JP2847873B2 - Hydrogen storage electrode - Google Patents

Hydrogen storage electrode

Info

Publication number
JP2847873B2
JP2847873B2 JP2074630A JP7463090A JP2847873B2 JP 2847873 B2 JP2847873 B2 JP 2847873B2 JP 2074630 A JP2074630 A JP 2074630A JP 7463090 A JP7463090 A JP 7463090A JP 2847873 B2 JP2847873 B2 JP 2847873B2
Authority
JP
Japan
Prior art keywords
alloy
hydrogen storage
substitution
capacity
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2074630A
Other languages
Japanese (ja)
Other versions
JPH03274240A (en
Inventor
徳一 狹間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON DENCHI KK
Original Assignee
NIPPON DENCHI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=13552716&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2847873(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by NIPPON DENCHI KK filed Critical NIPPON DENCHI KK
Priority to JP2074630A priority Critical patent/JP2847873B2/en
Priority to US07/672,996 priority patent/US5284619A/en
Priority to DE69104887T priority patent/DE69104887T2/en
Priority to EP91104527A priority patent/EP0451575B1/en
Publication of JPH03274240A publication Critical patent/JPH03274240A/en
Application granted granted Critical
Publication of JP2847873B2 publication Critical patent/JP2847873B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、水素吸蔵合金を負極とし、酸化ニッケル電
極を正極とするニッケル−金属水素化物二次電池に関す
るものであり、特に、充放電容量が大きく、充放電サイ
クルの長期繰り返しにおいても特性の劣化が小さく、さ
らに、大電流放電時でも放電容量の低下が少ない水素吸
蔵電極に関するものである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a nickel-metal hydride secondary battery in which a hydrogen storage alloy is used as a negative electrode and a nickel oxide electrode is used as a positive electrode. Also, the present invention relates to a hydrogen storage electrode in which the deterioration of characteristics is small even during long-term repetition of charge / discharge cycles, and the decrease in discharge capacity is small even during large current discharge.

従来の技術とその課題 エネルギー貯蔵容量の向上を図るため、負極として水
素を可逆的に吸蔵・放出する水素吸蔵合金を用い、吸蔵
した水素を活物質とするニッケル−金属水素化物二次電
池が提案され、開発が急がれている。これに用いる水素
吸蔵合金は、次に掲げるような要件を満たしていること
が必要とされている。
Conventional technology and its problems To improve energy storage capacity, a nickel-metal hydride secondary battery using a hydrogen storage alloy that reversibly stores and releases hydrogen as the negative electrode and uses the stored hydrogen as an active material is proposed. And development is urgent. The hydrogen storage alloy used for this purpose must satisfy the following requirements.

(1)有効水素吸蔵量、すなわち電気容量が大きいこ
と。
(1) The effective hydrogen storage amount, that is, the electric capacity is large.

(2)水素平衡解離圧が電池使用温度(−20〜60℃)で
10−3〜数気圧であること。
(2) The hydrogen equilibrium dissociation pressure is the battery operating temperature (-20 to 60 ° C)
10-3 to several atmospheres.

(3)濃アルカリ電解液中での耐食性に優れること。(3) Excellent corrosion resistance in a concentrated alkaline electrolyte.

(4)電極反応の繰り返しによる微粉化の速度が遅いこ
と。
(4) The rate of pulverization by repetition of the electrode reaction is low.

(5)電極反応の繰り返しによって、一部特定元素の溶
出等による組成変化のないこと。
(5) There should be no change in composition due to elution of a specific element or the like due to repetition of the electrode reaction.

(6)水素拡散速度が大きく、反応抵抗(過電圧)が小
さいこと。
(6) High hydrogen diffusion rate and low reaction resistance (overvoltage).

(7)安価であること。(7) Inexpensive.

希土類元素を含む安価な原料として、従来より知られ
ているものにミッシュメタル(Mm)がある。これは希土
類金属の混合物であり、通常の場合、La25〜35重量%,C
e45〜55重量%,Nd10〜15重量%で構成される。このMmを
原料とする水素吸蔵合金では、希土類金属中のCe量が多
いことから、平衡水素解離圧が高くなる。水素解離圧を
電池使用温度域で1気圧程度以下とするためには、Niの
一部をCo,Al等の元素で置換する必要がある。このよう
なMmNiCoAl系の水素吸蔵合金では、一般に、Co量が多く
なるほど、放電容量は小さくなるが、サイクル寿命は向
上する。良好なサイクル寿命特性を得るのに最小限必要
なCoの置換量は0.6〜0.7であることが、実験的に確かめ
られている。また、Co置換量を減らし、Ni含有量の多い
合金の方が、良好な急速放電特性を有することも、最近
判ってきている。
As an inexpensive raw material containing a rare earth element, a conventionally known material is misch metal (Mm). It is a mixture of rare earth metals, usually La25-35% by weight, C
e 45-55% by weight, Nd 10-15% by weight. In the hydrogen storage alloy using Mm as a raw material, the equilibrium hydrogen dissociation pressure increases because the amount of Ce in the rare earth metal is large. In order to reduce the hydrogen dissociation pressure to about 1 atm or less in the battery operating temperature range, it is necessary to partially replace Ni with an element such as Co or Al. In such an MmNiCoAl-based hydrogen storage alloy, generally, as the amount of Co increases, the discharge capacity decreases, but the cycle life improves. It has been experimentally confirmed that the minimum substitution amount of Co for obtaining good cycle life characteristics is 0.6 to 0.7. Also, it has recently been found that an alloy with a reduced amount of Co substitution and a higher Ni content has better rapid discharge characteristics.

次に、Alは合金粉末表面に緻密な酸化皮膜を形成する
ことにより、合金の酸化を抑制、サイクル寿命を改善す
ることになる。ただ、過度のAl置換は、その酸化皮膜が
電気絶縁性をもつことから、電極の反応抵抗を高める方
向に働き、急速放電特性や低温での放電特性を悪くす
る。したがって、この系では良好な電極特性を示す合金
を得るにはAl置換量、Co置換量を最小限必要な量に抑え
ることが肝要である。
Next, Al forms a dense oxide film on the surface of the alloy powder, thereby suppressing oxidation of the alloy and improving the cycle life. However, excessive Al substitution works in the direction of increasing the reaction resistance of the electrode because the oxide film has electrical insulation properties, and deteriorates rapid discharge characteristics and low-temperature discharge characteristics. Therefore, in this system, in order to obtain an alloy exhibiting good electrode characteristics, it is important to suppress the Al substitution amount and the Co substitution amount to the minimum necessary amounts.

このような思想で開発された合金にMmNi3.5Co0.7Al
0.8合金があり、この合金では後述のように初期放電容
量が254mA/gと比較的高く、良好なサイクル寿命特性を
も持ち合わせている。ただ、Ceを多く含むMmを用いる関
係上、水素解離圧を下げるのに要するAl置換が必然的に
多くなり、この合金の場合、急速放電特性に関しては必
ずしも良いとは言えない。
MmNi 3.5 Co 0.7 Al was added to the alloy developed based on this concept.
There is a 0.8 alloy, which has a relatively high initial discharge capacity of 254 mA / g, as described later, and has good cycle life characteristics. However, due to the use of Mm containing a large amount of Ce, Al substitution required for lowering the hydrogen dissociation pressure inevitably increases, and this alloy is not necessarily good in terms of rapid discharge characteristics.

MmNiCoAl系合金よりさらに大きな放電容量をもつ合金
として、最近、Niの一部をMnで置換したMmNiCoAl系合金
が考えられている。このMn置換は、容量の増大を図る上
で効果はあるが、充放電の繰り返しに伴ない合金粉末の
表面近傍にあるMnが電解液中に溶出する現象が確認され
ており、サイクル寿命を低下させる弊害のあることが判
ってきた。したがって、Mn置換を行う場合、それと同時
にMnの溶出を防止してサイクル寿命特性の劣化を防止す
る処置をも講じておく必要があるが、そのような有効な
処置方法は現在のところ見出されていない。
As an alloy having a larger discharge capacity than the MmNiCoAl-based alloy, an MmNiCoAl-based alloy in which a part of Ni is replaced with Mn has recently been considered. This Mn substitution is effective in increasing the capacity, but it has been confirmed that Mn near the surface of the alloy powder elutes into the electrolytic solution due to repeated charge and discharge, and the cycle life is shortened. It has been found that there is an adverse effect. Therefore, when performing Mn substitution, it is necessary to take measures to prevent the elution of Mn at the same time and to prevent deterioration of the cycle life characteristics, but such an effective treatment method has been found at present. Not.

このように、Ceを多く含む安価なMmを原材料に用いる
場合、Al置換、Mn置換に付随して種々の問題が生じてく
るため、放電容量、サイクル寿命特性、急速放電特性や
低温放電特性のすべてに配慮した合金設計を行うのは困
難であった。
As described above, when using inexpensive Mm containing a large amount of Ce as a raw material, various problems occur along with Al substitution and Mn substitution, so that the discharge capacity, cycle life characteristics, rapid discharge characteristics, and low-temperature discharge characteristics are reduced. It has been difficult to design alloys with due consideration for everything.

課題を解決するための手段 水素吸蔵電極の放電容量の向上と低コスト化を図る上
で、Laを75重量%以上含むMmは有用である。この原材料
を用い、Mmの一部を少量のZrで置換し、Niの一部として
置換するCoの量を必要最小量に抑えることにより、放電
容量、サイクル寿命特性、急速放電特性を向上させた水
素吸蔵電極用の合金を開発することができた。
Means for Solving the Problems Mm containing 75% by weight or more of La is useful for improving the discharge capacity of the hydrogen storage electrode and reducing the cost. Using this raw material, the discharge capacity, cycle life characteristics, and rapid discharge characteristics were improved by substituting a small amount of Zr for part of Mm and minimizing the amount of Co substituted as part of Ni. Alloys for hydrogen storage electrodes could be developed.

新たに開発した水素吸蔵電極用の合金は、一般式Mm
1-XZrXNiY-A-BCoAAlBで表され、Mm中に占めるLa量(La/
Mm)が75重量%以上、90重量%以下で、同時にCe,Nd,Pr
の希土類元素をそれぞれ10重量%以下含むMmを原材料に
用いている。このMmの一部をZrで、Niの一部をCoとAlで
置換することを特徴とする水素吸蔵合金であり、その合
金組成は、0.01≦X≦0.08,4.9≦Y≦5.1,1.0≦A+B
≦1.5,0.5≦A≦1.1,0.3≦B≦0.6の各範囲で示される
ものとする。
The newly developed alloy for hydrogen storage electrodes has the general formula Mm
1-X Zr X Ni YAB Co A Al B
Mm) is 75% by weight or more and 90% by weight or less and simultaneously Ce, Nd, Pr
Mm containing 10% by weight or less of each rare earth element is used as a raw material. A hydrogen storage alloy characterized by substituting a part of this Mm with Zr and a part of Ni with Co and Al, the alloy composition of which is 0.01 ≦ X ≦ 0.08,4.9 ≦ Y ≦ 5.1,1.0 ≦ A + B
≤1.5, 0.5≤A≤1.1, 0.3≤B≤0.6.

作用 水素吸蔵合金として上記組成式で示されるように、Mm
の一部をZrで、Niの一部をCo,Alで置換した合金を電極
に用いることによって、充放電の長期繰り返しにおいて
も特性が劣化しない水素吸蔵電極を作製することができ
た。このサイクル寿命特性の向上は、Zrが合金表面にお
いて酸化皮膜を形成し、この皮膜がH+イオンの拡散を阻
害せずに合金の耐食性を向上させ、希土類金属の酸化を
抑制するためにもたらされたものと考えられる。
Action As shown in the above composition formula as a hydrogen storage alloy, Mm
By using an alloy in which a part of the alloy was replaced with Zr and a part of Ni was replaced with Co or Al, a hydrogen storage electrode whose characteristics were not deteriorated even after long-term charge / discharge cycles could be manufactured. This improvement in cycle life characteristics is achieved because Zr forms an oxide film on the alloy surface, which improves the corrosion resistance of the alloy without inhibiting the diffusion of H + ions and suppresses the oxidation of rare earth metals. It is thought that it was done.

また、Mm中に含まれるLaの量が多く、また、CoとAlの
置換量を低く抑える成分設計を行ったことから、充放電
容量も大きく、急速放電特性にも優れた電極とすること
ができた。
In addition, since the amount of La contained in Mm is large, and a component design that suppresses the substitution amount of Co and Al has been performed, the charge / discharge capacity is large, and an electrode having excellent rapid discharge characteristics can be obtained. did it.

実施例 本願発明の作用を確認するため、第1表に示す水素吸
蔵合金を、アルゴン雰囲気中でアーク溶解することによ
って得た。これらの合金を機械的に粉砕した後、無電解
銅めっき法により合金粉末の表面に約20重量%相当の銅
被覆層を形成した。この合金粉末に結着剤としてFEP
(四フッ化エチレン・フッ化プロピレン共重合体)樹脂
を10重量%相当量添加し、約300mgの粉末混合体(合金
重量:約216mg)を冷間プレスにより直径13mm×厚さ約
0.4mm形状の電極ペレットに成形した。そして、これを
集電体となるニッケルメッシュとともに300℃の温度で
ホットプレスすることによって試験用の合金電極とし
た。
Example In order to confirm the effect of the present invention, a hydrogen storage alloy shown in Table 1 was obtained by arc melting in an argon atmosphere. After mechanically pulverizing these alloys, a copper coating layer corresponding to about 20% by weight was formed on the surface of the alloy powder by electroless copper plating. FEP as a binder to this alloy powder
(Ethylene tetrafluoride / propylene fluoride copolymer) Resin is added in an amount equivalent to 10% by weight, and about 300 mg of a powder mixture (alloy weight: about 216 mg) is cold-pressed to a diameter of 13 mm and a thickness of about 13 mm.
It was formed into a 0.4 mm-shaped electrode pellet. Then, this was hot-pressed at a temperature of 300 ° C. together with a nickel mesh serving as a current collector to obtain an alloy electrode for testing.

この水素吸蔵電極を負極に、正極としてニッケル−カ
ドミウム蓄電池と同じ酸化ニッケル電極を、電解液とし
て6M水酸化カリウム溶液を用いて試験用電池を構成し
た。なお、いずれの試験用電池も電池容量が負極の容量
に依存する負極規制タイプとし、照合電極には酸化水銀
電極を用いた。この試験用電池を温度20℃の恒温室の中
において、充電電流40mAで2.5時間充電し、0.5時間休止
した後、放電電流20mAで、照合電極と水素吸蔵電極との
電位差が−0.6Vに低下するまで放電するといったサイク
ルで、長期間の充放電サイクル試験を行った。各合金に
ついての試験結果を第1表に示す。ここで、長期最大容
量に達した後300サイクル経過したときの放電容量を初
期最大容量で除した値を容量維持率として、サイクル寿
命特性を示す指標として扱っている。なお、第1表に示
される各合金は、常温における平衡水素解離圧を1気圧
以下にほぼ揃えるため、Al置換量で調整している。
A test battery was constructed by using the hydrogen storage electrode as a negative electrode, the same nickel oxide electrode as a nickel-cadmium storage battery as a positive electrode, and a 6M potassium hydroxide solution as an electrolyte. In addition, each test battery was a negative electrode regulation type in which the battery capacity depends on the capacity of the negative electrode, and a mercury oxide electrode was used as a reference electrode. This test battery was charged in a constant temperature room at a temperature of 20 ° C for 2.5 hours at a charging current of 40 mA, and after resting for 0.5 hour, the potential difference between the reference electrode and the hydrogen storage electrode dropped to -0.6 V at a discharging current of 20 mA. A long-term charge / discharge cycle test was performed in such a cycle that the battery was discharged. Table 1 shows the test results for each alloy. Here, a value obtained by dividing the discharge capacity when 300 cycles have elapsed after reaching the long-term maximum capacity by the initial maximum capacity is used as an index indicating cycle life characteristics as a capacity retention ratio. In addition, each alloy shown in Table 1 is adjusted by the Al substitution amount in order to make the equilibrium hydrogen dissociation pressure at room temperature substantially equal to or less than 1 atm.

比較例1の合金は、希土類金属として、La単体を用い
て作製したものであり、初期放電容量は大きいが、300
サイクル経過した後の放電容量は小さくなり、サイクル
寿命があまり良いとは言えない。比較例2および3の合
金は、Laの一部をZrで置換したものであり、置換量が比
較例2,3と多くなるに伴い、初期放電容量は小さくなっ
ている。ただ、サイクル寿命特性については、Zr置換量
が増すと向上する傾向にある。これは、Zrが合金粉末表
面に強固な酸化皮膜を形成することによるものと考えて
いる。
The alloy of Comparative Example 1 was prepared by using La alone as a rare earth metal, and although the initial discharge capacity was large,
The discharge capacity after the passage of the cycle becomes small, and the cycle life is not very good. In the alloys of Comparative Examples 2 and 3, La was partially replaced with Zr, and the initial discharge capacity was reduced as the replacement amount increased with Comparative Examples 2 and 3. However, the cycle life characteristics tend to improve as the Zr substitution amount increases. This is thought to be because Zr forms a strong oxide film on the surface of the alloy powder.

次に、従来より多く使用されてきたCeを多く含むMm
(La含有量:30.0重量%)を用いて作製された比較例4
の合金では、Ceを多く含む関係上、初期放電容量が小さ
いものの、サイクル寿命特性は非常に良好である。
Next, Mm containing much Ce, which has been used more than before
Comparative Example 4 prepared using (La content: 30.0% by weight)
The alloy has a small initial discharge capacity due to the high content of Ce, but has very good cycle life characteristics.

これに対し、Laを82.5重量%,Ceを2.6重量%,Ndを8.9
重量%,Prを3.3重量%含むMmを用いて作製した合金の試
験結果を、比較例5,6および7に示す。ここでは、便宜
上、前記Mmと区別する目的で、後者のMmをLmと書き表す
こととした。比較例5の合金は、組成的に比較例1およ
び4に対応するものであり、初期放電容量は比較的高
く、サイクル寿命特性は少し低いが、ほぼ実用的なレベ
ルにあると言える。これに対し、比較例6の合金では、
初期放電容量は大きいのであるが、サイクル寿命は相当
低い。
On the other hand, La was 82.5% by weight, Ce was 2.6% by weight, and Nd was 8.9%.
Test results of alloys prepared using Mm containing 3.3% by weight of Pr by weight are shown in Comparative Examples 5, 6, and 7. Here, for the sake of convenience, the latter Mm is written as Lm for the purpose of distinguishing it from the aforementioned Mm. The alloy of Comparative Example 5 corresponds in composition to Comparative Examples 1 and 4, and although the initial discharge capacity is relatively high and the cycle life characteristics are slightly low, it can be said that it is at a practical level. In contrast, in the alloy of Comparative Example 6,
Although the initial discharge capacity is large, the cycle life is considerably short.

実施例1,2および3の合金は、Lmの一部をZrで置換
(置換率0.05)した本願特許に係わる合金である。実施
例1,2,3とCo置換量が少なくなるにしたがい、初期放電
容量は大きくなり、サイクル寿命特性は低下してくる。
そのなかで最も初期放電容量の小さい実施例1の合金で
も、比較例4の合金に比べて、ほぼ同等なサイクル寿命
特性を有していながら、その初期放電容量はかなり大き
くなっている。比較例5に対する実施例1、比較例6に
対する実施例2とで示されるように、Lmの一部をZrで置
換することにより、初期放電容量を低下させるものの、
サイクル寿命は大幅に改善される。これは、先にも記し
たように、Zr置換により合金表面に形成された酸化皮膜
が、希土類金属の酸化を抑制しているためと考えられ
る。ただ、過度のZr置換は、Zrと他の元素との金属間化
合物(ZrNi2など)を形成するだけで、有効な水素吸蔵
量を減らす結果となる。その例を比較例7に示す。比較
例7はZr置換率を0.1とした類似合金であるが、初期放
電容量は実施例2の合金に比べて、からに小さくなる。
同様の結果は、比較例1と比較例3とを見比べた時に
も、認められる。経験的には、他の無用な金属間化合物
を出現させない範囲として、また、多少出現していても
放電容量をあまり下げない範囲として、La(Mm)に対す
るZ歩の置換率は0.08以下とするのが適当である。
The alloys of Examples 1, 2 and 3 are alloys according to the present patent application in which a part of Lm is substituted by Zr (substitution ratio: 0.05). As in Examples 1, 2, and 3, as the amount of Co substitution decreases, the initial discharge capacity increases and the cycle life characteristics decrease.
Among them, even the alloy of Example 1 having the smallest initial discharge capacity has substantially the same cycle life characteristics as the alloy of Comparative Example 4, but the initial discharge capacity is considerably large. As shown in Example 1 for Comparative Example 5 and Example 2 for Comparative Example 6, although the initial discharge capacity was reduced by substituting a part of Lm with Zr,
The cycle life is greatly improved. This is presumably because, as described above, the oxide film formed on the alloy surface by the Zr substitution suppresses the oxidation of the rare earth metal. However, excessive Zr substitution only forms an intermetallic compound of Zr with another element (such as ZrNi 2 ), resulting in a reduction in the effective hydrogen storage capacity. An example is shown in Comparative Example 7. Comparative Example 7 is a similar alloy with a Zr substitution rate of 0.1, but the initial discharge capacity is slightly smaller than that of the alloy of Example 2.
Similar results are observed when Comparative Example 1 and Comparative Example 3 are compared. Empirically, the substitution rate of Z steps with respect to La (Mm) is set to 0.08 or less, as a range in which other useless intermetallic compounds do not appear, and as a range in which the discharge capacity does not decrease much even if it appears to some extent. Is appropriate.

以上の結果から、一般式Mm1-XZrXNiY-A-BCoAAlBで示
される新規開発の水素吸蔵電極用合金は、その組成をX
=0.05(0.08以下),Y=5.0,1.0≦A+B≦1.1,0.5≦A
≦1.5,0.4≦B≦0.5とすることで良好な電極特性を示す
ものが得られる。
From the above results, the newly developed alloy for hydrogen storage electrode represented by the general formula Mm 1-X Zr X Ni YAB Co A Al B
= 0.05 (less than 0.08), Y = 5.0, 1.0 ≦ A + B ≦ 1.1, 0.5 ≦ A
By setting ≦ 1.5, 0.4 ≦ B ≦ 0.5, a material exhibiting good electrode characteristics can be obtained.

また、これまでの試験では触れなかったが、一般式La
(Mm)NiPで表される合金の組成が、La(Mm):Niが1:5
(P=5)の化学量論組成から外れると、サイクル寿命
特性が劣化する。問題はその劣化の程度であるが、LaQN
d0.15Zr0.05Ni3.8Co0.7Al0.5系の合金で調べたところ、
化学量論組成(Q=0.80)にある合金に比較して、Q=
0.78の非化学量論組成合金で14%、Q=0.82の非化学量
論組成合金で15%、それぞれ300サイクル経過後の放電
容量維持率が低下した。一応、容量維持率の低下率が15
%以下であることを許容限界として設定するならば、上
記La(Mm)NiP式で表される合金でのPの値は、4.9〜5.
1の範囲にあることが必要である。これは、上記組成式
でのPの値が5.0未満となった場合にはLa2Ni7等の金属
間化合物が、Pの値が5.0を越えた場合にはNi単独相が
合金中に現われてくるため、サイクル寿命特性の劣化を
招いていると考えられる。
Although not mentioned in previous tests, the general formula La
(Mm) the composition of an alloy represented by Ni P is, La (Mm): Ni is 1: 5
If the stoichiometric composition deviates from the stoichiometric composition (P = 5), the cycle life characteristics deteriorate. The problem is the degree of degradation, but La Q N
d 0.15 Zr 0.05 Ni 3.8 Co 0.7 Al 0.5 alloy
Compared to alloys with stoichiometric composition (Q = 0.80), Q =
The non-stoichiometric alloy of 0.78 had 14%, and the non-stoichiometric alloy of Q = 0.82 had 15%, and the discharge capacity retention rate after 300 cycles respectively decreased. Temporarily, the rate of decrease in capacity maintenance rate is
If set% that less is acceptable limit, the value of P of an alloy represented by La (Mm) Ni P expression from 4.9 to 5.
Must be in range 1. This is because when the value of P in the above composition formula is less than 5.0, an intermetallic compound such as La 2 Ni 7 appears in the alloy when the value of P exceeds 5.0. Therefore, it is considered that the cycle life characteristic is deteriorated.

また、上記試験結果は温度20℃でのものであり、−20
℃程度の低温で使用される電池や大電流で放電される電
池にあっては、Al置換量を少なくして絶縁性の酸化皮膜
形成に伴う過電圧の上昇を避ける必要がある。このとこ
とを考慮して、Al置換量の適正範囲を0.3≦B≦0.6とす
る。Al置換量は、先にも記したように、少な過ぎるとさ
サイクル寿命特性を劣化させるかも知れないが、0.3≦
B≦0.4となるのは優れた同特性を有する実施例1に近
い組成を持つときであり、当該Lmの場合、寿命改善に効
果のあるCeやNdを含むことから、B≧0.3でも十分なサ
イクル寿命が確保できるものと考えられる。また、後に
述べるように、Al置換量は過度に多くならない限り、急
速放電特性を悪化させることはない。B≦0.6の範囲は
これらの点で悪影響を生じない範囲である。
The above test results are obtained at a temperature of 20 ° C.
In a battery used at a low temperature of about ℃ or a battery discharged with a large current, it is necessary to reduce the amount of Al substitution to avoid an increase in overvoltage due to formation of an insulating oxide film. In consideration of this, the appropriate range of the Al substitution amount is set to 0.3 ≦ B ≦ 0.6. As described above, the Al substitution amount may deteriorate the cycle life characteristics if it is too small, but 0.3 ≦
B ≦ 0.4 is obtained when the composition has a composition close to that of Example 1 having excellent properties. In the case of Lm, since Ce and Nd which are effective in improving the life are included, B ≦ 0.3 is sufficient. It is considered that the cycle life can be ensured. As will be described later, the rapid discharge characteristics do not deteriorate unless the Al substitution amount is excessively large. The range of B ≦ 0.6 is a range that does not adversely affect these points.

したがって、ある程度の初期容量の低下、サイクル寿
命の劣化を許容するならば、上記の最適組成範囲を拡張
して、0.01≦X≦0.08,4.9≦Y≦5.1,1.0≦A+B≦1.
5,0.5≦A≦1.1,0.3≦B≦0.6としても、比較例4にあ
るような従来の合金系よりも容量、寿命の両面で優れた
特性を持つ合金となる。
Therefore, if a certain reduction in initial capacity and deterioration in cycle life can be tolerated, the above optimum composition range is extended to 0.01 ≦ X ≦ 0.08, 4.9 ≦ Y ≦ 5.1, 1.0 ≦ A + B ≦ 1.
Even when 5,0.5 ≦ A ≦ 1.1 and 0.3 ≦ B ≦ 0.6, the alloy is superior in both capacity and life to the conventional alloy system as in Comparative Example 4.

第1表に掲げた合金の一部ではあるが、その急速放電
特性を第2表に示す。この試験は、前記の充放電サイク
ル試験で用いたものと同じ試験用電池で、放電電流を種
々変化させて実施した。第2表には、放電電流300mAで
放電したときの放電容量を、放電電流20mAの場合の放電
容量で除した値のみを載せている。なお、放電電流300m
Aでの放電条件が、放電容量により前後するが、およそ
0.2時間放電率に相当している。
Table 2 shows the rapid discharge characteristics of some of the alloys listed in Table 1. This test was carried out using the same test batteries as those used in the above-described charge / discharge cycle test, while varying the discharge current. In Table 2, only the value obtained by dividing the discharge capacity when discharging at a discharge current of 300 mA by the discharge capacity when discharging at a current of 20 mA is shown. In addition, discharge current 300m
The discharge condition at A depends on the discharge capacity,
This corresponds to a 0.2 hour discharge rate.

比較例1の合金は、前記のようにサイクル寿命特性の
面で難があったが、0.2時間放電率の急速放電によって
も放電容量の低下が比較的少ない。以前より知られてい
るLaNi2.5Co2.4Al0.1合金での同容量低下率48%に比べ
れば、急速放電特性はかなり良好である。これは、合金
中のNi元素が多いほど、表面での触媒活性が高く、電極
反応がスムーズに進行するためと考えられる。
Although the alloy of Comparative Example 1 had difficulty in cycle life characteristics as described above, the decrease in discharge capacity was relatively small even by rapid discharge at a discharge rate of 0.2 hours. Compared with the previously known LaNi 2.5 Co 2.4 Al 0.1 alloy of 48% of the same capacity reduction rate, the rapid discharge characteristics are considerably better. This is probably because the more Ni element in the alloy, the higher the catalytic activity on the surface and the smoother the electrode reaction.

また、比較例4の合金は、初期放電容量は多少低いも
ののサイクル寿命は良好なものであったが、急速放電時
における容量低下はかなり大きい。比較例4の合金の場
合、Alの置換量が多く、その酸化皮膜により過電圧が高
くなることが、急速放電時の容量低下を招いている。
Further, the alloy of Comparative Example 4 had a good initial cycle capacity but a good cycle life, but the capacity drop during rapid discharge was considerably large. In the case of the alloy of Comparative Example 4, the substitution amount of Al is large, and the overvoltage is increased by the oxide film, which causes a decrease in capacity at the time of rapid discharge.

次に、比較例5および6の合金の場合であるが、これ
ら合金もNi含有量が多いため、上記比較例1の場合と同
様、良好な急速放電特性を示している。これらのうちNi
含有量の多い比較例6の合金の方が急速放電特性に優れ
るのは、上記比較例1で述べたと同じ理由によるもの考
えられる。
Next, in the case of the alloys of Comparative Examples 5 and 6, since these alloys also have a large Ni content, they show good rapid discharge characteristics as in Comparative Example 1. Of these, Ni
The reason why the alloy of Comparative Example 6 having a large content is superior in the rapid discharge characteristics is considered to be the same as that described in Comparative Example 1 above.

実施例1,2および3の合金は、比較例5や6の合金に
比べてほぼ同じレベルにあり、いずれも急速放電特性に
優れている。Zr置換によるサイクル寿命改善効果を説明
するとき、Al置換の場合と同様、その酸化皮膜形成に依
拠するものと考えた。同様の酸化皮膜形成でありなが
ら、Zr置換の場合に急速放電特性を悪化させないのは、
概ね次のような理由によると考えられる。先ず第1に、
Al置換により形成される酸化皮膜が電気絶縁性のもので
あるのに対し、Zr置換により形成される酸化皮膜は多孔
性を有し、H+イオンの拡散を阻害しないためと考えられ
る。また、第2には、Zrの置換はLa(Mm)に対する置換
であり、その酸化皮膜形成に伴い余剰となったNiが合金
表面に同時に遊離していると考えられ、このNiが触媒活
性を高める方向に働くことが酸化皮膜の存在下において
も急速放電特性を低下させない原因ではないかと考えら
れる。
The alloys of Examples 1, 2 and 3 are at substantially the same level as the alloys of Comparative Examples 5 and 6, and all have excellent rapid discharge characteristics. When explaining the cycle life improvement effect of Zr substitution, it was considered that it depends on the oxide film formation as in the case of Al substitution. Despite the formation of the same oxide film, the rapid discharge characteristics do not deteriorate in the case of Zr substitution.
It is considered that the reasons are as follows. First of all,
This is probably because the oxide film formed by Al substitution is electrically insulating, whereas the oxide film formed by Zr substitution has porosity and does not inhibit the diffusion of H + ions. Secondly, the substitution of Zr is a substitution for La (Mm), and it is considered that the surplus Ni accompanying the formation of the oxide film is simultaneously liberated on the alloy surface, and this Ni exerts a catalytic activity. It is considered that the effect of increasing the temperature does not deteriorate the rapid discharge characteristics even in the presence of the oxide film.

このようにLa(Mm)の一部をZrで置換することによ
り、初期放電容量は多少小さくなるが、Co置換量の少な
い成分系を採ることにより、高容量、長寿命で、かつ、
急速放電特性にも優れた水素吸蔵電極用の合金とするこ
とができる。
By partially replacing La (Mm) with Zr in this way, the initial discharge capacity is slightly reduced, but by using a component system with a small amount of Co replacement, high capacity, long life, and
An alloy for a hydrogen storage electrode having excellent rapid discharge characteristics can be obtained.

以上、ニッケル−金属水素化物二次電池の水素吸蔵電
極に使用するものとして、本願発明の合金が優れた電極
特性を発揮することを、その効果発現の機構をも含めて
述べてきたが、その作用はアルカリ電解液を用いる二次
電池に共通のものであり、正極に二酸化マンガンなどを
用いる二次電池にも当該電極を使用することができる。
As described above, it has been described that the alloy of the present invention exhibits excellent electrode characteristics as a material used for a hydrogen storage electrode of a nickel-metal hydride secondary battery, including the mechanism of its effect. The action is common to secondary batteries using an alkaline electrolyte, and the electrode can also be used for a secondary battery using manganese dioxide or the like for the positive electrode.

発明の効果 原料中に占めるLa量(La/Mm)が75重量%以上、90重
量%以下のMmを原材料に用い、Mmの一部をZrで、Niの一
部をCoとAlで置換した一般式Mm1-XZrXNiY-A-BCoAAlB
表される水素吸蔵合金は、その合金組成を上述の範囲で
示されるものとすることによって、充放電容量が大き
く、サイクル寿命特性が高く、さらに、急速放電によっ
ても容量低下の少ないなどの優れた特性を兼ね備えた電
極とすることができる。しかも、原材料のMmが安価であ
ることと、高価なCoの含有量が少ないこともあって、低
価格の水素吸蔵電極として実用性の高いものとなった。
Effect of the Invention Mm having a La content (La / Mm) in the raw material of 75% by weight or more and 90% by weight or less was used as a raw material, part of Mm was replaced with Zr, and part of Ni was replaced with Co and Al. The hydrogen storage alloy represented by the general formula Mm 1-X Zr X Ni YAB Co A Al B has a large charge / discharge capacity and a high cycle life characteristic by having the alloy composition be within the above range. Further, an electrode having excellent characteristics such as a small capacity reduction even by rapid discharge can be obtained. In addition, since the raw material Mm is inexpensive and the content of expensive Co is small, it has become highly practical as a low-cost hydrogen storage electrode.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】一般式Mm1-XZrXNiY-A-BCoAAlB(ただし、M
m:ミッシュメタル)で表され、Mm中に含まれるLa量(La
/Mm)が75重量%以上、90重量%以下で、同時にCe,Nd,P
rの希土類元素をそれぞれ10重量%以下含むMmを原材料
に用い、Mmの一部をZrで、Niの一部をCoとAlで置換する
ことを特徴とする水素吸蔵合金で、かつ、0.01≦X≦0.
08,4.9≦Y≦5.1,1.0≦A+B≦1.5,0.5≦B≦1.1,0.3
≦B≦0.6の各範囲で示される組成を有する合金を用い
た水素吸蔵電極。
[Claim 1] The general formula Mm 1-X Zr X Ni YAB Co A Al B (where M
m: misch metal) and the amount of La contained in Mm (La
/ Mm) is 75% by weight or more and 90% by weight or less, and at the same time, Ce, Nd, P
A hydrogen storage alloy characterized by substituting a part of Mm with Zr and a part of Ni with Co and Al using Mm containing 10% by weight or less of each of the rare earth elements of r as a raw material, and 0.01 ≦ X ≦ 0.
08,4.9 ≦ Y ≦ 5.1,1.0 ≦ A + B ≦ 1.5,0.5 ≦ B ≦ 1.1,0.3
A hydrogen storage electrode using an alloy having a composition represented by each range of ≦ B ≦ 0.6.
JP2074630A 1990-03-24 1990-03-24 Hydrogen storage electrode Expired - Fee Related JP2847873B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2074630A JP2847873B2 (en) 1990-03-24 1990-03-24 Hydrogen storage electrode
US07/672,996 US5284619A (en) 1990-03-24 1991-03-21 Hydrogen absorbing electrode for use in nickel-metal hydride secondary batteries
DE69104887T DE69104887T2 (en) 1990-03-24 1991-03-22 Hydrogen storage electrode suitable for use in nickel-metal hydride secondary batteries.
EP91104527A EP0451575B1 (en) 1990-03-24 1991-03-22 Hydrogen absorbing electrode for use in nickel-metal hydride secondary batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2074630A JP2847873B2 (en) 1990-03-24 1990-03-24 Hydrogen storage electrode

Publications (2)

Publication Number Publication Date
JPH03274240A JPH03274240A (en) 1991-12-05
JP2847873B2 true JP2847873B2 (en) 1999-01-20

Family

ID=13552716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2074630A Expired - Fee Related JP2847873B2 (en) 1990-03-24 1990-03-24 Hydrogen storage electrode

Country Status (1)

Country Link
JP (1) JP2847873B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6074783A (en) * 1996-12-19 2000-06-13 Duracell Inc. Hydrogen storage alloys for use in rechargeable electrochemical cells, and methods of producing them

Also Published As

Publication number Publication date
JPH03274240A (en) 1991-12-05

Similar Documents

Publication Publication Date Title
US6136473A (en) Hydrogen absorbing electrode, nickel electrode and alkaline storage battery
EP0451575B1 (en) Hydrogen absorbing electrode for use in nickel-metal hydride secondary batteries
JP2847874B2 (en) Hydrogen storage electrode
JP2847873B2 (en) Hydrogen storage electrode
JP2604282B2 (en) Alkaline storage battery
JP2847872B2 (en) Hydrogen storage electrode
JP3326197B2 (en) Hydrogen storage alloy electrode and method for producing the same
JPS62271349A (en) Hydrogen occlusion electrode
JP2000234134A (en) Hydrogen storage alloy, and electrode using the same
JP5179777B2 (en) Hydrogen storage alloy, negative electrode for nickel metal hydride secondary battery, nickel metal hydride secondary battery
JP2001313069A (en) Nickel hydrogen storage battery
JPS62271348A (en) Hydrogen occlusion electrode
JP2962813B2 (en) Hydrogen storage alloy electrode
JPH0514018B2 (en)
JP2962814B2 (en) Hydrogen storage alloy electrode
JP3192694B2 (en) Alkaline storage battery
JP2680566B2 (en) Hydrogen storage electrode
JP3412170B2 (en) Hydrogen storage electrode
JP3729913B2 (en) Hydrogen storage alloy electrode
US20060078794A1 (en) Nickel-metal hydride storage battery
JP2000073134A (en) LaNi5 HYDROGEN STORAGE ALLOY AND ELECTRODE USING THE SAME
JP3462673B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP3054431B2 (en) Metal-hydrogen alkaline storage battery
JP2703284B2 (en) Hydrogen storage alloy electrode and sealed alkaline storage battery using the electrode
JP2002260643A (en) Hydrogen storage alloy electrode and manufacturing method therefor, and alkaline storage battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees