JPH03289042A - Hydrogen storage electrode - Google Patents

Hydrogen storage electrode

Info

Publication number
JPH03289042A
JPH03289042A JP2088864A JP8886490A JPH03289042A JP H03289042 A JPH03289042 A JP H03289042A JP 2088864 A JP2088864 A JP 2088864A JP 8886490 A JP8886490 A JP 8886490A JP H03289042 A JPH03289042 A JP H03289042A
Authority
JP
Japan
Prior art keywords
hydrogen storage
alloy
discharge
mixture
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2088864A
Other languages
Japanese (ja)
Other versions
JPH07105231B2 (en
Inventor
Tetsuo Sakai
哲男 境
Hiroshi Ishikawa
博 石川
Hiroshi Miyamura
弘 宮村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP2088864A priority Critical patent/JPH07105231B2/en
Publication of JPH03289042A publication Critical patent/JPH03289042A/en
Publication of JPH07105231B2 publication Critical patent/JPH07105231B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To improve the charge/discharge life of an alloy and improve the discharge characteristic at a high rate and a low temperature by constituting an electrode with a specific hydrogen storage alloy. CONSTITUTION:A hydrogen storage electrode is constituted of a hydrogen storage alloy indicated by a formula A1-alphaNi5-y-2CoyMz, where A is rare earth elements, their mixture or a mixture of rare earth elements and Zr, Hf, M is Al, Mn or their mixture, 0<alpha<0.06, y=0.3-1.2, z=0.2-1.2. The high-rata discharge characteristic and low-temperature discharge characteristic can be improved while the cycle life of the alloy is maintained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は水素吸蔵電極に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a hydrogen storage electrode.

〔従来の技術〕[Conventional technology]

エネルギー貯蔵容量の向上を図るために、負極として可
逆的に水素を吸蔵、放出する水素吸蔵合金を用いた二次
電池が提案されている。
In order to improve energy storage capacity, a secondary battery using a hydrogen storage alloy that reversibly stores and releases hydrogen as a negative electrode has been proposed.

そして電極用水素吸蔵合金としては、一般にLaNi5
やMmNis(Mmはミツシュメタルを示す)をベース
としたものが用いられている。そして、水素吸蔵合金の
水素平衡解離圧を電池使用温度範囲の一20〜60℃で
一気圧以下に保つために、Niの一部を^lやMnで置
換したり、また充放電サイクルに伴う合金の酸化分解を
防ぐためにNiをCoで置換することがよく行なわれて
いる。
As a hydrogen storage alloy for electrodes, generally LaNi5
or MmNis (Mm stands for mitshu metal). In order to keep the hydrogen equilibrium dissociation pressure of the hydrogen storage alloy below 1 atm within the battery operating temperature range of -20 to 60°C, some of the Ni is replaced with ^l or Mn, and the It is common practice to replace Ni with Co to prevent oxidative decomposition of the alloy.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

LaNi5系は充放電容量が大きいが高価である。 LaNi5 type has a large charge/discharge capacity but is expensive.

一方、MmN i s系は充放電容量は小さいが低価格
である。またこれまでに、両合金系から共に充電放電3
00サイクルでも容量低下のほとんどない合金が開発さ
れているが、高率や低温での放電特性に劣るという欠点
があった。
On the other hand, the MmN i s type has a small charge/discharge capacity but is inexpensive. In addition, so far, both alloy systems have been used to charge and discharge 3
Although alloys have been developed that exhibit almost no capacity loss even after 00 cycles, they have the drawback of poor discharge characteristics at high rates and low temperatures.

本発明はかかる従来の欠点を解消することを目的とする
ものである。
The present invention aims to eliminate such conventional drawbacks.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成する本発明の水素吸蔵合金は、一般弐A
+−aJJis−y−zcoyM、zで示される水素吸
蔵合金から成る。
The hydrogen storage alloy of the present invention that achieves the above object is general
+-aJJis-y-zcoyM, made of a hydrogen storage alloy indicated by z.

ただし上記一般式において、Aは希土類元素、それらの
混合体または希土類元素とZr、 Ifとの混合体、H
はAl、 Mnまたはこれらの混成体であり、0〈α<
0.06、y=0.3〜1.2、z = 0.2〜1.
2である。
However, in the above general formula, A is a rare earth element, a mixture thereof or a mixture of a rare earth element and Zr, If, H
is Al, Mn or a hybrid thereof, and 0<α<
0.06, y=0.3-1.2, z=0.2-1.
It is 2.

希土類元素の混合体(Mm :ミッシュメタル)は人工
的に混合体を調整しても良いし、天然に産出するものを
そのまま使用することもできる。
The mixture of rare earth elements (Mm: misch metal) may be prepared artificially, or naturally occurring elements may be used as they are.

天然に産出する希土類金属の混合体としては、下記第1
表に示すように鉱石の種類や、その分離プロセスの程度
によって種々の化学組成(重量%)のものが得られてい
る。
As a mixture of naturally occurring rare earth metals, the following
As shown in the table, various chemical compositions (wt%) are obtained depending on the type of ore and the extent of the separation process.

第1表 そして、組成Aのhが一般に最も入手しやすく、かつ安
価であるが、Laの含有量が低いので充放電容量が低い
。組成りおよびEのhは、Laの含有量が多いので充放
電容量が高いがCeなどを分離除しているので高価格で
ある。
Table 1 Composition A h is generally the most readily available and inexpensive, but has a low charge/discharge capacity due to its low La content. Composition and h in E have a high charge/discharge capacity due to a high content of La, but are expensive because Ce etc. are separated.

一方、組成Cのhは、La含有量が高く、かつ低価格で
あるが大量供給に不安がある。また組成りの1は、Aよ
りも安価に入手できるが、MgやCIの含有量が多いた
め合金製造前に予備精製が必要であるなどの不便がある
On the other hand, h of composition C has a high La content and is low in price, but there are concerns about mass supply. Composition 1 can be obtained at a lower price than A, but has the disadvantage of requiring preliminary refining before producing the alloy due to its high Mg and CI content.

このように各1’bwともそれぞれ特徴があるので、目
的に応じて使い分けることができる。
In this way, since each 1'bw has its own characteristics, it can be used depending on the purpose.

Mmにおいて、希土類金属中のCeやNdの含有量が多
い程、高価なCoの含有量を減らしても十分に長い充放
電サイクル寿命(300サイクルで10%以下の充放電
容量低下)を得ることができるが、解離圧が上昇するの
で旧やMnの含有量を増して下げる必要がある。
In Mm, as the content of Ce and Nd in the rare earth metal increases, a sufficiently long charge/discharge cycle life (less than 10% decrease in charge/discharge capacity after 300 cycles) can be obtained even if the content of expensive Co is reduced. However, since the dissociation pressure increases, it is necessary to increase the content of old and Mn to lower it.

またLa含有量が多い合金系では、十分に長いサイクル
寿命を得るためには、多量のCo (前記−a式におい
てy>1.5)を用いる必要があるが、この場合に放電
容量の低下および高率放電特性の悪化をひきおこす。そ
こでLaの3〜8原子%をZrやHfで置換すると、C
oの含有量をy〈1、 Oとしても十分に長い寿命が得
られる。従ってCo含有量はy = 0.3〜1.2、
好ましくはy−0,5〜0,9、更に好ましくはy =
 0.6〜0.8である。また合金の水素解離圧を調整
するためにNiの一部を旧やMnで置換するが、その置
換量は電池使用温度範囲によって決定されてz = 0
.2〜1.2であり、−20〜60°Cの温度範囲であ
ればz = 0.4〜0.8が好ましい。
In addition, in alloy systems with a high La content, it is necessary to use a large amount of Co (y > 1.5 in equation -a above) in order to obtain a sufficiently long cycle life, but in this case, the discharge capacity decreases. and cause deterioration of high rate discharge characteristics. Therefore, if 3 to 8 atomic percent of La is replaced with Zr or Hf, C
Even if the content of o is set to y<1, O, a sufficiently long life can be obtained. Therefore, the Co content is y = 0.3~1.2,
Preferably y-0,5 to 0,9, more preferably y=
It is 0.6 to 0.8. In addition, in order to adjust the hydrogen dissociation pressure of the alloy, part of the Ni is replaced with old or Mn, but the amount of replacement is determined by the battery operating temperature range, and z = 0.
.. 2 to 1.2, and preferably z = 0.4 to 0.8 in the temperature range of -20 to 60°C.

なお、0〈α<0.06、好ましくは0.1≦α≦0.
04、更に好ましくは0.1〈α≦0.3の範囲につい
ては下記実施例で説明する。
Note that 0<α<0.06, preferably 0.1≦α≦0.
The range of 0.04, more preferably 0.1<α≦0.3 will be explained in the following examples.

以下、本発明の実施例を述べる。Examples of the present invention will be described below.

〔実施例〕〔Example〕

実施例1 化学組成Lao、 5−azNdo、 + 5Zr(H
f) o、 osNi*、 8COO,?A1...の
電極の製造。
Example 1 Chemical composition Lao, 5-azNdo, + 5Zr(H
f) o, osNi*, 8COO,? A1. .. .. Manufacture of electrodes.

市販の純度99.5%以上のLa、 Nd、 Zrまた
はHf、Ni、 Coおよび^1金属を用い、アルゴン
アーク溶解炉で上記組成の水素貯蔵合金を製造した。こ
の合金を100メツシユ以下に粉砕し、無電解銅メツキ
法により合金粉末の表面に約20重量%の銅被覆層を形
成した。次に得られた銅被覆水素貯蔵合金に接着剤とし
てフッ素樹脂(四フッ化エチレン・フッ化プロピレン共
重合体、樹脂添加量=10重四%相当)を加え、冷間プ
レスにより直径13耶、重さ300■の成形体とした。
A hydrogen storage alloy with the above composition was produced in an argon arc melting furnace using commercially available La, Nd, Zr, or Hf, Ni, Co, and ^1 metals with a purity of 99.5% or higher. This alloy was pulverized to 100 mesh or less, and a copper coating layer of about 20% by weight was formed on the surface of the alloy powder by electroless copper plating. Next, a fluororesin (tetrafluoroethylene/fluoropropylene copolymer, resin addition amount = equivalent to 10 weights and 4%) was added as an adhesive to the resulting copper-coated hydrogen storage alloy, and cold pressed to a diameter of 13 mm. A molded article weighing 300 cm was obtained.

これを集電体としてのニッケルメツシュで両側から挟み
、温度300°Cにてホットプレス成形することにより
水素吸蔵電極を作製した。
This was sandwiched between nickel meshes as current collectors from both sides, and hot press molded at a temperature of 300°C to produce a hydrogen storage electrode.

これらの水素吸蔵電極を負極とし、正極に焼結型の酸化
ニッケル電極を、照合電極として酸化水銀電極を用い、
6N水酸化カリウム溶液を電解液とする試験用電池を組
立てた。なお、いずれの試験用電池も電池容量が負極の
容量に依存する負極規制タイプとした。これらの試験用
電池を温度200°Cの恒温室内に置いて、充電電流4
0mAで2.5時間充電し、0.5時間休止した後、放
電電流20mAで電圧が照合電極に対して一〇、6Vに
低下するまで放電するといったサイクルで長期間充放電
繰り返し試験を行った。また、高率放電試験は放電電流
200mAまで行なった。各種合金についての結果を第
2表および第1図に示す。
These hydrogen storage electrodes were used as negative electrodes, sintered nickel oxide electrodes were used as positive electrodes, and mercury oxide electrodes were used as reference electrodes.
A test battery was assembled using a 6N potassium hydroxide solution as an electrolyte. Note that all test batteries were negative electrode regulated types in which the battery capacity depends on the capacity of the negative electrode. These test batteries were placed in a constant temperature room at a temperature of 200°C, and a charging current of 4
A long-term charging/discharging test was conducted by charging at 0 mA for 2.5 hours, resting for 0.5 hours, and then discharging at a discharge current of 20 mA until the voltage dropped to 10.6 V with respect to the reference electrode. . Further, the high rate discharge test was conducted up to a discharge current of 200 mA. The results for various alloys are shown in Table 2 and Figure 1.

第2表 注: 200n+A=926mA/g、容量280a+
Ah/gとすると、3.3C率の放電に相当する。
Table 2 Note: 200n+A=926mA/g, capacity 280a+
When expressed as Ah/g, this corresponds to a discharge at a rate of 3.3C.

第2表および第1図から明らかなように、Laが不足側
にずれると(α〉0)、高率放電性能は向上するが、ず
れがα=0.06と大きすぎるとサイクル寿命が低下す
る。一方、Laがリッチ側にずれると(α〈0)、高率
放電性能が損なわれ、かつ寿命も低下する。
As is clear from Table 2 and Figure 1, when La shifts to the insufficient side (α>0), high rate discharge performance improves, but when the shift is too large (α = 0.06), the cycle life decreases. do. On the other hand, when La shifts to the rich side (α<0), high rate discharge performance is impaired and the life span is also shortened.

従って、この合金では0〈α<0.06が用いられ、0
.01≦α≦0.04が好ましく用いられ、0.01〈
α≦0.03が更に好ましく用いられる。
Therefore, 0<α<0.06 is used for this alloy, and 0
.. 01≦α≦0.04 is preferably used, and 0.01<
α≦0.03 is more preferably used.

これは、Laリッチ側では結晶粒界にLaが析出し、こ
れが電解液との接触により酸化されるため、この酸化物
層が電極反応の抵抗となり、高率放電時の容量低下を引
きおこすためと考えられる。一方、La不足側では結晶
粒界にNiリッチ相が析出し、これが電極反応の触媒と
なり、高率放電反応が容易になるものと考えられる。
This is because on the La-rich side, La precipitates at grain boundaries and is oxidized by contact with the electrolyte, so this oxide layer acts as a resistance to the electrode reaction and causes a decrease in capacity during high-rate discharge. Conceivable. On the other hand, on the La-deficient side, a Ni-rich phase precipitates at the grain boundaries, which becomes a catalyst for the electrode reaction, and is thought to facilitate the high-rate discharge reaction.

実施例2 実施例1と同様にして、化学組成?Iwl−(Jlil
、 5Coo、 、A1.、、の合金により電極を製造
し、実施例1と同様の方法で試験を行なった。なおhに
は前記第1表に示した組成へのMmを用いた。
Example 2 The chemical composition was determined in the same manner as in Example 1. Iwl-(Jlil
, 5Coo, ,A1. An electrode was manufactured using an alloy of , , and tested in the same manner as in Example 1. Note that Mm for the composition shown in Table 1 above was used for h.

試験結果を下記第3表に示す。The test results are shown in Table 3 below.

第3表 率放電特性は著しく低下する。従って0〈α≦0.06
の範囲が用いられ、0.01≦α≦0.04が好ましく
、0.01<α≦0.03が更に好ましく用いれらる。
Table 3: The discharge characteristics are significantly degraded. Therefore 0〈α≦0.06
The range of 0.01≦α≦0.04 is preferably used, and the range of 0.01<α≦0.03 is more preferably used.

実施例3 化学組成Mm+−acNi3.5Coo、 sMno、
 aAlo、 3の電極を実施例1と同様の方法で製造
し、同様の試験を行なった。なお、Mmには前記第1表
、組成りのMmを用いた。結果を下記第4表に示す。
Example 3 Chemical composition Mm+-acNi3.5Coo, sMno,
An electrode of aAlo.3 was manufactured in the same manner as in Example 1, and the same tests were conducted. In addition, the Mm of the composition shown in Table 1 above was used for Mm. The results are shown in Table 4 below.

(来夏以下余白) 第3表から明らかなとおり、Mmが不足側にずれると(
α〉0)、高率放電特性は向上するが、α=0.06で
は寿命が短くなる。
(Leaving space below next summer) As is clear from Table 3, if Mm shifts to the shortage side (
α>0), the high rate discharge characteristics are improved, but when α=0.06, the life is shortened.

一方、Mmがリッチ側(α〈0)にずれると高第4表 〔発明の効果] 以上述べたように本発明の水素吸蔵電極によれば、合金
のサイクル寿命を維持したままで高率放電特性および低
温放電特性を著しく向上させることができる。
On the other hand, when Mm shifts to the rich side (α<0), it becomes high. characteristics and low-temperature discharge characteristics can be significantly improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の水素吸蔵電極の放電容量とLaの化学
量論量からのずれとの関係を示す図である。 第4表から明らかなとおり、M−が不足側にずれると(
α〉0)、高率放電特性は向上するが、α=0.06で
は寿命が短い。 一方、hがリッチ側にずれると(α〈0)、高率放電特
性は著しく低下する。従って0.01≦α≦0.04の
範囲が好ましく用いられる。
FIG. 1 is a diagram showing the relationship between the discharge capacity of the hydrogen storage electrode of the present invention and the deviation from the stoichiometric amount of La. As is clear from Table 4, when M- shifts to the shortage side, (
α>0), the high rate discharge characteristics are improved, but when α=0.06, the life is short. On the other hand, when h shifts to the rich side (α<0), the high rate discharge characteristics deteriorate significantly. Therefore, the range of 0.01≦α≦0.04 is preferably used.

Claims (1)

【特許請求の範囲】 一般式A_1_−_αNi_3_−_y_−_zCo_
yM_zで示される水素吸蔵合金から成ることを特徴と
する水素吸蔵電極。 ただし上記一般式において、Aは希土類元素、それらの
混合体または希土類元素とZr、Hfとの混合体、Mは
Al、Mnまたはこれらの混成体であり、0<α<0.
06、y=0.3〜1.2、z=0.2〜1.2である
[Claims] General formula A_1_-_αNi_3_-_y_-_zCo_
A hydrogen storage electrode comprising a hydrogen storage alloy represented by yM_z. However, in the above general formula, A is a rare earth element, a mixture thereof, or a mixture of a rare earth element and Zr or Hf, M is Al, Mn, or a hybrid thereof, and 0<α<0.
06, y=0.3-1.2, z=0.2-1.2.
JP2088864A 1990-04-02 1990-04-02 Hydrogen storage electrode Expired - Lifetime JPH07105231B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2088864A JPH07105231B2 (en) 1990-04-02 1990-04-02 Hydrogen storage electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2088864A JPH07105231B2 (en) 1990-04-02 1990-04-02 Hydrogen storage electrode

Publications (2)

Publication Number Publication Date
JPH03289042A true JPH03289042A (en) 1991-12-19
JPH07105231B2 JPH07105231B2 (en) 1995-11-13

Family

ID=13954873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2088864A Expired - Lifetime JPH07105231B2 (en) 1990-04-02 1990-04-02 Hydrogen storage electrode

Country Status (1)

Country Link
JP (1) JPH07105231B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1044174C (en) * 1994-10-20 1999-07-14 浙江大学 Hydrogen-storing alloy electrode material
CN1044173C (en) * 1994-10-20 1999-07-14 浙江大学 Hydrogen-storing alloy electrode material

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6089066A (en) * 1983-10-21 1985-05-18 エヌ・ベ−・フイリツプス・フル−イランペンフアブリケン Electrochemical cell

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6089066A (en) * 1983-10-21 1985-05-18 エヌ・ベ−・フイリツプス・フル−イランペンフアブリケン Electrochemical cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1044174C (en) * 1994-10-20 1999-07-14 浙江大学 Hydrogen-storing alloy electrode material
CN1044173C (en) * 1994-10-20 1999-07-14 浙江大学 Hydrogen-storing alloy electrode material

Also Published As

Publication number Publication date
JPH07105231B2 (en) 1995-11-13

Similar Documents

Publication Publication Date Title
JPS60241652A (en) Electrochemical electrode employing metal hydride
JP7311507B2 (en) Large-capacity and long-life La-Mg-Ni type negative electrode hydrogen storage material for secondary chargeable nickel-metal hydride battery and method for producing the same
JPS6191863A (en) Sealed alkaline storage battery
JPS61233969A (en) Electrode for storage battery
JPH03289042A (en) Hydrogen storage electrode
JPH0953136A (en) Hydrogen storage alloy and hydrogen storage alloy electrode
JPS62249358A (en) Hydrogen storage electrode
JPH06196164A (en) Material capable of being hydrogenated for formation of negative electrode of nickel- hydride storage battery
JPH0650634B2 (en) Hydrogen storage electrode
JP2847874B2 (en) Hydrogen storage electrode
JPH0514018B2 (en)
JPH0797497B2 (en) Hydrogen storage electrode
JP3470987B2 (en) Hydrogen storage alloy and hydrogen storage alloy electrode
JPH02220354A (en) Hydrogen storage electrode
JPH02174063A (en) Hydrogen storage electrode
JPH0815079B2 (en) Hydrogen storage electrode
JP3276677B2 (en) Hydrogen storage alloy electrode
JPH0265060A (en) Hydrogen storage electrode
JP3729913B2 (en) Hydrogen storage alloy electrode
JPH02148568A (en) Hydrogen occludent electrode
JPH04187735A (en) Hydrogen storage alloy electrode
JPH0927321A (en) Hydrogen storage alloy electrode
JPH0357158A (en) Hydrogen storage electrode for alkaline storage battery
JPS62249357A (en) Hydrogen storage electrode
JPH0561336B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term