JPH0514018B2 - - Google Patents

Info

Publication number
JPH0514018B2
JPH0514018B2 JP2096840A JP9684090A JPH0514018B2 JP H0514018 B2 JPH0514018 B2 JP H0514018B2 JP 2096840 A JP2096840 A JP 2096840A JP 9684090 A JP9684090 A JP 9684090A JP H0514018 B2 JPH0514018 B2 JP H0514018B2
Authority
JP
Japan
Prior art keywords
alloy
substitution
cycle life
capacity
hydrogen storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2096840A
Other languages
Japanese (ja)
Other versions
JPH03294444A (en
Inventor
Tetsuo Sakai
Hiroshi Ishikawa
Tokuichi Hazama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP2096840A priority Critical patent/JPH03294444A/en
Publication of JPH03294444A publication Critical patent/JPH03294444A/en
Publication of JPH0514018B2 publication Critical patent/JPH0514018B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、水素吸蔵合金を負極とし、酸化ニツ
ケル電極を正極とするニツケル−金属水素化物二
次電池に関するものであり、特に、充放電容量が
大きく、充放電サイクルの長期繰り返しにおいて
も特性の劣化が少なく、さらに、大電流放電時で
も放電容量の低下が少ない水素吸蔵電極に関する
ものである。 〔従来の技術〕 エネルギー貯蔵容量の向上を計るため、負極と
して水素を可逆的に吸蔵・放出する水素吸蔵合金
を用い、吸蔵した水素を活物質とするニツケル−
金属水素化物二次電池が提案され、開発が急がれ
ている。これに用いる水素吸蔵合金は、次に掲げ
るような要件を満たしていることが必要とされて
いる。 (1) 有効水素吸蔵量、すなわち電気容量が大きい
こと。 (2) 水素平衡解離圧が電池使用温度(−20〜60
℃)で10-3〜数気圧であること。 (3) 濃アルカリ電解液中での耐食性に優れるこ
と。 (4) 電極反応の繰り返しによる微粉化の速度が遅
いこと。 (5) 電極反応の繰り返しによつて、一部特定元素
の溶出等による組成変化のないこと。 (6) 水素拡散速度が大きく、反応抵抗(過電圧)
が小さいこと。 (7) 安価であること。 希土類元素を含む安価な原料として、従来より
知られているものにミツシユメタル(Mm)があ
る。これは希土類金属の混合物であり、通常の場
合、La25〜35重量%、Ce45〜55重量%、Nd10〜
15重量%で構成される。このMmを原料とする水
素吸蔵合金では、希土類金属中のCe量が多いこ
とから、水素解離圧が高くなる。 MmNi系水素吸蔵合金では、水素解離圧を電
池使用温度で1気圧程度にするためには、Niの
一部をMn,Al,Co等の元素で置換する必要があ
る。 Niの一部をCoとAlで置換したMmNiCoAl系
の水素吸蔵合金では、Co置換量が多いほど有効
な水素吸蔵量が少なくなり、電極にした場合の放
電容量も小さくなる。そこで、Co置換量は良好
なサイクル寿命特性が維持できる範囲内で、少な
く抑えるのが良策である。また、Alは合金粉末
表面に緻密な酸化皮膜を形成することにより、合
金の酸化を抑制、サイクル寿命を改善することに
なる。ただ、温度のAl置換はその酸化皮膜形成
が災いして、電極の反応抵抗を高める方向に寄与
し、急速放電特性や低温での放電特性を悪くする
方向に作用する。したがつて、Al置換量も、適
度な水素解離圧とサイクル寿命特性とを得るのに
必要な最小限の量に止めておくのが得策である。
このようなことを考慮して作製された合金に
MmNi3.5Co0.7Al0.8合金があるが、その放電容量
は254mA・h/g程度であり、必ずしも大きい
とは言えない。 〔発明が解決しようとする課題〕 このように、MmNiCoAl系では260mA・h/
g以上の大きな放電容量と良好なサイクル寿命特
性とを兼ね備えた合金が得られないことから、
Niの一部をMnで置換したMmNiCoMnAl系の合
金が有望視されている。このMn置換は合金の水
素吸蔵量(放電容量)を落とさずに水素解離圧を
下げる点で有用であり、MnはCoやAlに代わる置
換元素として使用できる。ただ、充放電の繰り返
しに伴い、合金粉末の表面近傍にあるMnが電解
液中に溶出する現象が確認され、サイクル寿命を
低下させる弊害がある。したがつて、Mn置換を
行う場合、それと同時にMnの溶出を防止してサ
イクル寿命特性の劣化を防止する処置をも探る必
要があるが、この方法について確たるものは今ま
でに見出だされていなかつた。 本発明はMmの一部を少量のZrで置換すること
により、高容量で長寿命の水素吸蔵電極用の合金
を提供することを目的とするものである。 〔課題を解決するための手段〕 上記目的を達成する本発明は、一般式Mm1-X
ZrXNiACoBMnCAlDで表わされる水素吸蔵合金を
用いたことを特徴とするものである。 ただし、上記一般式において、Mmはミツシユ
メタルであり、0.01≦X≦0.08、4.9≦A+B+C
+D≦5.1、3.2≦A≦3.6、0.5≦B≦1.0、0.3≦C
≦0.5および0.3≦D≦0.5である。 本発明で用いるミツシユメタルとしては、希土
類元素を含有する鉱石の中で、軽希土を多く含有
するモナザイト、バストネサイト、重希土を多く
含有するゼノタイムなど種々のものがあり、全く
分離操作を行なわない混合希土(ミツシユメタ
ル)や、Ce,Eu,Sm,Dy,Gd,Tb,Ybなど
の有用元素を分離した後の混合希土などが用いら
れる。 下記第1表に示すサンプルAは、一般に良く用
いられている末分離のミツシユメタルであり、
Ce含有量が多いので電気容量は低いがサイクル
寿命は長く、かつ最も安価である。サンプルB,
CおよびDはCeなどの元素を分離したものであ
るが、La含有量が高くなるにつれて電気容量は
増加するがサイクル寿命は短くなる傾向があり、
また価格も上昇する。従つて電池の用途によつ
て、これらミツシユメタルを使いわけることがで
きる。 また、希土類元素金属の製造法としては、希土
類酸化物を原料とする酸化物電解と塩化物を原料
とする塩化物電解があり、塩化物電解の方が
Mg,Cl,Fe,Siなどの不純物濃度が高いが安価
である。 しかしながら、MgやClの含有量の多いミツシ
ユメタルを用いると、合金製造時に電気炉を損な
うなどの問題も生じ、トータルコストはいちがい
に比較できない。 塩化物から製造したMmをサンプルEとした
が、合金組成によつては、不純物に由来すると思
われる電気容量やサイクル寿命の大幅な低下を引
き起すこともある。 しかしながら下記実施例に示すように、Mnを
添加する不純物の影響をある程度弱めることがで
きるので実用上問題はない。
[Industrial Application Field] The present invention relates to a nickel-metal hydride secondary battery that uses a hydrogen storage alloy as a negative electrode and a nickel oxide electrode as a positive electrode. The present invention relates to a hydrogen storage electrode that exhibits little deterioration in characteristics even after repeated use over a long period of time, and further exhibits little decrease in discharge capacity even during large current discharge. [Conventional technology] In order to improve energy storage capacity, a hydrogen storage alloy that reversibly stores and releases hydrogen is used as a negative electrode, and a nickel alloy that uses the stored hydrogen as an active material is used as a negative electrode.
Metal hydride secondary batteries have been proposed and are being rapidly developed. The hydrogen storage alloy used for this purpose is required to meet the following requirements. (1) The effective hydrogen storage capacity, that is, the electrical capacity, is large. (2) Hydrogen equilibrium dissociation pressure at battery operating temperature (-20 to 60
℃) and 10 -3 to several atmospheres. (3) Excellent corrosion resistance in concentrated alkaline electrolyte. (4) The speed of pulverization due to repeated electrode reactions is slow. (5) There should be no change in composition due to elution of some specific elements due to repeated electrode reactions. (6) High hydrogen diffusion rate and reaction resistance (overvoltage)
is small. (7) It must be inexpensive. Mitsushi Metal (Mm) has long been known as an inexpensive raw material containing rare earth elements. It is a mixture of rare earth metals, usually La25~35% by weight, Ce45~55% by weight, Nd10~
Consists of 15% by weight. In this hydrogen storage alloy made from Mm, the hydrogen dissociation pressure is high because the amount of Ce in the rare earth metal is large. In MmNi-based hydrogen storage alloys, in order to make the hydrogen dissociation pressure about 1 atm at the battery operating temperature, it is necessary to partially replace Ni with elements such as Mn, Al, and Co. In MmNiCoAl-based hydrogen storage alloys in which a portion of Ni is replaced with Co and Al, the larger the Co substitution amount, the smaller the effective hydrogen storage amount, and the smaller the discharge capacity when used as an electrode. Therefore, it is a good idea to keep the Co substitution amount as low as possible within a range that allows good cycle life characteristics to be maintained. In addition, Al forms a dense oxide film on the surface of the alloy powder, thereby suppressing oxidation of the alloy and improving cycle life. However, Al substitution at high temperatures causes the formation of an oxide film, which contributes to increasing the reaction resistance of the electrode, and has the effect of deteriorating rapid discharge characteristics and low-temperature discharge characteristics. Therefore, it is advisable to keep the Al substitution amount to the minimum amount necessary to obtain appropriate hydrogen dissociation pressure and cycle life characteristics.
Alloys made with this in mind
There is a MmNi 3.5 Co 0.7 Al 0.8 alloy, but its discharge capacity is about 254 mA·h/g, which is not necessarily large. [Problem to be solved by the invention] In this way, in the MmNiCoAl system, 260mA・h/
Since it is not possible to obtain an alloy that has both a large discharge capacity of more than g and good cycle life characteristics,
MmNiCoMnAl alloys, in which part of Ni is replaced with Mn, are considered promising. This Mn substitution is useful in reducing the hydrogen dissociation pressure without reducing the hydrogen storage capacity (discharge capacity) of the alloy, and Mn can be used as a substitution element in place of Co and Al. However, with repeated charging and discharging, it has been confirmed that Mn near the surface of the alloy powder is eluted into the electrolyte, which has the disadvantage of shortening the cycle life. Therefore, when performing Mn substitution, it is necessary to simultaneously search for measures to prevent the elution of Mn and prevent the deterioration of cycle life characteristics, but no reliable method has been found to date. Nakatsuta. The present invention aims to provide an alloy for hydrogen storage electrodes with high capacity and long life by replacing a part of Mm with a small amount of Zr. [Means for Solving the Problems] The present invention that achieves the above object has the general formula Mm 1-X
It is characterized by using a hydrogen storage alloy represented by Zr X Ni A Co B Mn C Al D. However, in the above general formula, Mm is Mitsushi metal, 0.01≦X≦0.08, 4.9≦A+B+C
+D≦5.1, 3.2≦A≦3.6, 0.5≦B≦1.0, 0.3≦C
≦0.5 and 0.3≦D≦0.5. Among ores containing rare earth elements, there are various types of Mitsushimetal used in the present invention, such as monazite and bastnasite, which contain a large amount of light rare earth, and xenotime, which contains a large amount of heavy rare earth. Mixed rare earths (Mitsushimetal) that are not subjected to this process or mixed rare earths that have been separated from useful elements such as Ce, Eu, Sm, Dy, Gd, Tb, and Yb are used. Sample A shown in Table 1 below is a commonly used final separated Mitsushi Metal.
Due to the high Ce content, the capacitance is low, but the cycle life is long, and it is the cheapest. Sample B,
C and D are separated elements such as Ce, but as the La content increases, the electric capacity increases, but the cycle life tends to become shorter.
Prices will also rise. Therefore, these Mitsushi metals can be used depending on the purpose of the battery. In addition, as methods for producing rare earth metals, there are oxide electrolysis using rare earth oxides as raw materials and chloride electrolysis using chlorides as raw materials. Chloride electrolysis is better.
Although it has a high concentration of impurities such as Mg, Cl, Fe, and Si, it is inexpensive. However, using Mitsushi Metal, which has a high content of Mg and Cl, causes problems such as damage to the electric furnace during alloy production, and the total cost cannot be compared. Mm manufactured from chloride was used as sample E, but depending on the alloy composition, it may cause a significant decrease in electric capacity and cycle life, which may be caused by impurities. However, as shown in the examples below, the effect of impurities added with Mn can be weakened to some extent, so there is no problem in practice.

【表】 水素吸蔵合金として上記組成式で示されるよう
に、Mmの一部をZrで、Niの一部をCo,Mn,
Alで置換した合金を電極に用いることによつて、
Zrのサイクル寿命改善効果ならびに合金表面で
のMn溶出抑制効果のため、充放電の長期繰り返
しにおいて特性が劣化しない水素吸蔵電極を作製
することができた。このようなZrの作用は、合
金表面に緻密な酸化皮膜を形成することによつて
発揮されるものと考えられる。 以下本発明の実施例を述べる。 実施例1〜3、比較例1〜6 本願発明の作用を確認するため、第2表に示す
水素吸蔵合金を、アルゴン雰囲気中でアーク溶解
することによつて得た。なお、ミツシユメタルと
しては、第1表のサンプルAを使用した。合金を
機械的に粉砕した後、無電解銅めつき法により合
金粉末の表面に約20重量%相当の銅被覆層を形成
した。この合金粉末に結着剤としてFEP(四フツ
化エチレン・フツ化プロピレン共重合体)樹脂を
10重量%相当量添加し、約300mgの粉末混合体
(合金重量:約216mg)を冷間プレスにより直径13
mm×厚さ0.4mm形状の電極ペレツトに成形した。
これを集電体となるニツケルメツシユとともに
300℃の温度でホツトプレスすることによつて試
験用の合金電極とした。 この水素吸蔵電極を負極に、正極としてニツケ
ル−カドミウム蓄電池と同じ酸化ニツケル電極
を、電解液として6M水酸化カリウム溶液を用い
て試験用電池を構成した。なお、いずれの試験用
電池も電池容量が負極の容量に依存する負極規制
タイプとし、照合電極には酸化水銀電極を用い
た。この試験用電池を温度20℃の恒温室の中にお
いて、充電電流40mAで2.5時間充電し、0.5時間
休止した後、放電電流20mAで照合電極と水素吸
蔵電極との電位差が−0.6Vに低下するまで放電
するといつたサイクルで、長期間の充放電サイク
ル試験を行つた。 各合金についての試験結果を第2表に示す。こ
こで、初期最大容量に達した後300サイクル経過
したときの放電容量を初期最大容量で除した値を
容量維持率として、サイクル寿命特性を示す指標
として扱つている。なお、第2表に示される各合
金は、常温における平衡水素解離圧を1気圧以下
にほぼ揃えるために、Al置換量を調製している。
[Table] As shown in the above composition formula as a hydrogen storage alloy, part of Mm is Zr, and part of Ni is Co, Mn,
By using an alloy substituted with Al for the electrode,
Because of the cycle life improvement effect of Zr and the effect of suppressing Mn elution on the alloy surface, we were able to create a hydrogen storage electrode whose characteristics do not deteriorate even after repeated charging and discharging over a long period of time. This effect of Zr is thought to be exerted by forming a dense oxide film on the alloy surface. Examples of the present invention will be described below. Examples 1 to 3, Comparative Examples 1 to 6 In order to confirm the effect of the present invention, hydrogen storage alloys shown in Table 2 were obtained by arc melting in an argon atmosphere. Note that Sample A in Table 1 was used as Mitsushi Metal. After the alloy was mechanically pulverized, a copper coating layer equivalent to about 20% by weight was formed on the surface of the alloy powder by electroless copper plating. FEP (tetrafluoroethylene/fluoropropylene copolymer) resin is added to this alloy powder as a binder.
Approximately 300 mg of powder mixture (alloy weight: approx. 216 mg) was added in an amount equivalent to 10% by weight and was cold pressed to a diameter of 13 mm.
It was molded into an electrode pellet with a shape of 0.4 mm x 0.4 mm.
This is used together with the nickel mesh that becomes the current collector.
Alloy electrodes for testing were prepared by hot pressing at a temperature of 300°C. A test battery was constructed using this hydrogen storage electrode as a negative electrode, a nickel oxide electrode similar to that used in a nickel-cadmium storage battery as a positive electrode, and a 6M potassium hydroxide solution as an electrolyte. Note that all test batteries were negative electrode regulated types in which the battery capacity depends on the capacity of the negative electrode, and a mercury oxide electrode was used as the reference electrode. This test battery was charged for 2.5 hours at a charging current of 40 mA in a constant temperature room at a temperature of 20°C, and after resting for 0.5 hours, the potential difference between the reference electrode and the hydrogen storage electrode decreased to -0.6 V at a discharge current of 20 mA. A long-term charge-discharge cycle test was conducted using a cycle in which the battery was discharged until The test results for each alloy are shown in Table 2. Here, the value obtained by dividing the discharge capacity 300 cycles after reaching the initial maximum capacity by the initial maximum capacity is treated as the capacity retention rate, and is treated as an index indicating cycle life characteristics. In each alloy shown in Table 2, the amount of Al substitution is adjusted so that the equilibrium hydrogen dissociation pressure at room temperature is approximately equal to 1 atm or less.

【表】【table】

【表】 比較例1および2の合金は、MmNiCoAl系の
合金であり、それぞれCoとAlの置換量を変えて
いる。比較例2の合金は、比較例1の合金に比べ
てCoとAlの置換量が少ないため、初期放電容量
が大きくなつているが、実用的には260mA・
h/g以上であることが望ましく、何らかの改善
処置が必要である。なお、サイクル寿命特性は比
較例1および2の合金とも非常に良好である。こ
の合金系で放電容量を比較例2の合金以上に得よ
うとするには、CoとAlの置換量をさらに少なく
する外ないが、サイクル寿命特性の確保と水素解
離圧の調整の点から、これ以上のCoとAlの置換
量低減には事実上無理がある。 これに対し、比較例3の合金は、組成的に比較
例1の合金にMn置換を付加したものであり、初
期放電容量が増加しているものの、サイクル寿命
特性が劣化している。また、比較例4の合金は比
較例2の合金にMn置換を付加したものであり、
上記と同様の傾向が認められる。これらMn置換
により放電容量の増加を図つた、比較例4に示す
ような合金ではサイクル寿命特性が劣化し、実用
的に十分とは言えない。これは、上述のように充
放電の繰り返しに伴い、合金粉末の表面近傍にあ
るMnが電解液中に溶出するためである。 実施例1,2および3の合金は、Mmの一部を
Zrで置換(置換率0.05)した本願特許に係わる合
金である。実施例2の合金は、組成的に比較例4
の合金のMmの一部をZrで置換したものである
が、初期放電容量が減少しているものの、サイク
ル寿命特性が大幅に向上している。これに対して
比較例5の合金は、比較例3の合金のMmの一部
をZrで置換したものであり、同様に、初期放電
容量が大きくなつたものの、実用的側面からすれ
ば十分な容量を持つているとは言えない。この合
金では、Coの置換量が実施例3の合金より多い
ことが相対的な容量減少を招いていると考えられ
る。また、実施例1の合金はCo置換量を比較例
5の合金と実施例2の合金の中間の値に設定した
ものであるが、容量的にもそれらの間の値を採つ
ている。この合金でサイクル寿命特性が比較例3
の合金、実施例2の合金に比べて良好なのは、多
少Mn置換量を少なく、Al置換量を多くしたこと
も功を奏しているためであろう。実施例3の合金
は、ほぼ実用レベルのサイクル寿命特性を有する
範囲で、その初期放電容量をあげるため、Coと
Mnの置換量を少なくしたものであり、比較例4
の合金と比べて同程度の放電容量でもサイクル寿
命はかなり向上している。これらは、Mmの一部
をZrで置換することにより、強固な酸化皮膜が
合金表面に形成され、希土類金属の酸化が抑制さ
れるとともにMnの溶出を抑制しているためと考
えられる。 ただ、過度のZr置換は、Zrと他の元素との金
属化合物(ZrNi2など)を形成するだけで、有効
な水素吸蔵量を減らす結果となる。その例を比較
例6に示す。比較例6の合金はZr置換率を0.1と
した類似合金であるが、初期放電容量は実施例2
の合金に比べて、かなり小さくなつている。発明
者が得ているデータでは、他の無用な金属間化合
物を出現させない範囲として、La(Mm)に対す
るZrの置換率は0.08以下とするのが適当である。 以上の結果から、一般式Mm1-XZrXNiACoBMnC
AlDで示される新規開発の水素吸蔵電極用合金
は、その組成を0.05≦X≦0.06、Y=5.0(たとえ
ばY=A+B+C+D)、3.2≦A≦3.6、0.5≦B
≦1.0、0.3≦C≦0.5、0.4≦D≦0.5とすることで
良好な電極特性を示すものとなる。 また、これまでの試験では触れなかつたが、一
般式La(Mm)NiYで表される合金の組成が、La
(Mm):Niが1:5(Y=5)の化学量論組成か
ら外れると、サイクル寿命特性が劣化する。問題
はその劣化の程度であるが、La2Nd0.15Zr0.95Ni3.8
Co0.7Al0.5系の合金で調べたところ、化学量論組
成(Z=0.80)にある合金に比較して、Z=0.78
の非化学量論組成合金で14%、Z=0.82の非化学
量組成合金で15%、それぞれ300サイクル経過後
の放電容量維持率が低下した。一応、容量維持率
の低下率が15%以下であることを許容限界として
設定するならば、上記La(Mm)NiY式で表され
る合金でのYの値は、4.9〜5.1の範囲にあること
が必要である。これは、上記組成式でのYの値が
5.0未満となつた場合にはLa2Ni7等の金属間化合
物が、Yの値が5.0を越えた場合にはNi単独相が
合金中に現われてくるため、サイクル寿命特性の
劣化を招いていると考えられる。 したがつて、ある程度の初期容量の低下、サイ
クル寿命の劣化を許容するならば、上の最適組成
範囲を0.01≦X≦0.08、4.9≦Y≦5.1と拡張して
も支障ないと考える。 また、上記試験結果は温度20℃でのものであ
り、−20℃程度の低温で使用される電池にあつて
は、Al置換量を少なくしてそれに伴う過電圧の
上昇を避ける必要があるため、Al置換量の適正
範囲を0.3≦D≦0.5とする。Al置換量は、先にも
記したように、少な過ぎるとサイクル寿命特性を
劣化させるかも知れないが、寿命改善に効果のあ
るCeやNdを多く含むミツシユメタルを用いる場
合は、0.4≦D≦0.3でも十分なサイクル寿命が確
保できるものと考えられる。 このように、Mmの一部をZrで、Niの一部を
CoとMn,Alとで置換し、それぞれの置換量を必
要最小限に抑える適正な成分設計を採ることによ
り、高容量で長寿命な水素吸蔵量電極用の合金と
することができる。 実施例4〜7、比較例7〜14 ミツシユメタルとして第1表のサンプルEを用
いた以外は実施例1〜3と同様にして試験用合金
電極を製造し、充放電サイクル試験を行なつた。
結果を下記第3表に示す。
[Table] The alloys of Comparative Examples 1 and 2 are MmNiCoAl-based alloys, and have different amounts of Co and Al substitution. Compared to the alloy of Comparative Example 1, the alloy of Comparative Example 2 has a smaller amount of Co and Al substitution, so the initial discharge capacity is larger, but for practical purposes it is only 260 mA.
It is desirable that it is higher than h/g, and some improvement measures are necessary. Note that the cycle life characteristics of the alloys of Comparative Examples 1 and 2 are both very good. In order to obtain a discharge capacity higher than that of the alloy of Comparative Example 2 with this alloy system, it is necessary to further reduce the amount of Co and Al substitution, but from the viewpoint of ensuring cycle life characteristics and adjusting the hydrogen dissociation pressure, It is practically impossible to further reduce the amount of Co and Al substitution. On the other hand, the alloy of Comparative Example 3 has a composition in which Mn substitution is added to the alloy of Comparative Example 1, and although the initial discharge capacity is increased, the cycle life characteristics are deteriorated. In addition, the alloy of Comparative Example 4 is the alloy of Comparative Example 2 with Mn substitution added,
The same tendency as above is observed. In the alloy shown in Comparative Example 4, in which the discharge capacity is increased by Mn substitution, the cycle life characteristics deteriorate, and it cannot be said to be practically sufficient. This is because, as described above, Mn near the surface of the alloy powder is eluted into the electrolyte with repeated charging and discharging. The alloys of Examples 1, 2 and 3 contain a portion of Mm.
This is an alloy related to the patent of this application in which Zr is substituted (substitution ratio 0.05). The alloy of Example 2 is compositionally similar to Comparative Example 4.
Although some of the Mm in the alloy was replaced with Zr, the initial discharge capacity was reduced, but the cycle life characteristics were significantly improved. On the other hand, in the alloy of Comparative Example 5, a part of Mm in the alloy of Comparative Example 3 was replaced with Zr, and although the initial discharge capacity was similarly increased, it was still sufficient from a practical standpoint. It cannot be said that it has the capacity. It is considered that in this alloy, the amount of Co substitution is larger than that in the alloy of Example 3, which causes a relative decrease in capacity. Furthermore, although the Co substitution amount of the alloy of Example 1 was set to an intermediate value between those of the alloy of Comparative Example 5 and the alloy of Example 2, the capacity was also set to a value between them. Comparative example 3 shows cycle life characteristics of this alloy.
The reason why this alloy is better than the alloy of Example 2 is probably due to the fact that the amount of Mn substitution is somewhat reduced and the amount of Al substitution is increased. The alloy of Example 3 has Co and Co in order to increase its initial discharge capacity within a range that has almost practical cycle life characteristics.
Comparative example 4 has a reduced amount of Mn substitution.
The cycle life is considerably improved compared to the alloy with the same discharge capacity. These are thought to be because by substituting a portion of Mm with Zr, a strong oxide film is formed on the alloy surface, suppressing oxidation of the rare earth metal and suppressing the elution of Mn. However, excessive Zr substitution only results in the formation of metal compounds (such as ZrNi 2 ) with Zr and other elements, which reduces the effective hydrogen storage capacity. An example thereof is shown in Comparative Example 6. The alloy of Comparative Example 6 is a similar alloy with a Zr substitution rate of 0.1, but the initial discharge capacity is similar to that of Example 2.
It is considerably smaller than the alloy. According to the data obtained by the inventors, it is appropriate to set the substitution ratio of Zr to La (Mm) at 0.08 or less as long as other unnecessary intermetallic compounds do not appear. From the above results, the general formula Mm 1-X Zr X Ni A Co B Mn C
The newly developed alloy for hydrogen storage electrodes denoted by Al D has a composition of 0.05≦X≦0.06, Y=5.0 (for example, Y=A+B+C+D), 3.2≦A≦3.6, 0.5≦B
By satisfying ≦1.0, 0.3≦C≦0.5, and 0.4≦D≦0.5, good electrode characteristics are exhibited. Also, although it was not mentioned in the previous tests, the composition of the alloy represented by the general formula La(Mm)Ni Y is
When (Mm):Ni deviates from the stoichiometric composition of 1:5 (Y=5), cycle life characteristics deteriorate. The problem is the degree of deterioration, but La 2 Nd 0.15 Zr 0.95 Ni 3.8
When investigating a Co 0.7 Al 0.5 series alloy, Z = 0.78 compared to an alloy with a stoichiometric composition (Z = 0.80).
The discharge capacity retention rate after 300 cycles decreased by 14% for the non-stoichiometric alloy with Z = 0.82, and by 15% for the non-stoichiometric alloy with Z = 0.82. If we set the permissible limit as the rate of decrease in capacity retention rate of 15% or less, then the value of Y in the alloy expressed by the above La(Mm)Ni Y formula should be in the range of 4.9 to 5.1. It is necessary that there be. This means that the value of Y in the above composition formula is
If the Y value is less than 5.0, intermetallic compounds such as La 2 Ni 7 will appear in the alloy, and if the Y value exceeds 5.0, a single Ni phase will appear in the alloy, leading to deterioration of cycle life characteristics. It is thought that there are. Therefore, it is considered that there is no problem in extending the above optimum composition range to 0.01≦X≦0.08 and 4.9≦Y≦5.1, as long as a certain degree of decrease in initial capacity and deterioration in cycle life are allowed. In addition, the above test results are at a temperature of 20℃, and for batteries used at temperatures as low as -20℃, it is necessary to reduce the amount of Al substitution to avoid the resulting increase in overvoltage. The appropriate range of Al substitution amount is 0.3≦D≦0.5. As mentioned earlier, if the amount of Al substitution is too small, it may deteriorate the cycle life characteristics, but when using Mitsushi Metal containing a lot of Ce and Nd, which are effective in improving life, it is 0.4≦D≦0.3. However, it is thought that sufficient cycle life can be secured. In this way, part of Mm is Zr and part of Ni is
By replacing Co with Mn and Al and adopting an appropriate composition design that minimizes the amount of each substitution, it is possible to create an alloy for hydrogen storage electrodes with high capacity and long life. Examples 4 to 7, Comparative Examples 7 to 14 Test alloy electrodes were manufactured in the same manner as in Examples 1 to 3, except that Sample E in Table 1 was used as Mitsushi Metal, and a charge/discharge cycle test was conducted.
The results are shown in Table 3 below.

〔発明の効果〕〔Effect of the invention〕

Mmの一部をZrで、Niの一部をCoとMn,Al
で置換した一般式Mm1-XZrXNiACoBMnCAlDで表
される水素吸蔵合金は、その合金組成を0.01≦X
≦0.08、4.9≦A+B+C+D≦5.1、3.2≦A≦
3.6、0.5≦B≦1.0、0.3≦C≦0.5の範囲で示され
たものとすることによつて、充放電容量が大き
く、サイクル寿命特性が高いなどの優れた電極特
性を兼ね備えた電極とすることができる。しか
も、原料中にMgやCl等の不純物を総量の0.5重量
%以上含有するMmなど安価な原材料に用いるこ
ともでき、かつ高価なCoの含有量が少ないこと
もあつて、低価格の水素吸蔵電極として実用性の
高いものとなつた。
Part of Mm is Zr, part of Ni is Co, Mn, Al
The hydrogen storage alloy represented by the general formula Mm 1-X Zr X Ni A Co B Mn C Al D has an alloy composition of 0.01≦X
≦0.08, 4.9≦A+B+C+D≦5.1, 3.2≦A≦
3.6, 0.5≦B≦1.0, 0.3≦C≦0.5, so that the electrode has excellent electrode characteristics such as large charge/discharge capacity and high cycle life characteristics. be able to. In addition, it can be used for inexpensive raw materials such as Mm, which contains impurities such as Mg and Cl at 0.5% by weight or more of the total amount, and the content of expensive Co is low, making it a low-cost hydrogen storage material. It has become highly practical as an electrode.

Claims (1)

【特許請求の範囲】 1 一般式Mm1-XZrXNiACoBMnCAlDで表わされ
る水素吸蔵合金を用いたことを特徴とする水素吸
蔵電極。 ただし、上記一般式において、Mmはミツシユ
メタルであり、0.01≦X≦0.08、4.9≦A+B+C
+D≦5.1、3.2≦A≦3.6、0.5≦B≦1.0、0.3≦C
≦0.5および0.3≦D≦0.5である。
[Claims] 1. A hydrogen storage electrode characterized by using a hydrogen storage alloy represented by the general formula Mm 1-X Zr X Ni A Co B Mn C Al D. However, in the above general formula, Mm is Mitsushi metal, 0.01≦X≦0.08, 4.9≦A+B+C
+D≦5.1, 3.2≦A≦3.6, 0.5≦B≦1.0, 0.3≦C
≦0.5 and 0.3≦D≦0.5.
JP2096840A 1990-04-11 1990-04-11 Hydrogen occluding electrode Granted JPH03294444A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2096840A JPH03294444A (en) 1990-04-11 1990-04-11 Hydrogen occluding electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2096840A JPH03294444A (en) 1990-04-11 1990-04-11 Hydrogen occluding electrode

Publications (2)

Publication Number Publication Date
JPH03294444A JPH03294444A (en) 1991-12-25
JPH0514018B2 true JPH0514018B2 (en) 1993-02-24

Family

ID=14175718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2096840A Granted JPH03294444A (en) 1990-04-11 1990-04-11 Hydrogen occluding electrode

Country Status (1)

Country Link
JP (1) JPH03294444A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5512385A (en) * 1994-02-28 1996-04-30 Matsushita Electric Industrial Co., Ltd. Hydrogen storage alloy and nickel-metal hydride storage battery using the same
CN1056017C (en) * 1994-08-10 2000-08-30 北京有色金属研究总院 Hydrogen-storage alloy material for negative electrode of alkaline accumulator and mfg. process thereof
CN1045690C (en) * 1994-12-05 1999-10-13 北京有色金属研究总院 Hydrogen storage alloy for secondary cell
DE19527505A1 (en) * 1995-07-27 1997-01-30 Varta Batterie Alloys for use as an active material for the negative electrode of an alkaline, rechargeable nickel-metal hydride battery and process for their manufacture
US6074783A (en) * 1996-12-19 2000-06-13 Duracell Inc. Hydrogen storage alloys for use in rechargeable electrochemical cells, and methods of producing them

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61214361A (en) * 1985-03-18 1986-09-24 Matsushita Electric Ind Co Ltd Sealed alkaline storage battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61214361A (en) * 1985-03-18 1986-09-24 Matsushita Electric Ind Co Ltd Sealed alkaline storage battery

Also Published As

Publication number Publication date
JPH03294444A (en) 1991-12-25

Similar Documents

Publication Publication Date Title
US4107405A (en) Electrode materials based on lanthanum and nickel, and electrochemical uses of such materials
US4609599A (en) New lanthanum and nickel based alloys, their manufacture and their electrochemical applications
JPH0515774B2 (en)
JPH0514017B2 (en)
KR0139379B1 (en) Production method of hydrogen absorbing alloy
CN106544535B (en) Preparation method of hydrogen storage alloy containing yttrium and nickel elements
JPH0514018B2 (en)
JPH0821379B2 (en) Hydrogen storage electrode
CN111224092B (en) Zirconium or titanium doped samarium-containing hydrogen storage alloy, negative electrode, battery and preparation method
JP3903114B2 (en) Rechargeable nickel-metal hydride-alloy for use as active material for negative electrode of alkaline battery and method for producing the same
JPH0650634B2 (en) Hydrogen storage electrode
JP2847874B2 (en) Hydrogen storage electrode
JPS62249358A (en) Hydrogen storage electrode
JP3321818B2 (en) Method for producing hydrogen storage alloy for Ni-hydrogen battery
JP2828680B2 (en) Hydrogen storage alloy electrode
JP2847873B2 (en) Hydrogen storage electrode
JP2011014258A (en) Hydrogen storage alloy for nickel-hydrogen secondary battery, and nickel-hydrogen secondary battery
JP2680566B2 (en) Hydrogen storage electrode
JP3470987B2 (en) Hydrogen storage alloy and hydrogen storage alloy electrode
JP3276677B2 (en) Hydrogen storage alloy electrode
JPH06306515A (en) Hydrogen storage alloy and electrode using the same
JP2847872B2 (en) Hydrogen storage electrode
JPH03289042A (en) Hydrogen storage electrode
JP3729913B2 (en) Hydrogen storage alloy electrode
JPH0815079B2 (en) Hydrogen storage electrode

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term