極を用いたセルllQ3、馳4、
噛5、馳10及び馳11の夫々のサイクル寿命は、従来
のセルl1ll1及びNQ2よりは長いが、本発明の電
極を用いたセルね6〜NQ9よりは著しく短いことが分
かる.即ち、本発明のセルNQ6〜隠9を対照セルNα
3、NQ4及びNa5と対比し明らかなように、Hll
−Ni−Co−^+−Wの5成分系の水素吸蔵合金から
成るtiを用いたセルlIG6〜NQ9は、サイクル寿
命の著しい延長が得られるに対し、^1又はWのいずれ
か1つの成分を欠いたHa−Li−Coから或る3或分
又はHl−Li−Co−AI又はHII−Li−Co−
14から戒る4rIj.分から成る水素吸蔵合金電極を
用いた対照セルNQ 3、ね4及びNQ5は、そのサイ
クル寿命の著しい改善は見られないことが分かる.更に
、これら上記の5成分系の水素吸蔵合金電極であっても
、その組成式Maxi. Cob At。W4において
、そのCの値が1を越える場合(対照セルklo) 、
或いは、そのdの値が0.5を越える場合(対照セルN
Q11)は、サイクル寿命及び放電容量が低下すること
が分かる。即ち、セル:No. b〜No. 9から明
らかなように、Cの値がOくc≦1、dの値がOdd≦
0,5の範囲においてサイクル寿命の著しい改善が得ら
れることが分かる、 尚、長期に夏る多くの試験研究の結果、^1に代えてS
i及びCrを使用し’rtA+と同様の効果を得られる
ことが分かった, 又 Wに代えてGeを欧用しても同様の効果が得られる
ことが汁かった. 従って、本発明において^1、Si.Crl総括した群
をAで表示し、WとGeを総括した群をBで表示すると
、本発明の水素吸蔵合金から成る電極として優れた、特
に、サイクル寿命の著しい向上を得る7k素吸蔵合金は
,一般式Hill. CObAゆBvの一般式で表され
、この場合、そのAは旧、Si及びC『から成る群から
撰ばれた少なくとも一種であり、BはW及び6eから或
る群から撰ばれた少なくとも一種であり、Cの値は0く
C≦1、dの値はO<d≦0.5の範囲であると特定さ
れる。更に、本発明の上記組成の水素吸蔵合金につき検
討してみた所、前記の一般式旧Ni. Cob AeB
aで示される合金は、CaCu5uの六方品構造を持ち
、この六方晶′#1遣を持つ合金では化学量論的にCO
s  (但し、Cは上記組成式でHI1を、又、DはN
 i−Co−A−b合金を表す)から若干ずれた組成で
も六方晶構造を維持するが、Dの組成比が±10%より
大きくずれるとこの構造を保てず、水素吸蔵合金として
の特性が損なわれることが分かった。よって、上記組或
式において、4.5≦a+b+c刊≦5.5の範囲とす
る必要がある. 〔発明の効果〕 このように本発明によるときは− Hr#N+. Co
bA.B.なる一般組成式(但し、Mnはミッシュメタ
ル、Aは^1、Si及びC『から成る群より撰ばれた少
なくとも17!、BはW及びGeから或る群より撰ばれ
た少なくとも1!!、且つ4.5≦a+l)+cod≦
5.5 、O<c≦1、0<d≦0.5)で表される合
金を、アルカリ蓄電池の負極として用いるときは、従来
のLaN i又はlaNi2Co,に比し電池のサイク
ル寿命を著しく向上し得る効果を有ずる.
After charging these cells NQ1 to N011 with a current of 0.20 for 6 hours, the cell voltage rose to 1.5C with a current of 0.5C.
A charge/discharge cycle test was conducted under the condition of discharging until OV, and the cycle life was determined as the life when the initial capacity decreased to 60%.The initial discharge capacity of each cell (nAH/1 ) and cycle life (cycles) are shown in Table 1 below.As is clear from Table 1, the cycle life of Cells NQ6 to Has9 was over 200 cycles, while that of hydrogen alloy 1K with the conventional composition. Cellsha! and NQ2, which use poles, have extremely short cycle lives of only 20 and 30.
Cells 11Q3, 14, using electrodes with comparative sets
It can be seen that the cycle lives of cells 5, 10, and 11 are longer than conventional cells 11ll1 and NQ2, but significantly shorter than cells 6 to NQ9 using the electrodes of the present invention. That is, the cells NQ6 to Hidden 9 of the present invention are compared to the control cell Nα
3. As is clear from the comparison with NQ4 and Na5, Hll
Cells lIG6 to NQ9 using ti consisting of a five-component hydrogen storage alloy of -Ni-Co-^+-W have a markedly extended cycle life, whereas cells containing either ^1 or W from Ha-Li-Co lacking or Hl-Li-Co-AI or HII-Li-Co-
4rIj. It can be seen that the control cells NQ 3, NQ 4 and NQ 5, which used hydrogen storage alloy electrodes consisting of 50% hydrogen storage alloy electrodes, showed no significant improvement in their cycle lives. Furthermore, even in these five-component hydrogen storage alloy electrodes, the compositional formula Maxi. Cob At. In W4, if the value of C exceeds 1 (control cell klo),
Or, if the value of d exceeds 0.5 (control cell N
It can be seen that for Q11), the cycle life and discharge capacity decrease. That is, cell: No. b~No. 9, the value of C is O, c≦1, and the value of d is Odd≦
It can be seen that a significant improvement in cycle life can be obtained in the range of 0.5.As a result of many long-term test studies, S
It was found that the same effect as 'rtA+ could be obtained by using i and Cr, and it was also interesting to see that the same effect could be obtained by using Ge instead of W. Therefore, in the present invention, ^1, Si. When the Crl group is indicated by A, and the W and Ge group is indicated by B, the hydrogen storage alloy of the present invention is excellent as an electrode, and in particular, the 7k element storage alloy has a remarkable improvement in cycle life. , general formula Hill. It is represented by the general formula CObAyuBv, in which A is at least one member selected from the group consisting of old, Si, and C, and B is at least one member selected from the group consisting of W and 6e. It is specified that the value of C is in the range of 0 and C≦1, and the value of d is in the range of O<d≦0.5. Furthermore, when we investigated the hydrogen storage alloy of the present invention having the above composition, we found that the above general formula old Ni. Cob AeB
The alloy indicated by a has a hexagonal structure of CaCu5u, and the alloy with this hexagonal structure has a stoichiometric CO
s (However, C is HI1 in the above composition formula, and D is N
Although the hexagonal crystal structure is maintained even if the composition slightly deviates from the i-Co-A-b alloy), if the composition ratio of D deviates by more than ±10%, this structure cannot be maintained and the characteristics as a hydrogen storage alloy are lost. was found to be damaged. Therefore, in the above set formula, it is necessary to set the range of 4.5≦a+b+c publication≦5.5. [Effects of the Invention] As described above, according to the present invention - Hr#N+. Co
bA. B. (where Mn is a misch metal, A is ^1, at least 17 selected from the group consisting of Si and C', B is at least 1 selected from a group consisting of W and Ge), and 4.5≦a+l)+cod≦
5.5, O<c≦1, 0<d≦0.5), when used as the negative electrode of an alkaline storage battery, the cycle life of the battery is significantly increased compared to conventional LaNi or laNi2Co. It has the effect of improving.

Claims (1)

【特許請求の範囲】[Claims] 1、一般式MnNi_aCO_bA_cB_d(但し、
Mnはミッシュメタル、AはAl、Si及びCrから成
る群より撰択された少なくとも1種、BはW及びGeか
ら成る群より撰択された少なくとも1種、且つ4.5≦
a+b+c+d≦5.5、0<c≦1、0<d≦0.5
)で表される水素吸蔵合金から成るアルカリ蓄電池用水
素吸蔵電極。
1. General formula MnNi_aCO_bA_cB_d (however,
Mn is a misch metal, A is at least one selected from the group consisting of Al, Si and Cr, B is at least one selected from the group consisting of W and Ge, and 4.5≦
a+b+c+d≦5.5, 0<c≦1, 0<d≦0.5
) A hydrogen storage electrode for alkaline storage batteries made of a hydrogen storage alloy.
JP1192979A 1989-07-26 1989-07-26 Hydrogen storage electrode for alkaline storage battery Expired - Lifetime JPH0750605B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1192979A JPH0750605B2 (en) 1989-07-26 1989-07-26 Hydrogen storage electrode for alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1192979A JPH0750605B2 (en) 1989-07-26 1989-07-26 Hydrogen storage electrode for alkaline storage battery

Publications (2)

Publication Number Publication Date
JPH0357158A true JPH0357158A (en) 1991-03-12
JPH0750605B2 JPH0750605B2 (en) 1995-05-31

Family

ID=16300221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1192979A Expired - Lifetime JPH0750605B2 (en) 1989-07-26 1989-07-26 Hydrogen storage electrode for alkaline storage battery

Country Status (1)

Country Link
JP (1) JPH0750605B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0645003A (en) * 1992-06-09 1994-02-18 Furukawa Battery Co Ltd:The Manufacture of sealed storage battery by using hydrogen storage electrode and hydrogen storage alloy for this electrode

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0268856A (en) * 1988-09-01 1990-03-08 Sanyo Electric Co Ltd Hydrogen occluded alloy electrode
JPH02220356A (en) * 1989-02-21 1990-09-03 Sanyo Electric Co Ltd Hydrogen storage alloy electrode for alkaline battery and manufacture thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0268856A (en) * 1988-09-01 1990-03-08 Sanyo Electric Co Ltd Hydrogen occluded alloy electrode
JPH02220356A (en) * 1989-02-21 1990-09-03 Sanyo Electric Co Ltd Hydrogen storage alloy electrode for alkaline battery and manufacture thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0645003A (en) * 1992-06-09 1994-02-18 Furukawa Battery Co Ltd:The Manufacture of sealed storage battery by using hydrogen storage electrode and hydrogen storage alloy for this electrode

Also Published As

Publication number Publication date
JPH0750605B2 (en) 1995-05-31

Similar Documents

Publication Publication Date Title
JPH02277737A (en) Electrode made of hydrogen storage alloy
JPS60241652A (en) Electrochemical electrode employing metal hydride
US5149383A (en) Hydrogen storage alloy electrode
JP3123049B2 (en) Hydrogen storage alloy electrode
JP3133593B2 (en) Hydrogenable material for negative electrode of nickel-hydride battery
KR19980085375A (en) Micro Metals and Nickel-Based Hydrogen Storage Alloys for Ni / MH Secondary Batteries
JPH0448042A (en) Hydrogen occluding electrode
JP2004285406A (en) Hydrogen storage alloy and electrode for nickel-hydrogen battery using the same
JPS62271349A (en) Hydrogen occlusion electrode
JPS62271348A (en) Hydrogen occlusion electrode
JPH0357158A (en) Hydrogen storage electrode for alkaline storage battery
JPS62249358A (en) Hydrogen storage electrode
JPH04301045A (en) Hydrogen storage alloy electrode
JP3412170B2 (en) Hydrogen storage electrode
JPH0357157A (en) Hydrogen storage electrode for alkaline storage battery
JPS62259344A (en) Hydrogen absorbing electrode
US5541018A (en) Hydrogen storing alloy electrode
JPS62184765A (en) Hydrogen absorbing electrode
JPH0797497B2 (en) Hydrogen storage electrode
JPH0953137A (en) Hydrogen storage alloy and hydrogen storage alloy electrode
JPH03126833A (en) Hydrogen occluding electrode for alkaline storage battery
JP3011454B2 (en) Hydrogen storage alloy for secondary batteries
JPH03126832A (en) Hydrogen occluding electrode for alkaline storage battery
JPH0582125A (en) Hydrogen occluding alloy electrode
JPS62249357A (en) Hydrogen storage electrode