JPS62259344A - Hydrogen absorbing electrode - Google Patents

Hydrogen absorbing electrode

Info

Publication number
JPS62259344A
JPS62259344A JP61102849A JP10284986A JPS62259344A JP S62259344 A JPS62259344 A JP S62259344A JP 61102849 A JP61102849 A JP 61102849A JP 10284986 A JP10284986 A JP 10284986A JP S62259344 A JPS62259344 A JP S62259344A
Authority
JP
Japan
Prior art keywords
alloy
hydrogen absorbing
hydrogen storage
hydrogen
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61102849A
Other languages
Japanese (ja)
Inventor
Seiji Kameoka
亀岡 誠司
Takanao Matsumoto
松本 孝直
Shuzo Murakami
修三 村上
Sanehiro Furukawa
古川 修弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP61102849A priority Critical patent/JPS62259344A/en
Publication of JPS62259344A publication Critical patent/JPS62259344A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/383Hydrogen absorbing alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/242Hydrogen storage electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To restrict the property deterioration owing to the corrosion of the alloy, and to reduce the capacity deterioration owing to the micropowdering of the alloy, by including a hydrogen absorbing alloy descrived in a specific formula. CONSTITUTION:In the hydrogen absorbing electrode, a hydrogen absorbing alloy descrived in the formula I is included. La, Li, and Co, and at least one metal selected out of Ag, Zn, Ga, In, Ge, Sb, Tl, Pb, W, Bi, and Pb are weighed and mixed at a given composition ratio, then heated and dissolved in an arc melting furnace to make an alloy, crushed mechanically after cooling, and various kinds of hydrogen absorbing alloy powders are made. These hydrogen absorbing alloy powders of 80wt%, acetylene black of 10wt% as a conductive material, and fluororesin powder of 10wt% as a binder, are mixed, and after the fluororesin powder is made into fiber, the mixture is wrapped by nickel-gold wires, and pressed and formed into various kinds of hydrogen absorbing electrodes.

Description

【発明の詳細な説明】 ピ〕 産業上の利用分野 この発明は、アルカリ蓄′#lL池の隘極7よどに用い
らnる水素吸蔵電極に関するものである。
DETAILED DESCRIPTION OF THE INVENTION B. Field of Industrial Application This invention relates to a hydrogen storage electrode used in the pole 7 of an alkaline storage pond.

(ロ)従来の技術 従来からよ(用いられている蓄電池とじてにニッケルー
カドミウム蓄電池の如きアルカリ蓄電池、あるいは鉛蓄
電池などがあるが、近年、こnらの域准エリ軽蓋且つ高
容愈で高エネルギー密度となる町1目注のある。水素吸
蔵合金を用いてなる水素吸R1極?陰極に備えた金属−
水素アルカリ蓄電池が注目さ几ている。
(b) Conventional technology Traditionally, storage batteries used include alkaline storage batteries such as nickel-cadmium storage batteries, and lead-acid storage batteries, but in recent years, these types of batteries have been developed with light lids, high capacity, and high capacity. The city is attracting attention for its energy density.Hydrogen absorbing R1 electrode made of hydrogen absorbing alloy?Metal for cathode-
Hydrogen-alkaline storage batteries are attracting attention.

上記の工うな水素吸蔵合金としてぼ1例えば特公昭59
−49671号公報に開示さnているように、LaN1
3やその改良である三元素系のLaNi 4CO、La
Ni 4cu及びLaN1a、aFeo、2rzどの合
金が知ら−n”l:#lハこnらの合金粉末を導電材粉
末と共に焼結してなる多孔体を水素吸蔵を他としたり、
あるいにこnら水素吸蔵合金粉末と4′IIIL材粉末
との混合物を耐電解液性の粒子状結ii剤に工つて電也
叉待体Vc固看させて水素吸蔵電極とする方法などが採
らnでいる。
As the hydrogen storage alloy mentioned above, for example,
As disclosed in Publication No.-49671, LaN1
3 and its improved three-element system LaNi 4CO, La
Alloys such as Ni 4cu, LaN1a, aFeo, and 2rz are known, and porous bodies made by sintering these alloy powders together with conductive material powders can be used for hydrogen storage,
Alternatively, a mixture of a hydrogen storage alloy powder and a 4'IIIL material powder is made into a particulate binding agent that is resistant to electrolyte solution, and a hydrogen storage electrode is made by fixing the electrically intersecting body Vc. is taken n.

(ハ)発明が解決しょうとする問題点 しかしながら、上記従来の水素吸蔵合金に電池内のアル
カリ電解層に対する耐蝕性が低く、この合金の屑蝕lC
Cる電極の特注省化VC−リ、水紫吸蔵電極のサイクル
特注に問題がある。また、この檀の水素吸蔵電極に用い
らnる水素吸蔵合金は。
(c) Problems to be solved by the invention However, the conventional hydrogen storage alloy described above has low corrosion resistance to the alkaline electrolyte layer in the battery, and the corrosion resistance of this alloy to the alkaline electrolyte layer in the battery is low.
There is a problem with the custom-made cycle saving of the C-ru electrode and the water-violet absorption electrode. In addition, the hydrogen storage alloy used for this hydrogen storage electrode is as follows.

上記電池に組込まnた状態に3いて電池の光放電により
て隘極活物質である水素を吸蔵しあるいζ放出するもの
であり1元放電サイクルに伴り上記吸蔵尋放出の繰り返
しによって合金格子が変形して微粉化を起こすと45問
題もあり、微粉化した水素吸蔵合金が電極から脱落する
のでmcaサイクル中にお1する電極容量の低下が大き
くなってしまう。
When incorporated into the battery, it absorbs or releases hydrogen, which is the polar active material, by photodischarge of the battery, and the alloy lattice is formed by repeating the occlusion and release during the single discharge cycle. There is also a problem when the hydrogen storage alloy is deformed and pulverized, and the pulverized hydrogen storage alloy falls off from the electrode, resulting in a large decrease in electrode capacity during the mca cycle.

に)問題l:L’を解決する几めの手段本発明の水素吸
蔵電極は式LaNixCoyMz(但しMr!Ag、Z
n、Ga、In、Go。
) Problem l: Elaborate means to solve L' The hydrogen storage electrode of the present invention has the formula LaNixCoyMz (where Mr!Ag, Z
n, Ga, In, Go.

Sb 、 Tz 、 Pb 、W、 B i、am6選
ばn7を少なくとも151の元素、45≦x+y+z≦
5.5.0<Z<2.0)で表わされる水素吸蔵合金を
含んでなることを要旨とする◎ (ホ)作 用 上紀組氏式で示さnる水素吸蔵合金は合金腐食による4
v注劣化が小さく且つ合金微粉化による容量低下が少な
いので、吸蔵水素の利用率が同上し長期サイクル%注に
優れた水素吸蔵合金を提供することかでさる。
Sb, Tz, Pb, W, B i, am6 selected n7 is at least 151 elements, 45≦x+y+z≦
5.5.0 < Z < 2.0) ◎ (E) Effect Hydrogen storage alloy n shown in the Jokigumi formula is 4 due to alloy corrosion.
The purpose of this invention is to provide a hydrogen storage alloy which has a low deterioration and a small decrease in capacity due to alloy pulverization, so the utilization rate of stored hydrogen is the same as above and the long-term cycle rate is excellent.

(へ)*m例 、6ヒL 市販のLa(純g99.5%以上)、N1(99八 i以上LCO(純嵐99%以上]J及び前記式%式%S b、Tj、Pb、W及びBitr−ら選ばnた少なくと
も161の金楓t−lG1表の組底比で大々秤量し。
(to) *m example, 6hiL Commercially available La (99.5% or more pure g), N1 (998i or more LCO (99% or more pure Arashi) J and the above formula % formula %S b, Tj, Pb, At least 161 gold maples selected by W and Bitr et al.

且つ混合しS久いで不活性アルゴン雰囲気下で7−ク溶
牌炉に人乳て加熱溶解して合金化し、冷却した後機械的
に50声m以下に粉砕して各種組成の水素吸蔵合金粉末
を得喪。
After mixing, the mixture is heated and melted in a 7-kilogram melting furnace under an inert argon atmosphere to form an alloy, and after cooling, it is mechanically crushed to a size of 50 mm or less to produce hydrogen storage alloy powders of various compositions. Mourning.

こnらの各植水素吸賊合金粉末を80憲t%、導電材と
してのアセチレンブラックt−10!量%。
Each of these hydrogen absorbent alloy powders is used at 80% t%, and acetylene black T-10 is used as a conductive material! amount%.

及び結着剤としてのフッ素樹脂粉末t−10重量%ずつ
そnぞn混合し、またこのフッ素樹脂を繊維化させた俊
、ニッケル金線で混合物を包み込み且つ5ton/−で
刀口圧成型して各種の水素吸蔵41′ljを作製した。
and 10% by weight of fluororesin powder as a binder were mixed together, and the mixture was wrapped with nickel gold wire made of fiberized fluororesin, and the mixture was press-molded at 5 tons/-. Various hydrogen storage 41'lj were fabricated.

尚、こnらの水素吸蔵電極に用いた水素吸蔵合金粉末j
1は大々1.52である。
In addition, the hydrogen storage alloy powder used for these hydrogen storage electrodes
1 is roughly 1.52.

そして、上記で得た水素吸蔵電極t−線陰極し。Then, the hydrogen storage electrode obtained above was used as the t-line cathode.

こnに理論放電容量が600mAHの公知の焼結式ニッ
ケル電極を陽極として組合せ、アルカリ電屏液として水
酸化カリウム溶液を用−て、密閉型ニッケルー水素アル
カリ蓄”[a(A−W)を作製した。
A well-known sintered nickel electrode with a theoretical discharge capacity of 600 mAH was combined as an anode, and a potassium hydroxide solution was used as the alkaline electrolyte to form a closed type nickel-hydrogen alkaline storage (a(A-W)). Created.

、= n E) O’4池A−Wf4に1間率((L2
5C)O電流で5時間放電した後、2時間率(α5C)
の電流で電池電圧が1.OVKなるまで放電するという
条件で光放電フイクル試験七行ない、サイクル寿命tm
ぺた。電池A、Vの初期の放電容量(mAHJとサイク
ル寿命(回〕を#4表に併せて示し友。
, = n E) O'4 Pond A-Wf4 has a rate of 1 ((L2
5C) After discharging for 5 hours with O current, the 2 hour rate (α5C)
With a current of , the battery voltage is 1. A photodischarge film test was performed for seven cycles under the condition of discharging until OVK, and the cycle life tm
Peta. The initial discharge capacity (mAHJ) and cycle life (times) of Batteries A and V are also shown in Table #4.

以下余白 上表より、La−Ni−Coの3成分系の水素吸蔵合金
rアルL&N l 2 Co s、LaNi s C0
2i大々含んでなる水素吸蔵合金t”陰極に使用した比
較用のt池T、Uは、サイクル特性あるいに電池放電容
量が差程扁くIよい。こnに対して。
Below, from the table above in the margin, three-component hydrogen storage alloys of La-Ni-Co are L&N l 2 Cos, LaNi s C0
Comparative cells T and U used for the cathode of the hydrogen storage alloy T'' which contains a large amount of 2i are much thinner and better in cycle characteristics and battery discharge capacity.

本発明に係るLa−Ni−Co−Mの4成分系の水素吸
蔵合金を用いた’14/lI!A、 P #よび5成分
系の水素吸蔵合金を用いた電5Q−8は、サイクル特性
が上記を池T、Uに較べて著しく同上しているO この工すに本発明に係る電池A〜Sの特注がよいのは、
−極である水素吸蔵合金に用いた水素吸蔵合金として、
前記組成式1csvhてMで表わした1種またはそれ以
上の元素七添加含何させたものを用いたことに衣ること
は明ら刀1である。そして上表に8いて本発明電池A〜
D、G〜に、Q〜S。
'14/lI using the La-Ni-Co-M four-component hydrogen storage alloy according to the present invention! Battery 5Q-8, which uses A, P # and a five-component hydrogen storage alloy, has cycle characteristics that are significantly better than batteries T and U. The advantage of custom S is that
- As a hydrogen storage alloy used in the hydrogen storage alloy that is the pole,
It is obvious that the above compositional formula 1csvh is based on the use of one or more of the elements represented by M. And in the table above, there are 8 and this invention battery A~
D, G~, Q~S.

比較を池T、Vの実験結果より添加含倚させる元素とし
て特にlb族からyb族に層するGa、In、Ge、S
bf:用いた場合、!池すイクル特性の向上が著しいこ
とがわかる。こ八はこの元素の添加Vcよって水素吸蔵
合金のアルカリ電解液中での耐蝕性が非常に向上したこ
とVC依るものと−Vえらnる。
Based on the experimental results of Ike T and V, Ga, In, Ge, and S, which are added to the layers from the lb group to the yb group, are considered as elements to be added.
bf: When used, ! It can be seen that the water cycle characteristics are significantly improved. The reason for this is that the corrosion resistance of the hydrogen storage alloy in an alkaline electrolyte was greatly improved by the addition of this element.

まり不発n電?tI!E、 F’、 L−Q、比較’K
mT。
Mari misfire n electricity? tI! E, F', L-Q, comparison 'K
mT.

U 、 WLD夷験結未エリ添加宮町させる元素として
遷移輩稿に4するAg 、Zni用いた場合サイクル特
注同上に加えて、水素吸蔵電極の容量が同上してt准の
放1を容量が増大する効果がある。これに、こnら元素
の添加にエリ水素吸蔵合金内に吸蔵ざnる陰極活物質で
ある水素の安定性か減少して吸蔵・放出がさn易くなる
結果、水素吸蔵′rIL極での水素の邂気化学的オU用
率が上昇したためと考えらする。更に上表エリGaを添
加した1IC池A。
When Ag and Zni are used in the transition paper as elements that cause U, WLD experiments and unresolved additions, in addition to the above, the capacity of the hydrogen storage electrode is the same as above, and the capacity of the release 1 of t is increased. It has an increasing effect. In addition, the addition of these elements reduces the stability of hydrogen, which is the cathode active material that is stored in the hydrogen storage alloy, and makes it easier to store and release hydrogen. It is thought that this is due to an increase in the chemical usage rate of hydrogen. Furthermore, 1IC Pond A added Eri Ga in the above table.

G−K P V I A g ’を市1M L&’QE
aE、  t、、p 、 ’IIの実験結果エリ水素吸
蔵合金の前記組成式に於て。
G-K P V I A g' to city 1M L&'QE
Experimental results of aE, t,, p, 'II in the above composition formula of the hydrogen storage alloy.

2の値が0.5の場合が最も効果があり、2の増加に従
って効果が減少し、2の値が2.0より大さい場合にぼ
逆に特性が悪化する。したがつて上記Mで表わさnる元
素の合並への添加(としては前記組成式にSいてO<Z
<2.0の範囲がよい。
The effect is most effective when the value of 2 is 0.5, the effect decreases as 2 increases, and the characteristics worsen when the value of 2 is greater than 2.0. Therefore, the addition of n elements represented by M above (as in the above compositional formula, if S and O<Z
A range of <2.0 is preferable.

tfc、 mN+JLaK、L a N i x Co
 yMxで示される合金はCaCu5型の六方晶44造
【もち、この六万晶溝造を狩つ合金では化学に綱的にA
B5(Arr、上adffig式でLak、ま7HBH
Ni−C。
tfc, mN+JLaK, LaNixCo
The alloy indicated by yMx has a CaCu5-type hexagonal crystal structure of 44 crystals.
B5 (Arr, Lak in the upper addfig formula, 7HBH
Ni-C.

−M合金を表わ丁)刀・ら若干ずn九組成でも六万晶郁
還を維付するが、Bの組匡比が±10鳴より人さくずn
るとこの1造を保てず、第4M、分であるよ@dMで表
わさnる元素の暉加の付熱に拘らず丞索a斌合金として
の特性が損わnる。よって。
- Although M alloy is represented by a sword, the ratio of 60,000 crystals is maintained even if the composition is 9.
In this case, this structure cannot be maintained, and the properties as an alloy are impaired regardless of the heating of the element represented by dM. Therefore.

上記組成式Vcj6いてx+y+zの値に45以上且つ
5.5以下とする必要があり、こうすることで水素吸蔵
合金の前犯倣粉化及び微粉化に伴う1極からの酋輩7悦
?!8を効果面に防げる。尚水素吸蔵合金VC示加言何
させる元素としては上記英見例に挙け^ものの他、Tz
、Pb、bl/、Biなども置台。
In the above compositional formula Vcj6, the value of x + y + z must be 45 or more and 5.5 or less, and by doing so, it is possible to reduce the number of seniors from one pole due to the pulverization and pulverization of the hydrogen storage alloy. ! 8 can be effectively prevented. In addition to the above-mentioned examples, the elements that cause the addition of hydrogen storage alloy VC include Tz
, Pb, bl/, Bi, etc. are also placed on the stand.

耐食性同上に効果があり、水累吸蔵′1櫃のサイクル特
性同上VCを与する。また上表′域准U〜Wの実験結果
より祭力口する元素の数として1檜に限らず複数極の元
素七砒刀口丁◇ことにエリ同僚の効果が得らnることが
Vかる。
It has the same effect on corrosion resistance as above, and provides the same VC as above on the cycle characteristics of the water storage tank. In addition, from the experimental results in the above table's area Jun-W, it can be seen that the number of elements involved in the ritual force is not limited to one, but multiple elements. .

(へ)発明の効果 z 、 pb 、w及びBi力16選ばnた少なくとも
1種の元素、45≦x+y+z≦5.s、s 、 O<
Z<2゜0)で表わさnる水素吸蔵合金を含ひ不発8A
電極によnば、アルカリ電解液中にお(する耐蝕性が著
しく同上し且つ合金微粉化による極板容量低下も小さい
ことから、吸蔵水素のオリ用率が同上しサイクル特性に
優nた水素吸R1に極が得らnる。
(f) Effects of the invention z, pb, w and Bi force 16 At least one selected element, 45≦x+y+z≦5. s, s, O<
Unexploded 8A containing a hydrogen storage alloy represented by Z<2゜0)
In terms of electrodes, the corrosion resistance of the alkaline electrolyte is extremely high, and the decrease in electrode plate capacity due to pulverization of the alloy is small. A pole is obtained at absorption R1.

また轡に上記式中%MとしてZn 、Agi用いた時に
前記効果に加え放tg*大なる7に:A吸蔵電極が得ら
nされめて工業的価値大なるものである。
Furthermore, when Zn and Agi are used as %M in the above formula, in addition to the above-mentioned effects, a large 7:A storage electrode is obtained, which is of great industrial value.

出臥三洋48i株式会社Dega Sanyo 48i Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] (1)式LaNi_xCo_yM_z(但しMはAg、
Zn、Ga、In、Ge、Sb、Tl、Pb、W、Bi
から選ばれた少なくとも1種の元素、45≦x+y+z
≦5.5、0<Z<2.0)で表わされる水素吸蔵合金
を含んでなることを特徴とする水素吸蔵電極。
(1) Formula LaNi_xCo_yM_z (where M is Ag,
Zn, Ga, In, Ge, Sb, Tl, Pb, W, Bi
At least one element selected from 45≦x+y+z
A hydrogen storage electrode comprising a hydrogen storage alloy represented by ≦5.5, 0<Z<2.0).
JP61102849A 1986-05-02 1986-05-02 Hydrogen absorbing electrode Pending JPS62259344A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61102849A JPS62259344A (en) 1986-05-02 1986-05-02 Hydrogen absorbing electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61102849A JPS62259344A (en) 1986-05-02 1986-05-02 Hydrogen absorbing electrode

Publications (1)

Publication Number Publication Date
JPS62259344A true JPS62259344A (en) 1987-11-11

Family

ID=14338388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61102849A Pending JPS62259344A (en) 1986-05-02 1986-05-02 Hydrogen absorbing electrode

Country Status (1)

Country Link
JP (1) JPS62259344A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63131467A (en) * 1986-11-19 1988-06-03 Sanyo Electric Co Ltd Metal-hydrogen alkaline storage battery
EP0383991A2 (en) * 1989-02-23 1990-08-29 Matsushita Electric Industrial Co., Ltd. Alkaline storage battery using hydrogen absorbing alloy
JPH0357157A (en) * 1989-07-26 1991-03-12 Furukawa Battery Co Ltd:The Hydrogen storage electrode for alkaline storage battery

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60109183A (en) * 1983-11-17 1985-06-14 Matsushita Electric Ind Co Ltd Sealed type nickel-hydrogen storage battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60109183A (en) * 1983-11-17 1985-06-14 Matsushita Electric Ind Co Ltd Sealed type nickel-hydrogen storage battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63131467A (en) * 1986-11-19 1988-06-03 Sanyo Electric Co Ltd Metal-hydrogen alkaline storage battery
EP0383991A2 (en) * 1989-02-23 1990-08-29 Matsushita Electric Industrial Co., Ltd. Alkaline storage battery using hydrogen absorbing alloy
JPH0357157A (en) * 1989-07-26 1991-03-12 Furukawa Battery Co Ltd:The Hydrogen storage electrode for alkaline storage battery
JPH07105230B2 (en) * 1989-07-26 1995-11-13 古河電池株式会社 Hydrogen storage electrode for alkaline storage battery

Similar Documents

Publication Publication Date Title
JPH02277737A (en) Electrode made of hydrogen storage alloy
JPS62259344A (en) Hydrogen absorbing electrode
JPS62271349A (en) Hydrogen occlusion electrode
JPS62249358A (en) Hydrogen storage electrode
JPS62271348A (en) Hydrogen occlusion electrode
JP2680566B2 (en) Hydrogen storage electrode
JP2962814B2 (en) Hydrogen storage alloy electrode
JPS6220245A (en) Enclosed type alkaline storage battery
JP3587213B2 (en) Negative electrode active material for air-Ga primary battery and air-Ga primary battery using the same
JP3268015B2 (en) Hydrogen storage alloy and hydrogen storage alloy electrode
JPH0953137A (en) Hydrogen storage alloy and hydrogen storage alloy electrode
JP3276677B2 (en) Hydrogen storage alloy electrode
JPH0463240A (en) Hydrogen storage alloy electrode and battery using it
JPH0357158A (en) Hydrogen storage electrode for alkaline storage battery
JPH0357157A (en) Hydrogen storage electrode for alkaline storage battery
JPH04167365A (en) Hydrogen storage electrode
JPH08319529A (en) Hydrogen storage alloy and hydrogen storage alloy electrode
JP3082341B2 (en) Hydrogen storage electrode
JPH0815079B2 (en) Hydrogen storage electrode
JPH0953135A (en) Hydrogen storage alloy and hydrogen storage alloy electrode
JPS61288371A (en) Hydrogen occlusion electrode
JPH0582125A (en) Hydrogen occluding alloy electrode
JPH0569889B2 (en)
JPH0696762A (en) Hydrogen storage alloy electrode and its manufacture
JPH0584025B2 (en)