JPH04167365A - Hydrogen storage electrode - Google Patents

Hydrogen storage electrode

Info

Publication number
JPH04167365A
JPH04167365A JP2292569A JP29256990A JPH04167365A JP H04167365 A JPH04167365 A JP H04167365A JP 2292569 A JP2292569 A JP 2292569A JP 29256990 A JP29256990 A JP 29256990A JP H04167365 A JPH04167365 A JP H04167365A
Authority
JP
Japan
Prior art keywords
alloy
hydrogen storage
hydrogen
layer
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2292569A
Other languages
Japanese (ja)
Inventor
Keiichi Hasegawa
圭一 長谷川
Hiroyuki Mori
宏之 森
Masahiko Oshitani
政彦 押谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Corp
Yuasa Battery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Corp, Yuasa Battery Corp filed Critical Yuasa Corp
Priority to JP2292569A priority Critical patent/JPH04167365A/en
Publication of JPH04167365A publication Critical patent/JPH04167365A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Physical Vapour Deposition (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To enhance the oxidation resistance of a hydrogen storage alloy by providing the hydrogen storage allay with an amorphous layer, and also providing the layer on the surface of the alloy. CONSTITUTION:The progress of oxidation of a hydrogen storage alloy is caused by the enlargement of the surface area of the allay due to pulverization of crystal as the crystal is expanded and contracted by repetition of the storage and release of hydrogen. When the surface layer of the hydrogen storage alloy is provided with an amorphous layer pulverization of the alloy is restrained and the progress of oxidation of alloy powder is prevented and also the active material is prevented from falling off. When an amorphous layer is provided to an alloy of the same composition the amount of hydrogen stored in the alloy is smaller than that stored in the inner hydrogen storage alloy but the alloy has an ability to store a large amount of hydrogen so the energy density of the hydrogen storage electrode is not lowered so much as when the electrode is covered at its surface with a metal which does not contain hydrogen at all, and a new phase is generated in a boundary area between the surface layer and the internal layer and the ability of the alloy to store hydrogen would not be lost.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、水素を可逆的に吸蔵放出可能な水素吸蔵電極
の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an improvement in a hydrogen storage electrode capable of reversibly absorbing and desorbing hydrogen.

従来技術の問題点 水素吸蔵合金を用いたニッケルー水素電池において、水
素吸蔵合金の劣化は、電池の寿命を決定する鼓も重要な
因子である。合金が劣化するのは種々の原因によるか、
例えば、合金の酸化、腐食による劣化が考えられる。特
に、密閉形電池においてはニッケルーカドミウム電池同
様、充電末期に正極から発生する酸素ガスを負極の水素
吸蔵電極上で還元することで密閉化を図っている。この
ため、水素吸蔵合金は常に活性な酸素ガスと接触してお
り、そのことによって合金は酸化され、合金構成元素の
溶出、酸化物あるいは水酸化物の生成などにより、次第
に劣化していく。また、エレクトロニクス機器に組み込
まれた場合、電池を複数個接続して用いることも多く、
この様な場合、容量の少ない電池が含まれていると、そ
の電池は過放電され、水素吸蔵合金表面で酸素ガスが発
生する、きわめて酸化され易い状況に至る。この様な状
態になると、電極は、酸化物層で覆われたり、先述のよ
うな溶出などの現象が起こり、水素吸蔵能は低下し、電
極劣化に至る。特に酸化物層で覆われた場合、放電時の
水素イオン化反応が阻害されることが考えられる。
Problems with the Prior Art In a nickel-metal hydride battery using a hydrogen storage alloy, deterioration of the hydrogen storage alloy is an important factor in determining the battery life. There are various reasons why alloys deteriorate.
For example, deterioration due to oxidation or corrosion of the alloy may be considered. In particular, in sealed batteries, like nickel-cadmium batteries, airtightness is achieved by reducing oxygen gas generated from the positive electrode at the end of charging on the hydrogen storage electrode of the negative electrode. Therefore, the hydrogen storage alloy is constantly in contact with active oxygen gas, which causes the alloy to be oxidized and gradually deteriorate due to elution of alloy constituent elements, generation of oxides or hydroxides, etc. In addition, when incorporated into electronic equipment, multiple batteries are often connected and used.
In such a case, if a battery with a low capacity is included, the battery will be over-discharged, leading to a situation in which oxygen gas is generated on the surface of the hydrogen storage alloy, making it extremely susceptible to oxidation. In such a state, the electrode becomes covered with an oxide layer, or phenomena such as elution as described above occur, and the hydrogen storage capacity decreases, leading to electrode deterioration. Particularly when covered with an oxide layer, it is thought that the hydrogen ionization reaction during discharge is inhibited.

二のような、水素吸蔵合金の酸化防止を目的として、特
開昭61−64069号公報に開示される如く、合金表
面を耐アルカリ性金属で覆ってしまうことが提案されて
いる。
For the purpose of preventing oxidation of hydrogen storage alloys, as disclosed in Japanese Unexamined Patent Publication No. 61-64069, it has been proposed to cover the alloy surface with an alkali-resistant metal.

しかLlこの様な方法であれば、実質的に水素を吸蔵放
出しない金属を多量に添加することになり、重量エネル
ギー密度は、銅で被覆した場合、20%も低下する。こ
のためこの電極のもつ高エネルギー密度性か失われる問
題があった。
However, if such a method is used, a large amount of metal that does not substantially absorb or release hydrogen will be added, and the gravimetric energy density will decrease by as much as 20% when coated with copper. Therefore, there was a problem that the high energy density property of this electrode was lost.

発明の目的 本発明は、エネルギー密度の低下を最小限に抑え、かつ
水素吸蔵合金の耐酸化性を向上させ、長期の使用に耐え
うる、水素吸蔵電極を提供することを目的とする。
OBJECTS OF THE INVENTION An object of the present invention is to provide a hydrogen storage electrode that can minimize the decrease in energy density, improve the oxidation resistance of a hydrogen storage alloy, and withstand long-term use.

発明の構成 本発明は、水素吸蔵合金に非晶質層を設け、且つそれが
、水素吸蔵合金表面にあることを特徴とする、水素吸蔵
電極である。
Structure of the Invention The present invention is a hydrogen storage electrode characterized in that a hydrogen storage alloy is provided with an amorphous layer, and the amorphous layer is provided on the surface of the hydrogen storage alloy.

作   用 希土類系合金の耐食性か高いことを利用して、合金の表
面層に希土類系合金の薄膜を設けることか特開昭63−
175343号公報に提案されているか、希土類系合金
は、合金表面に生成した酸化物層が吸放出反応にともな
い破壊され、常に新しい合金表面が露出しているため、
表面が酸化されても吸蔵能の低下は防止されている。
Function: Taking advantage of the high corrosion resistance of rare earth alloys, it is possible to provide a thin film of rare earth alloys on the surface layer of the alloy.
As proposed in Publication No. 175343, in rare earth alloys, the oxide layer formed on the alloy surface is destroyed as a result of absorption and release reactions, and a new alloy surface is constantly exposed.
Even if the surface is oxidized, the storage capacity is prevented from decreasing.

しかしながら、この合金を薄膜として設けた場合、希土
類合金薄層はすぐに酸化されてしまい、内部の合金か酸
化することは防止できても、表面反応が阻害されるため
、合金全体として吸蔵放出能か減少してしまう。
However, when this alloy is provided as a thin film, the rare earth alloy thin layer is quickly oxidized, and even if the internal alloy can be prevented from oxidizing, the surface reaction is inhibited, so the alloy as a whole has no occlusion/release capacity. or decrease.

非晶質水素吸蔵合金は、結晶質水素吸蔵合金と違い、プ
ラトー圧が明確でないため、実質的な吸M量は少ないが
、吸蔵時の結晶軸膨脂が、全方向に及ぶため体積膨脂が
小さく、酸化を受けにくいといった特徴を持つことが知
られている。
Unlike crystalline hydrogen storage alloys, amorphous hydrogen storage alloys do not have a clear plateau pressure, so the actual amount of M absorbed is small. It is known to have characteristics such as small size and resistance to oxidation.

本発明では、酸化を受けにくい特徴を持つ非晶質水素吸
蔵合金を結晶質水素吸蔵合金の表面層に設けることによ
り、内部の合金酸化を防止している。
In the present invention, oxidation of the internal alloy is prevented by providing the surface layer of the crystalline hydrogen storage alloy with an amorphous hydrogen storage alloy that is less susceptible to oxidation.

水素吸蔵合金の酸化が進行するのは、吸蔵放出を繰り返
すことにより、結晶が膨張収縮を繰り返し、微粉化する
ことで、表面積の拡大が起こっているためで、本発明の
如く水素吸蔵合金表面層に非晶質層を設けることにより
、合金の微粉化が抑制され、合金粉末の酸化が進行する
ことも防止できる。また微粉化が抑制されることで、活
物質の脱落も防止される。
Oxidation of hydrogen storage alloys progresses because the crystals expand and contract repeatedly due to repeated storage and desorption, and are pulverized, resulting in an increase in surface area. By providing an amorphous layer in the alloy, pulverization of the alloy can be suppressed and progress of oxidation of the alloy powder can also be prevented. Moreover, by suppressing pulverization, falling off of the active material is also prevented.

さらに、同じ組成の合金により非晶質層を設けることで
、内部水素吸蔵合金より吸蔵量は少ないとはいえ、多量
の水素を吸蔵する能力を持つので、全く水素を吸蔵しな
い金属を表面に被覆する場合に比べ、水素吸蔵電極のエ
ネルギー密度が大きく低下する事なく改良が図れる。ま
た、表面層と内部層の境界領域における新たな相の生成
による吸蔵能の失活などの問題もない。
Furthermore, by providing an amorphous layer made of an alloy with the same composition, it has the ability to absorb a large amount of hydrogen, although the amount of hydrogen absorption is smaller than that of an internal hydrogen storage alloy, so the surface is coated with a metal that does not absorb hydrogen at all. Compared to the case where the energy density of the hydrogen storage electrode is reduced significantly, it is possible to improve the energy density of the hydrogen storage electrode. Furthermore, there is no problem such as deactivation of storage capacity due to the formation of a new phase in the boundary region between the surface layer and the internal layer.

実  施  例 以下、本発明を実施例により詳細に説明する。Example Hereinafter, the present invention will be explained in detail with reference to Examples.

Mm<ミツシュメタル、希土類元素の混合物)、Ni、
ANをそれぞれ所定量秤量し、アーク溶解炉にてAr雰
囲気中で数回溶解し、MmNi:+、s Affio、
s Coo、7で表わされる均質な合金インゴットを作
製した。これを機械的に粉砕後、篩にかけ、300メツ
シュ通過の合金粉末を得た。一方、同様に作製した合金
インゴットをターゲットとして合金粉末にスパッタコー
ティングを行った。この粉末に2vt%のPVA水溶液
を加え、ペースト状にしたのち、ニッケル繊維焼結基板
に充填、乾燥プレスし、本発明による水素吸蔵電極(A
)とした。なお、コーティング層は各種機器分析により
、特定の結晶構造が検出されないことを確認した。比較
のために、スパッタコーティングを行なわない以外は同
様にして作製した水素吸蔵合金粉末を用いて作製した電
極を、従来電極(B)とした。
Mm < Mitsushi metal, mixture of rare earth elements), Ni,
A predetermined amount of AN was weighed and melted several times in an Ar atmosphere in an arc melting furnace to obtain MmNi: +, s Affio,
A homogeneous alloy ingot represented by s Coo, 7 was prepared. This was mechanically crushed and passed through a sieve to obtain an alloy powder that passed 300 mesh. On the other hand, sputter coating was performed on the alloy powder using a similarly prepared alloy ingot as a target. A 2vt% PVA aqueous solution was added to this powder to form a paste, which was then filled into a nickel fiber sintered substrate, dried and pressed, and the hydrogen storage electrode according to the present invention (A
). In addition, it was confirmed through various instrumental analyzes that no specific crystal structure was detected in the coating layer. For comparison, an electrode produced using hydrogen storage alloy powder produced in the same manner except that sputter coating was not performed was designated as a conventional electrode (B).

これらの電極を負極とし、ニッケル繊維焼結基板にCo
oを添加した水酸化ニッケル活物質ペーストを充填した
、公知の繊維式ニッケル電極を正極とし、ポリアミト不
織布をセパレータ、比重128の水酸化カリウム水溶液
を電解液とした密閉形電池を構成した。電池サイズはA
Aサイズ(単3形)で、公称容量1100IIAHであ
る。
These electrodes were used as negative electrodes, and Co was placed on the nickel fiber sintered substrate.
A sealed battery was constructed using a known fiber-type nickel electrode filled with a nickel hydroxide active material paste containing O as the positive electrode, a polyamide nonwoven fabric as the separator, and an aqueous potassium hydroxide solution with a specific gravity of 128 as the electrolyte. Battery size is A
It is A size (AA size) and has a nominal capacity of 1100IIAH.

電極(A)、(B)を用いた電池をそれぞれ電池A、電
池Bとする。
Batteries using electrodes (A) and (B) are referred to as battery A and battery B, respectively.

これらの電池のサイクル特性を調べたものか第1図であ
る。充電は0.25CmA5時間、放電は0.5CrA
A終止電圧0,8Vとした。第1図から明らかなように
、本発明電池へのサイクル特性は、非常に良好であり、
この電極が耐久性の高いものであることかわかる。この
試験後、電池を解体し、負極合金を調査したところ、従
来電池Bにおいては、合金表面に針状結晶が多量にみら
れ、T E M解析により希土類金属の水酸化物である
ことか確認された。これに対し、本発明電池Aでは、針
状結晶はほとんど見られず、電解液中にも合金組成元素
の溶出は非常に少ないものであった。すなわち、従来電
池では充放電にともない合金の酸化が進み、電極特性が
劣化したものと考えられる。しかし、本発明においては
、表面層を非晶質化したことて、内部の酸化か防止され
て耐久性か向上したものと考えられる。また、腐食生成
物か表面に少なく金属層が表面に存在するため、合金粒
子間の導電性が悪化することもなく、充電時の酸素ガス
吸収の効率も低下せずサイクル寿命が向上していると考
えられる。
Figure 1 shows the results of examining the cycle characteristics of these batteries. Charging is 0.25CmA for 5 hours, discharging is 0.5CrA
A final voltage was set to 0.8V. As is clear from FIG. 1, the cycle characteristics of the battery of the present invention are very good.
It can be seen that this electrode is highly durable. After this test, the battery was disassembled and the negative electrode alloy was investigated. In conventional battery B, a large amount of acicular crystals were observed on the alloy surface, and TEM analysis confirmed that it was a rare earth metal hydroxide. It was done. On the other hand, in the battery A of the present invention, almost no needle-like crystals were observed, and very little alloy composition elements were eluted into the electrolyte. In other words, it is thought that in the conventional battery, oxidation of the alloy progressed as the battery was charged and discharged, and the electrode characteristics deteriorated. However, in the present invention, it is thought that by making the surface layer amorphous, internal oxidation is prevented and durability is improved. In addition, because there are fewer corrosion products and a metal layer on the surface, the conductivity between alloy particles does not deteriorate, and the efficiency of oxygen gas absorption during charging does not decrease, improving cycle life. it is conceivable that.

本実施例においては、同組成の合金により非晶質層を形
成したが、別組成の合金でも電極の耐久性向上に効果が
ある。しかし、非晶質層と、結晶質層の境界領域におい
て、新たな合金層が生成したり、層分離を起こす可能性
もあるので、望ましくは同組成がよい。また、合金組成
として希土類系に限らず、合金表面に不働態被膜を生成
し得る組成であればよい。
In this example, the amorphous layer was formed using an alloy with the same composition, but an alloy with a different composition is also effective in improving the durability of the electrode. However, since there is a possibility that a new alloy layer will be generated or layer separation will occur in the boundary region between the amorphous layer and the crystalline layer, it is preferable that they have the same composition. Further, the alloy composition is not limited to rare earth-based alloys, and any composition that can form a passive film on the alloy surface may be used.

なお、上記実施例では、ニッケル繊維焼結基板を用いた
例を示したが、これに限らず、エキスバンドメタル、メ
タルメツシュ、ニッケルめっきパンチングメタル等を基
板として用いてもよい。
In addition, in the above embodiment, an example using a sintered nickel fiber substrate was shown, but the substrate is not limited to this, and expanded metal, metal mesh, nickel-plated punching metal, etc. may be used as the substrate.

発明の効果 以上の如く、本発明によれば、エネルギー密度を低下さ
せることなく水素吸蔵電極の耐酸化性を向上させ、電極
の長寿命化を図ることか可能となるので、その工業的価
値は甚だ大である。
Effects of the Invention As described above, according to the present invention, it is possible to improve the oxidation resistance of the hydrogen storage electrode without reducing the energy density and extend the life of the electrode. It's huge.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明電池と従来電池のサイクル特性図である
。 出願人     湯浅電池株式会社 第1図 サイクル数(S)
FIG. 1 is a cycle characteristic diagram of a battery of the present invention and a conventional battery. Applicant Yuasa Battery Co., Ltd. Figure 1 Cycle number (S)

Claims (3)

【特許請求の範囲】[Claims] (1)水素を可逆的に吸蔵放出可能な、水素吸蔵電極に
おいて、水素吸蔵合金に非晶質層を設けたことを特徴と
する水素吸蔵電極。
(1) A hydrogen storage electrode capable of reversibly absorbing and releasing hydrogen, characterized in that an amorphous layer is provided on a hydrogen storage alloy.
(2)該非晶質層が、合金の表面層にあることを特徴と
する請求項1記載の水素吸蔵電極。
(2) The hydrogen storage electrode according to claim 1, wherein the amorphous layer is a surface layer of the alloy.
(3)該非晶質層の合金組成は、内部結晶質層の合金組
成と実質的に同じであることを特徴とする請求項2記載
の水素吸蔵電極。
(3) The hydrogen storage electrode according to claim 2, wherein the alloy composition of the amorphous layer is substantially the same as the alloy composition of the internal crystalline layer.
JP2292569A 1990-10-29 1990-10-29 Hydrogen storage electrode Pending JPH04167365A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2292569A JPH04167365A (en) 1990-10-29 1990-10-29 Hydrogen storage electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2292569A JPH04167365A (en) 1990-10-29 1990-10-29 Hydrogen storage electrode

Publications (1)

Publication Number Publication Date
JPH04167365A true JPH04167365A (en) 1992-06-15

Family

ID=17783470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2292569A Pending JPH04167365A (en) 1990-10-29 1990-10-29 Hydrogen storage electrode

Country Status (1)

Country Link
JP (1) JPH04167365A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995017531A1 (en) * 1993-12-22 1995-06-29 Kabushiki Kaisha Toshiba Hydrogen-absorbing alloy and alkaline secondary cell using the same
WO1997038458A1 (en) * 1996-04-09 1997-10-16 Mcgill University Composite hydrogen storage materials for rechargeable hydride electrodes
US6660431B1 (en) 1999-02-24 2003-12-09 Matsushita Electric Industrial Co., Ltd. Hydrogen absorbing alloy electrode, electrode producing method and alkali storage battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995017531A1 (en) * 1993-12-22 1995-06-29 Kabushiki Kaisha Toshiba Hydrogen-absorbing alloy and alkaline secondary cell using the same
US6030724A (en) * 1993-12-22 2000-02-29 Kabushiki Kaisha Toshiba Hydrogen-storage alloy and alkali secondary battery using same
WO1997038458A1 (en) * 1996-04-09 1997-10-16 Mcgill University Composite hydrogen storage materials for rechargeable hydride electrodes
US6660431B1 (en) 1999-02-24 2003-12-09 Matsushita Electric Industrial Co., Ltd. Hydrogen absorbing alloy electrode, electrode producing method and alkali storage battery

Similar Documents

Publication Publication Date Title
JP2771592B2 (en) Hydrogen storage alloy electrode for alkaline storage batteries
JP2680669B2 (en) Hydrogen storage alloy electrode for alkaline storage battery
JP2752970B2 (en) Hydrogen storage electrode
JPH04167365A (en) Hydrogen storage electrode
JPH0953136A (en) Hydrogen storage alloy and hydrogen storage alloy electrode
JP3065713B2 (en) Hydrogen storage electrode and nickel-hydrogen battery
JP2792955B2 (en) Hydrogen storage alloy for hydrogen electrode
JP3402992B2 (en) Nickel-hydrogen battery pack
JPH08321302A (en) Hydrogen storage electrode
JPH04301045A (en) Hydrogen storage alloy electrode
JPH03101055A (en) Hydrogen storage alloy electrode for alkaline storage battery
JP3082341B2 (en) Hydrogen storage electrode
JP2840336B2 (en) Manufacturing method of hydrogen storage alloy electrode
JPS61233966A (en) Manufacture of sealed nickel-hydrogen storage battery
JPH06145849A (en) Hydrogen storage alloy electrode
JPH04280066A (en) Hydrogen storage electrode and manufacture thereof
JPH0690922B2 (en) Sealed alkaline storage battery
JPS63314764A (en) Hydrogen absorbing electrode
JPH09129227A (en) Nickel-hydrogen storage battery
JP2679441B2 (en) Nickel-metal hydride battery
JP3025770B2 (en) Metal oxide / hydrogen battery
JPS61168869A (en) Metal-hydrogen alkaline storage battery
JPS6119058A (en) Hydrogen occlusion electrode
JP2004011004A (en) Hydrogen storage alloy powder, its producing method, and nickel-hydrogen storage battery using it
JPH0582125A (en) Hydrogen occluding alloy electrode