JPH03294444A - Hydrogen occluding electrode - Google Patents

Hydrogen occluding electrode

Info

Publication number
JPH03294444A
JPH03294444A JP2096840A JP9684090A JPH03294444A JP H03294444 A JPH03294444 A JP H03294444A JP 2096840 A JP2096840 A JP 2096840A JP 9684090 A JP9684090 A JP 9684090A JP H03294444 A JPH03294444 A JP H03294444A
Authority
JP
Japan
Prior art keywords
alloy
electrode
cycle life
amount
capacity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2096840A
Other languages
Japanese (ja)
Other versions
JPH0514018B2 (en
Inventor
Tetsuo Sakai
哲男 境
Hiroshi Ishikawa
博 石川
Tokuichi Hazama
挟間 徳一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP2096840A priority Critical patent/JPH03294444A/en
Publication of JPH03294444A publication Critical patent/JPH03294444A/en
Publication of JPH0514018B2 publication Critical patent/JPH0514018B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To obtain an alloy for a hydrogen occluding electrode having a high capacity and a long service life, in an Mm-Ni-Co-Mn-Al series alloy, by substituting a part of Mm by Zr. CONSTITUTION:As a hydrogen occluding electrode, an alloy expressed by a general formula :Mm1-xZrxNiACoBMnCAlD is used. In the formula, Mm denotes a misch metal as well as 0.014<=x<=0.08, 4.9<=A+B+C+D<=5.1, 3.2<=A<=3.6, 0.5<=B<=1.0, 0.3<=C<=0.5 and 0.3<=D<=0.5 are satisfied. By the alloy having this compsn., an excellent electrode having a high charging-discharging capacity and high cycle life properties can be formed. In the starting material, inexpensive raw materials such as Mm including total >=0.5wt.% impurities such as Mg and Cl can be used as well as the content of expensive Co is low, so that the alloy is formed into a one having high practicality as an inexpensive hydrogen occluding electrode.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、水素吸蔵合金を負極とし、酸化ニッケル電極
を正極とするニッケルー金属水素化物二次電池に関する
ものであり、特に、充放電容量が大きく、充放電サイク
ルの長期繰り返しにおいても特性の劣化が少なく、さら
に、大電流放電時でも放電容量の低下が少ない水素吸蔵
電極に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a nickel-metal hydride secondary battery that uses a hydrogen storage alloy as a negative electrode and a nickel oxide electrode as a positive electrode. The present invention relates to a hydrogen storage electrode that exhibits little deterioration in characteristics even after repeated charge/discharge cycles over a long period of time, and that exhibits little decrease in discharge capacity even during large current discharge.

〔従来の技術〕[Conventional technology]

エネルギー貯蔵容量の向上を計るため、負極として水素
を可逆的に吸蔵・放出する水素吸蔵合金を用い、吸蔵し
た水素を活物質とするニッケルー金属水素化物二次電池
が提案され、開発が急がれている。これに用いる水素吸
蔵合金は、次に掲げるような要件を満たしていることが
必要とされている。
In order to improve energy storage capacity, a nickel-metal hydride secondary battery was proposed, using a hydrogen storage alloy that reversibly stores and releases hydrogen as the negative electrode, and uses the stored hydrogen as the active material, and development is urgently needed. ing. The hydrogen storage alloy used for this purpose is required to meet the following requirements.

−XZrXNiACoBMnCAlD)有効水素吸蔵量
、すなわち電気容量が大きいこと。
-XZrXNiACoBMnCAlD) The effective hydrogen storage amount, that is, the electric capacity is large.

(2)水素平衡解離圧が電池使用温度(−20〜6゜”
C)で10−”〜数気圧であること。
(2) The hydrogen equilibrium dissociation pressure is
C) should be 10-'' to several atmospheres.

(3)濃アルカリ電解液中での耐食性に優れること。(3) Excellent corrosion resistance in concentrated alkaline electrolyte.

(4)電極反応の繰り返しによる微粉化の速度が遅いこ
と。
(4) The speed of pulverization due to repeated electrode reactions is slow.

(5)を極反応の繰り返しによって、一部特定元素の溶
出等による組成変化のないこと。
(5) There should be no change in composition due to elution of some specific elements due to repeated polar reactions.

(6)水素拡散速度が大きく、反応抵抗(過電圧)が小
さいこと。
(6) High hydrogen diffusion rate and low reaction resistance (overvoltage).

(7)安価であること。(7) It should be inexpensive.

希土類元素を含む安価な原料として、従来より知られて
いるものにミツシュメタル(Ml)がある。これは希土
類金属の混合物であり、通常の場合、La 25〜35
重量%、Ce45〜55重量%、Nd 10〜15重量
%で構成される。このhを原料とする水素吸蔵合金では
、希土類金属中のCe量が多いことから、水素解離圧が
高くなる。
Mitshu metal (Ml) has been known as an inexpensive raw material containing rare earth elements. It is a mixture of rare earth metals, typically La 25-35
% by weight, 45 to 55% by weight of Ce, and 10 to 15% by weight of Nd. In a hydrogen storage alloy using h as a raw material, the hydrogen dissociation pressure becomes high because the amount of Ce in the rare earth metal is large.

MmNi系水素吸藏合金蔵は、水素解離圧を電池使用温
度で1気圧程度にするためには、Niの一部をh、^1
%CO等の元素で置換する必要がある。
In the MmNi hydrogen absorbing alloy storage, in order to make the hydrogen dissociation pressure about 1 atm at the battery operating temperature, part of the Ni is h,^1
It is necessary to replace it with an element such as %CO.

Niの一部をCoとAIで置換したHINiCoAl系
の水素吸蔵合金では、Co置換量が多いほど有効な水素
吸蔵量が少なくなり、電極にした場合の放電容量も小さ
くなる。そこで、Co置換量は良好なサイクル寿命特性
が維持できる範囲内で、少なく抑えるのが良策である。
In a HINiCoAl-based hydrogen storage alloy in which a portion of Ni is replaced with Co and AI, the larger the amount of Co substitution, the smaller the effective hydrogen storage amount, and the smaller the discharge capacity when used as an electrode. Therefore, it is a good idea to keep the Co substitution amount as low as possible within a range that allows good cycle life characteristics to be maintained.

また、AIは合金粉末表面に緻密な酸化皮膜を形成する
ことにより、合金の酸化を抑制、サイクル寿命を改善す
ることになる。ただ、過度のAI置換はその酸化皮膜形
成が災いして、電極の反応抵抗を高める方向に寄与し、
急速放電特性や低温での放電特性を悪くする方向に作用
する。したがって、A11l換量も、適度な水素解離圧
とサイクル寿命特性とを得るのに必要な最小限の量に止
めておくのが得策である。このようなことを考慮して作
製された合金にMaNis、 5Coo、 ?A111
.1合金があるが、その放電容量は254tsA −h
/g程度であり、必ずしも大きいとは言えない。
Furthermore, by forming a dense oxide film on the surface of the alloy powder, AI suppresses oxidation of the alloy and improves the cycle life. However, excessive AI replacement causes the formation of an oxide film, which contributes to increasing the reaction resistance of the electrode.
It acts in the direction of worsening rapid discharge characteristics and discharge characteristics at low temperatures. Therefore, it is advisable to keep the A11l exchange amount to the minimum amount necessary to obtain appropriate hydrogen dissociation pressure and cycle life characteristics. Alloys made with this in mind include MaNis, 5Coo, and ? A111
.. There is one alloy, but its discharge capacity is 254tsA -h
/g, and cannot necessarily be said to be large.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

このように、MmNiCoAl系では260mA−h/
g以上の大きな放電容量と良好なサイクル寿命特性とを
兼ね備えた合金が得られないことから、Niの一部をM
nで置換したMmNiCoMnAl系の合金が有望視さ
れている。このMn置換は合金の水素吸蔵量(放電容量
)を落とさずに水素解離圧を下げる点で有用であり、M
nはCo’pAlに代わる置換元素として使用できる。
In this way, in the MmNiCoAl system, 260 mA-h/
Since it is not possible to obtain an alloy that has both a large discharge capacity of more than 100 g and good cycle life characteristics, some of the Ni
MmNiCoMnAl alloys substituted with n are considered to be promising. This Mn substitution is useful in lowering the hydrogen dissociation pressure without reducing the hydrogen storage capacity (discharge capacity) of the alloy.
n can be used as a substitution element in place of Co'pAl.

ただ、充放電の繰り返しに伴い、合金粉末の表面近傍に
あるMnが電解液中に溶出する現象が確認され、サイク
ル寿命を低下させる弊害がある。したがって、Mn置換
を行う場合、それと同時にMnの溶出を防止してサイク
ル寿命特性の劣化を防止する処置をも探る必要があるが
、この方法について確たるものは今までに見出だされて
いなかった。
However, with repeated charging and discharging, it has been confirmed that Mn near the surface of the alloy powder is eluted into the electrolyte, which has the disadvantage of reducing the cycle life. Therefore, when performing Mn substitution, it is necessary to simultaneously search for measures to prevent the elution of Mn and prevent deterioration of cycle life characteristics, but no reliable method has been found to date. .

本発明はhの一部を少量のZrで置換することにより、
高容量で長寿命の水素吸蔵電極用の合金を提供すること
を目的とするものである。
In the present invention, by replacing a part of h with a small amount of Zr,
The purpose of this invention is to provide an alloy for hydrogen storage electrodes with high capacity and long life.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成する本発明は、一般弐MI11.−。 The present invention achieves the above object by general MI11. −.

Zr、N1ACo*MncAloで表わされる水素吸蔵
合金を用いたことを特徴とするものである。
It is characterized by using a hydrogen storage alloy represented by Zr, N1ACo*MncAlo.

ただし、上記一般式において、h■はミツシュメタルで
あり、0.01≦X≦0.08.4.9≦A+B+C+
D≦5.1.3.2≦A≦3.6.0.5≦B≦1.0
.0.3≦C≦0.5および0.3≦D≦0.5である
However, in the above general formula, h■ is Mitsushmetal, and 0.01≦X≦0.08.4.9≦A+B+C+
D≦5.1.3.2≦A≦3.6.0.5≦B≦1.0
.. 0.3≦C≦0.5 and 0.3≦D≦0.5.

本発明で用いるミツシュメタルとしては、希土類元素を
含有する鉱石の中で、軽希土を多く含有するモナザイト
、バストネサイト、重希土を多く含有するゼノタイムな
ど種々のものかあり、全く分離操作を行なわない混合粉
±(ミツシュメタル)や、Ce、 Eu、 SIl、 
Dy、、Gd、 Tb、 Ybなどの有用元素を分離し
た後の混合希土などが用いられる。
Among the ores containing rare earth elements, Mitsushmetal used in the present invention includes various types such as monazite and bastnasite, which contain a large amount of light rare earth, and xenotime, which contains a large amount of heavy rare earth, and they do not require any separation operation. Mixed powder ± (Mitushmetal), Ce, Eu, SIl,
A mixed rare earth or the like after separating useful elements such as Dy, Gd, Tb, and Yb is used.

下記第1表に示すサンプルAは、一般に良く用いられて
いる未分離のミツシュメタルであり、Ce含有量が多い
ので電気容量は低いがサイクル寿命は長く、かつ最も安
価である。サンプルB1CおよびDはCeなどの元素を
分離したものであるが、La含有量が高くなるにつれて
電気容量は増加するがサイクル寿命は短くなる傾向があ
り、また価格も上昇する。従って電池の用途によって、
これらミツシュメタルを使いわけることができる。
Sample A shown in Table 1 below is unseparated Mitshu metal that is commonly used and has a high Ce content, so although it has a low electric capacity, it has a long cycle life and is the cheapest. Samples B1C and D are samples in which elements such as Ce are separated, but as the La content increases, the capacitance increases, but the cycle life tends to become shorter, and the price also increases. Therefore, depending on the purpose of the battery,
You can use these Mitsushi metals properly.

また、希土類元素金属の製造法としては、希土類酸化物
を原料とする酸化物電解と塩化物を原料とする塩化物電
解があり、塩化物電解の方がMg、 CI、 Fe5S
iなとの不純物濃度が高いが安価である。
In addition, as methods for producing rare earth metals, there are oxide electrolysis using rare earth oxides as raw materials and chloride electrolysis using chlorides as raw materials. Chloride electrolysis is better for producing Mg, CI, Fe5S.
Although it has a high impurity concentration, it is inexpensive.

しかしながら、MgやCIの含有量の多いミッシュメタ
ルを用いると、合金製造時に電気炉を損なうなどの問題
も生じ、トータルコストはいちがいに比較できない。
However, if misch metal with a high content of Mg or CI is used, problems such as damage to the electric furnace occur during alloy production, and the total cost cannot be compared.

塩化物から製造したh「をサンプルEとしたが、合金組
成によっては、不純物に由来すると思われる電気容量や
サイクル寿命の大幅な低下を引き起すこともある。
Sample E was prepared from chloride, but depending on the alloy composition, the capacitance and cycle life may be significantly reduced, which may be due to impurities.

しかしながら下記実施例に示すように、Mnを添加する
と不純物の影響をある程度弱めることができるので実用
上問題はない。
However, as shown in the examples below, adding Mn can weaken the influence of impurities to some extent, so there is no practical problem.

(本頁以下余白) 水素吸蔵合金として上記組成式で示されるように、Mm
の一部をZrで、Niの一部をC0lMn、 AIで置
換した合金を電極に用いることによって、Zrのサイク
ル寿命改善効果ならびに合金表面でのMn溶出抑制効果
のため、充放電の長期繰り返しにおいて特性が劣化しな
い水素吸蔵電極を作製することができた。このようなZ
rの作用は、合金表面に緻密な酸化皮膜を形成すること
によって発揮されるものと考えられる。
(Margins below this page) As shown in the above compositional formula as a hydrogen storage alloy, Mm
By using an alloy in which a part of Ni is replaced with Zr and a part of Ni with COlMn and AI for the electrode, Zr has an effect of improving the cycle life and suppressing Mn elution on the alloy surface, so that it can be used for long-term repeated charging and discharging. We were able to create a hydrogen storage electrode whose properties do not deteriorate. Z like this
The effect of r is thought to be exerted by forming a dense oxide film on the alloy surface.

以下本発明の実施例を述べる。Examples of the present invention will be described below.

実施例1〜3、比較例1〜6 本願発明の作用を確認するため、第2表に示す水素吸蔵
合金を、アルゴン雰囲気中でアーク溶解することによっ
て得た。なお、ミツシュメタルとしては、第1表のサン
プルAを使用した。
Examples 1 to 3, Comparative Examples 1 to 6 In order to confirm the effect of the present invention, hydrogen storage alloys shown in Table 2 were obtained by arc melting in an argon atmosphere. Note that Sample A in Table 1 was used as the Mitsushi metal.

合金を機械的に粉砕した後、無電解銅めっき法により合
金粉末の表面に約20重置%相当の銅被覆層を形成した
。この合金粉末に結着剤としてFEP (四フフ化エチ
レン・フッ化プロピレン共重合体)樹脂を10重量%相
当量添加し、約300■の粉末混合体(合金重量:約2
16o+g)を冷間プレスにより直径13aanX厚さ
0.4閣形状の電極ペレットに成形した。これを集電体
となるニッケルメツシュとともに300″Cの温度でホ
ットプレスすることによって試験用の合金電極とした。
After the alloy was mechanically pulverized, a copper coating layer corresponding to about 20% overlap was formed on the surface of the alloy powder by electroless copper plating. To this alloy powder, an amount equivalent to 10% by weight of FEP (tetrafluoroethylene/fluorinated propylene copolymer) resin was added as a binder, and a powder mixture of about 300 cm (alloy weight: about 2
16o+g) was formed into an electrode pellet having a diameter of 13a x 0.4a and a thickness of 0.4a by cold pressing. This was hot pressed together with a nickel mesh serving as a current collector at a temperature of 300''C to obtain an alloy electrode for testing.

この水素吸蔵電極を負極に、正極としてニッケルーカド
ミウム蓄電池と同じ酸化ニッケル電極を、電解液として
6M水酸化カリウム溶液を用いて試験用電池を構成した
。なお、いずれの試験用電池も電池容量が負極の容量に
依存する負極規制タイプとし、照合電極には酸化水銀電
極を用いた。この試験用電池を温度20″Cの恒温室の
中において、充電電流40amAで2.5時間充電し、
0.5時間休止した後、放電電流20mAで照合電極と
水素吸蔵電極との電位差が−0,6vに低下するまで放
電するといったサイクルで、長期間の充放電サイクル試
験を行った。
A test battery was constructed using this hydrogen storage electrode as a negative electrode, the same nickel oxide electrode as the nickel-cadmium storage battery as a positive electrode, and a 6M potassium hydroxide solution as an electrolyte. Note that all test batteries were negative electrode regulated types in which the battery capacity depends on the capacity of the negative electrode, and a mercury oxide electrode was used as the reference electrode. This test battery was charged for 2.5 hours at a charging current of 40 amA in a constant temperature room at a temperature of 20″C.
A long-term charge/discharge cycle test was performed by stopping for 0.5 hours and then discharging at a discharge current of 20 mA until the potential difference between the reference electrode and the hydrogen storage electrode decreased to -0.6 V.

各合金についての試験結果を第2表に示す。The test results for each alloy are shown in Table 2.

ここで、初期最大容量に達した後300サイクル経過し
たときの放電容量を初期最大容量で除した値を容量維持
率として、サイクル寿命特性を示す指標として扱ってい
る。なお、第2表に示される各合金は、常温における平
衡水素解離圧を1気圧以下にほぼ揃えるために、AI置
換量を調整している。
Here, the value obtained by dividing the discharge capacity 300 cycles after reaching the initial maximum capacity by the initial maximum capacity is treated as the capacity retention rate, and is treated as an index indicating the cycle life characteristics. In addition, in each alloy shown in Table 2, the amount of AI substitution is adjusted so that the equilibrium hydrogen dissociation pressure at room temperature is approximately equal to 1 atm or less.

(本頁以下余白) 比較例1および2の合金は、Ms+NiCoAl系の合
金であり、それぞれCoとAIの置換量を変えている。
(Margins below this page) The alloys of Comparative Examples 1 and 2 are Ms+NiCoAl-based alloys, and the amounts of Co and AI substituted are changed, respectively.

比較例2の合金は、比較例1の合金に比べてCoとAI
の置換量が少ないため、初期放電容量が大きくなってい
るが、実用的には260mA−h/g以上であることが
望ましく、何らかの改善処置が必要である。なお、サイ
クル寿命特性は比較例1および2の合金とも非常に良好
である。この合金系で放電容量を比較例20合金以上に
得ようとするには、COとAIの置換量をさらに少なべ
する外ないが、サイクル寿命特性の確保と水素解離圧の
調整の点から、これ以上のCoとAIの置換量低減には
事実上無理がある。
The alloy of Comparative Example 2 has less Co and AI than the alloy of Comparative Example 1.
Since the amount of replacement is small, the initial discharge capacity is large, but practically it is desirable that it be 260 mA-h/g or more, and some improvement measures are required. Note that the cycle life characteristics of the alloys of Comparative Examples 1 and 2 are both very good. In order to obtain a discharge capacity higher than Comparative Example 20 alloy with this alloy system, it is necessary to further reduce the amount of CO and AI replacement, but from the viewpoint of ensuring cycle life characteristics and adjusting the hydrogen dissociation pressure, It is practically impossible to further reduce the amount of Co and AI replaced.

これに対し、比較例3の合金は、組成的に比較例1の合
金にMn置換を付加したものであり、初期放電容量が増
加しているものの、サイクル寿命特性が劣化している。
On the other hand, the alloy of Comparative Example 3 is a composition obtained by adding Mn substitution to the alloy of Comparative Example 1, and although the initial discharge capacity is increased, the cycle life characteristics are deteriorated.

また、比較例40合金は比較例2の合金にMn置換を付
加したものであり、上記と同様の傾向が認められる。こ
れらMn置換により放電容量の増加を図った、比較例4
に示すような合金ではサイクル寿命特性が劣化し、実用
的に十分とは言えない。これは、上述のように充放電の
繰り返しに伴い、合金粉末の表面近傍にあるMnが電解
液中に溶出するためである。
Moreover, Comparative Example 40 alloy is the alloy of Comparative Example 2 with Mn substitution added, and the same tendency as above is observed. Comparative Example 4 in which discharge capacity was increased by these Mn substitutions
The cycle life characteristics of alloys shown in the following are deteriorated and cannot be said to be sufficient for practical use. This is because, as described above, Mn near the surface of the alloy powder is eluted into the electrolyte with repeated charging and discharging.

実施例1.2および3の合金は、Mmの一部をZrで置
換(置換率0.05) した本願特許に係わる合金であ
る。実施例2の合金は、組成的に比較例4の合金のMa
+の一部をZrで置換したものであるが、初期放電容量
が減少しているものの、サイクル寿命特性が大幅に向上
している。これに対して比較例5の合金は、比較例30
合金のhの一部をZrで置換したものであり、同様に、
初期放電容量が大きくなったものの、実用的側面からす
れば十分な容量を持っているとは言えない。この合金で
は、Coの置換量が実施例3の合金より多いことが相対
的な容量減少を招いていると考えられる。また、実施例
1の合金はCo置換量を比較例5の合金と実施例2の合
金の中間の値に設定したものであるが、容量的にもそれ
らの間の値を採っている。この合金でサイクル寿命特性
が比較例30合金、実施例2の合金に比べて良好なのは
、多少Mni&換量を少なく、A1置換量を多くしたこ
とも功を奏しているためであろう、実施例3の合金は、
はぼ実用レベルのサイクル寿命特性を有する範囲で、そ
の初期放電容量をあげるため、CoとMnの置換量を少
なくしたものであり、比較例40合金と比べて同程度の
放電容量でもサイクル寿命はかなり向上している。これ
らは、Mmの一部をZrで置換することにより、強固な
酸化皮膜が合金表面に形成され、希土類金属の酸化が抑
制されるとともにMnの溶出を抑制しているためと考え
られる。
The alloys of Examples 1.2 and 3 are alloys according to the present patent in which a part of Mm is replaced with Zr (substitution ratio 0.05). The alloy of Example 2 has the same compositional Ma as that of the alloy of Comparative Example 4.
Although a part of + was replaced with Zr, the initial discharge capacity was reduced, but the cycle life characteristics were significantly improved. On the other hand, the alloy of Comparative Example 5 is
It is an alloy in which a part of h is replaced with Zr, and similarly,
Although the initial discharge capacity has increased, it cannot be said that it has sufficient capacity from a practical standpoint. In this alloy, it is thought that the fact that the amount of Co substitution is greater than that in the alloy of Example 3 causes a relative decrease in capacity. Further, in the alloy of Example 1, the Co substitution amount was set to a value between those of the alloy of Comparative Example 5 and the alloy of Example 2, and the capacity was also set to a value between them. The cycle life characteristics of this alloy are better than those of Comparative Example 30 alloy and Example 2 alloy, probably due to the fact that the amount of Mni & replacement is somewhat reduced and the amount of A1 replaced is increased. The alloy of 3 is
In order to increase the initial discharge capacity within a range that has cycle life characteristics at a practical level, the amount of Co and Mn substitution is reduced, and compared to Comparative Example 40 alloy, the cycle life is shorter even with the same discharge capacity. It has improved considerably. These are thought to be because by substituting a portion of Mm with Zr, a strong oxide film is formed on the alloy surface, suppressing oxidation of the rare earth metal and suppressing the elution of Mn.

ただ、過度のZr置換は、Zrと他の元素との金属間化
合物(ZrNizなど)を形成するだけで、有効な水素
吸蔵量を減らす結果となる。その例を比較例6に示す。
However, excessive Zr substitution only forms intermetallic compounds (such as ZrNiz) between Zr and other elements, resulting in a reduction in the effective hydrogen storage amount. An example thereof is shown in Comparative Example 6.

比較例6の合金はZr置換率を0.1とした類似合金で
あるが、初期放電容量は実施例2の合金に比べて、かな
り小さくなっている。発明者が得ているデータでは、他
の無用な金属間化合物を出現させない範囲として、La
 (Mid)に対するZrの置換率は0.08以下とす
るのが適当である。
The alloy of Comparative Example 6 is a similar alloy with a Zr substitution ratio of 0.1, but the initial discharge capacity is considerably smaller than that of the alloy of Example 2. According to the data obtained by the inventor, La
It is appropriate that the substitution ratio of Zr to (Mid) be 0.08 or less.

以上の結果から、一般式Mml−gZrxNiaco1
MncAIDで示される新規開発の水素吸蔵電極用合金
は、その組成を0.05≦X≦0.06、Y=5.0(
ただしY=A+B+C+D)、3.2≦A≦3.6.0
.5≦B≦1.0.0.3≦C≦0.5.0.4≦D≦
0.5とすることで良好な電極特性を示すものとなる。
From the above results, the general formula Mml-gZrxNiaco1
The newly developed hydrogen storage electrode alloy designated by MncAID has a composition of 0.05≦X≦0.06, Y=5.0 (
However, Y=A+B+C+D), 3.2≦A≦3.6.0
.. 5≦B≦1.0.0.3≦C≦0.5.0.4≦D≦
When the value is 0.5, good electrode characteristics are exhibited.

また、これまでの試験では触れなかったが、一般式La
(Mm)Niyで表される合金の組成が、La(Ma+
):Niが1 : 5 (Y=5)の化学量論組成から
外れると、サイクル寿命特性が劣化する。問題はその劣
化の程度であるが、LazNdo、 l 5Zro、 
95Nis、 *Coo、 ?A10. S系の合金で
調べたところ、化学量論組成(Z =0.80)にある
合金に比較して、Z=0.78の非化学量論組成合金で
14%、Z=0.82の非化学量論組成合金で15%、
それぞれ300サイクル経過後の放電容量維持率が低下
した。一応、容量維持率の低下率が15%以下であるこ
とを許容限界として設定するならば、上記La(Mm)
Ni、式で表される合金でのYの値は、4.9〜5.1
の範囲にあることが必要である。これは、仝記組成式で
のYの値が5.0未満となった場合にはLazNit等
の金属間化合物が、Yの値が5.0を越えた場合にはN
i単独相が合金中に現われてくるため、サイクル寿命特
性の劣化を招いていると考えられる。
Also, although it was not mentioned in the previous tests, the general formula La
The composition of the alloy represented by (Mm)Niy is La(Ma+
): When Ni deviates from the stoichiometric composition of 1:5 (Y=5), the cycle life characteristics deteriorate. The problem is the degree of deterioration, but LazNdo, l5Zro,
95 Nis, *Coo, ? A10. When examining S-based alloys, it was found that compared to the stoichiometric (Z = 0.80) alloy, the non-stoichiometric alloy with Z = 0.78 had a 14% reduction in stoichiometry, and the non-stoichiometric alloy with Z = 0.82 had a 15% for non-stoichiometric alloys;
In each case, the discharge capacity retention rate after 300 cycles decreased. If the rate of decrease in capacity maintenance rate is set to be 15% or less as an acceptable limit, then the above La (Mm)
Ni, the value of Y in the alloy represented by the formula is 4.9 to 5.1
It is necessary to be within the range of . This means that when the value of Y in the composition formula shown below is less than 5.0, intermetallic compounds such as LazNit are used, and when the value of Y exceeds 5.0, N is used.
It is thought that the single i phase appears in the alloy, leading to deterioration in cycle life characteristics.

したがって、ある程度の初期容量の低下、サイクル寿命
の劣化を許容するならば、上の最適組成範囲を0.01
≦X≦0.08.4.9≦Y≦5.1と拡張しても支障
ないと考える。
Therefore, if a certain degree of initial capacity reduction and cycle life deterioration are allowed, the above optimal composition range should be set to 0.01.
It is considered that there is no problem even if it is expanded to ≦X≦0.08.4.9≦Y≦5.1.

また、上記試験結果は温度20℃でのものであり、−2
0°C程度の低温で使用される電池にあっては、AI置
換量を少なくしてそれに伴う過電圧の上昇を避ける必要
があるため、AI置換量の適正範囲を0.3≦D≦0.
5とする。AI置換量は、先にも記したように、少な過
ぎるとサイクル寿命特性を劣化させるかも知れないが、
寿命改善に効果のあるCeやNdを多く含むミツシュメ
タルを用いる場合は、0.4≧D≧0.3でも十分なサ
イクル寿命が確保できるものと考えられる。
In addition, the above test results are at a temperature of 20℃, -2
For batteries that are used at low temperatures of around 0°C, it is necessary to reduce the amount of AI replacement to avoid the associated rise in overvoltage, so the appropriate range of the amount of AI replacement is set to 0.3≦D≦0.
5. As mentioned earlier, if the amount of AI replacement is too small, it may deteriorate the cycle life characteristics.
If Mitshu metal containing a large amount of Ce or Nd, which is effective in improving lifespan, is used, it is considered that sufficient cycle life can be ensured even if 0.4≧D≧0.3.

このように、h−の一部をZrで、Niの一部をCOと
Mn、 AIとで置換し、それぞれの置換量を必要最小
限に抑える適正な成分設計を採ることにより、高容量で
長寿命な水素吸蔵量電極用の合金とすることができる。
In this way, by replacing a portion of h- with Zr and a portion of Ni with CO, Mn, and AI, and by adopting an appropriate component design that minimizes the amount of each substitution, high capacity can be achieved. It can be made into an alloy for a long-life hydrogen storage electrode.

実施例4〜7、比較例7〜14 ミソシュメタルとして第1表のサンプルEを用いた以外
は実施例1〜3と同様にして試験用合金電極を製造し、
充放電サイクル試験を行なった。結果を下記第3表に示
す。
Examples 4 to 7, Comparative Examples 7 to 14 Test alloy electrodes were manufactured in the same manner as Examples 1 to 3, except that Sample E in Table 1 was used as Misoshu metal,
A charge/discharge cycle test was conducted. The results are shown in Table 3 below.

(本頁以下余白) 従来より多く使用されてきたCeを多く含むM■(サン
プルA)を用いて作製された比較例7の合金は、Laを
用いた合金系に比べれば、初期放電容量が小さいものの
、サイクル寿命特性は非常に良好である。
(Margins below this page) The alloy of Comparative Example 7 made using M (sample A) containing a large amount of Ce, which has been used in the past, has a lower initial discharge capacity than the alloy system using La. Although small, the cycle life characteristics are very good.

比較例日の合金は、MgやC1の不純物を多く含むMs
 (第1表のサンプルE、従来一般的に市販されていた
Mmとの混同を避けるため、表中’Mmと表記)を用い
て作製したものであり、比較例7のMmNi5.5CO
−XZrXNiACoBMnCAlD,7AI0.1合
金に比べて初期放電容量は小さく、サイクル寿命は極端
に低い。これに対し、比較例9.10および工1の合金
は、Niの一部をMnで置換したものであり、比較例7
の合金に比べて初期放電容量、サイクル寿命特性とも大
きく改善されている。なお、Niの組成比率は大きいほ
ど、すなわち、比較例9.10.11の順で後者はど、
初期放電容量は大きく、サイクル寿命特性が悪くなる傾
向にある。一般的に、Mn置換は合金の水素吸蔵量を増
し、放電容量の増大をもたらすが、合金の表面近傍にあ
るMnの溶出のためサイクル寿命特性を劣化させること
になる。ただし比較例8の合金と比較例11の合金の双
方を比べてみて判るように、Mn置換によってサイクル
寿命特性が低下するという従来の傾向とは異なる傾向が
認められる。これは、Mnの置換が、MgやCIの不純
物と安定な化合物を形成し、浮遊物として除去している
とも推測されるが、詳細な理由は不明である。いずれに
せよMnの置換は合金を浄化する作用があることを示し
ている。
The alloy of the comparative example day was Ms containing many Mg and C1 impurities.
(Sample E in Table 1, written as 'Mm in the table to avoid confusion with conventionally commercially available Mm), and MmNi5.5CO of Comparative Example 7.
-XZrXNiACoBMnCAlD, the initial discharge capacity is small compared to the 7AI0.1 alloy, and the cycle life is extremely short. On the other hand, the alloys of Comparative Example 9.10 and Process 1 have a part of Ni replaced with Mn, and the alloys of Comparative Example 7
Both the initial discharge capacity and cycle life characteristics are greatly improved compared to the alloy. It should be noted that the larger the Ni composition ratio, that is, the latter in the order of Comparative Examples 9, 10, and 11.
The initial discharge capacity is large, and the cycle life characteristics tend to be poor. In general, Mn substitution increases the hydrogen storage capacity of the alloy and increases the discharge capacity, but it deteriorates the cycle life characteristics due to the elution of Mn near the surface of the alloy. However, as can be seen by comparing both the alloy of Comparative Example 8 and the alloy of Comparative Example 11, a tendency different from the conventional tendency of decreasing cycle life characteristics due to Mn substitution is observed. It is assumed that this is because Mn substitution forms a stable compound with Mg and CI impurities and is removed as floating substances, but the detailed reason is unknown. In any case, it is shown that Mn substitution has the effect of purifying the alloy.

次に、比較例12は、Mmを過剰に含むよう設定し、上
記と同様のMn置換を行った非化学量論組成の合金であ
る。この合金は、組成的には比較例10をベースにして
いるが、初期放電容量は若干大きくなっている。これに
対し、実施例4の合金は、M−の過剰度を少し減らし、
Zrを少量添加したものであり、初 期放電容量はさら
に増大し、サイクル寿命特性もほぼ実用的なレベルまで
向上している。実施例4の合金に比べて、Ma+存在比
の多い比較例12の合金で初期放電容量が低下している
のは、過剰なMmがMmJi7等の別の相を形成し、水
素の吸蔵・放出に寄与するMa+N i s構造の相が
減少するためである。このことが、比較例12の合金に
おいてサイクル寿命が低い原因にもなっていると考えら
れる。
Next, Comparative Example 12 is an alloy with a non-stoichiometric composition in which Mm was set to be included in excess and Mn substitution was performed in the same manner as above. This alloy is based on Comparative Example 10 in terms of composition, but has a slightly larger initial discharge capacity. On the other hand, in the alloy of Example 4, the excess of M- was slightly reduced,
With the addition of a small amount of Zr, the initial discharge capacity is further increased and the cycle life characteristics have also been improved to almost a practical level. Compared to the alloy of Example 4, the initial discharge capacity of the alloy of Comparative Example 12, which has a higher Ma+ abundance ratio, is lower because the excess Mm forms another phase such as MmJi7, which absorbs and releases hydrogen. This is because the phase of the Ma+N i s structure that contributes to decreases. This is considered to be the cause of the low cycle life of the alloy of Comparative Example 12.

実施例5.6および7の合金は、過剰なMmの代わりに
Zrを追加添加した合金である。発明者の経験によれば
、結晶構造上、Zrはhの一部と置換される。このZr
置換量の増加により、実施例6の合金は、実施例4の合
金に比べて、初期放電容量が小さくなるものの、より優
れたサイクル寿命特性を持つものとなる。これは、Zr
が合金表面に強固な酸化皮膜を形成し、希土類金属の酸
化が抑制されるためと考えられる。実施例5の合金は、
Zrの添加量を少なくCoの置換量を多くして良好なサ
イクル寿命特性を確保し、Mnの置換量を減らした合金
である。
The alloys of Examples 5.6 and 7 are alloys in which Zr is additionally added in place of excess Mm. According to the inventor's experience, Zr is partially substituted for h in terms of the crystal structure. This Zr
Due to the increased substitution amount, the alloy of Example 6 has a smaller initial discharge capacity than the alloy of Example 4, but has better cycle life characteristics. This is Zr
This is thought to be due to the formation of a strong oxide film on the alloy surface, which suppresses oxidation of the rare earth metal. The alloy of Example 5 is
This is an alloy in which good cycle life characteristics are ensured by adding a small amount of Zr and increasing the amount of Co substitution, while reducing the amount of Mn substitution.

この合金では、Mn置換量が少ないだけ、実施例6の合
金に比べて初期放電容量が多少少なくなっている。また
、実施例7の合金は、実施例6の合金に比べてCo置換
量を若干少なくしたものであり、その分だけ水素製蔵置
が増えることから、初期放電容量が増し、サイクル寿命
特性が多少低下した合金となっている。
In this alloy, the initial discharge capacity is somewhat lower than that of the alloy of Example 6 because the amount of Mn substitution is small. In addition, the alloy of Example 7 has a slightly lower amount of Co substitution than the alloy of Example 6, and the amount of hydrogen storage increases accordingly, so the initial discharge capacity increases and the cycle life characteristics are slightly reduced. It has become a degraded alloy.

比較例13の合金は、比較例12の過剰なMmを含む合
金をベースに、その一部をZrで置換した合金であり、
比較例12の合金に比べれば、放電容量が低下するもの
の、サイクル寿命特性は多少改善される。さらに、比較
例14の合金は実施例6の合金をベースにZrの添加量
を増したものであるが、初期放電容量は大幅に減少する
。これら比較例12.13.14の例に示されるように
、Mn+とZrを合せた量があまり過剰、つまりNi側
5に対してMm + Zrを1.1以上含んだ合金系で
は、最も容量が高くなる適正組成の合金(実施例4:N
i側5に対してMm f Zr側1.05程度)に比べ
て、初期放電容量が小さく、Zrによる寿命改善効果が
あっても全般的にはサイクル寿命特性も低下する傾向に
ある。これは、先にも記したように、過度のh追加の場
合にはMmzNit等の金属化合物が、過度のZr添加
の場合にはZrN1z等が金属間化合物を形成されるだ
けで、有効な水素製蔵置を減らす結果となるためである
。今回試験に用いたMgやCIを含む台■中の不純物の
総量は0.6重量%程度であり、それらの不純物がMn
の置換によりMmとの複合化合物として除去されるため
、損耗したH−を補給した実施例中で示したような合金
で良い電極特性が得られたものと考えられる。一応、実
施例4で示したMm + Zrを5重量%過剰に含んだ
合金が、化学量論組成に近くなっていると考えられる。
The alloy of Comparative Example 13 is an alloy based on the alloy containing excessive Mm of Comparative Example 12, and a part of it is replaced with Zr,
Compared to the alloy of Comparative Example 12, although the discharge capacity is lower, the cycle life characteristics are somewhat improved. Further, although the alloy of Comparative Example 14 is based on the alloy of Example 6 with an increased amount of Zr added, the initial discharge capacity is significantly reduced. As shown in Comparative Examples 12, 13, and 14, alloy systems in which the combined amount of Mn + and Zr is too excessive, that is, 1.1 or more Mm + Zr with respect to 5 on the Ni side, have the highest capacity. An alloy with an appropriate composition that increases the (Example 4: N
The initial discharge capacity is smaller than that for the i-side 5 and the Mm f Zr side 1.05, and even if Zr has a life-improving effect, the cycle life characteristics generally tend to deteriorate. This is because, as mentioned earlier, when excessive H is added, metal compounds such as MmzNit are formed, and when excessive Zr is added, ZrN1z etc. are formed as intermetallic compounds, and effective hydrogen is not produced. This is because it results in a reduction in manufacturing and storage space. The total amount of impurities in the table including Mg and CI used in this test was about 0.6% by weight, and these impurities
Since it is removed as a composite compound with Mm by replacing H-, it is thought that good electrode characteristics were obtained with the alloy shown in the example in which the depleted H- was replenished. It is thought that the alloy shown in Example 4 containing 5% by weight of excess Mm + Zr has a composition close to the stoichiometric composition.

他の無用な金属間化合物を出現させない範囲として、第
3表に例示されていない合金についてもX線回折等の手
段を用いて調べた結果では、Mm f Zr側の過剰度
を0.08以下とするのが適当である。
In order to prevent the appearance of other unnecessary intermetallic compounds, alloys not listed in Table 3 were investigated using means such as X-ray diffraction, and the excess on the Mm f Zr side was 0.08 or less. It is appropriate to

通常、一般式La (Mm) N i 、fで表される
合金の組成が、La(Ma+):Niが1 : 5 (
Y=5)の化学量論組成から外れると、サイクル寿命特
性が劣化する。一応、容量維持率の低下率が15%以下
であることを許容限界として設定するならば、上記La
(Mm)Niy式で表される合金でのYの値は、4.9
〜5.1の範囲にあることが必要であ る。
Usually, the composition of the alloy represented by the general formula La(Mm)Ni,f is La(Ma+):Ni of 1:5 (
If the composition deviates from the stoichiometric composition of Y=5), the cycle life characteristics deteriorate. For the time being, if the rate of decrease in capacity maintenance rate is set to be 15% or less as an acceptable limit, then the above La
The value of Y in the alloy expressed by the (Mm)Niy formula is 4.9
It is necessary to be within the range of ~5.1.

これは、上記組成式でのYの値が5.0未満となった場
合にはLazNit等の金属間化合物が、Yの値が5.
0を越えた場合にはNi単独相が合金中に現われてくる
ため、サイクル寿命特性の劣化を招いていると考えられ
る。
This means that when the value of Y in the above compositional formula is less than 5.0, intermetallic compounds such as LazNit are used when the value of Y is less than 5.0.
If it exceeds 0, a single Ni phase appears in the alloy, which is considered to cause deterioration of cycle life characteristics.

以上の結果から、一般式MmZr、lNiaCOIMn
cAlnで示される新規開発の水素吸蔵電極用合金は、
その組成を0.01≦X≦−0,05,3,2≦A≦3
.6.0.6≦B≦1.0.0.3≦C≦0.5.0.
4≦D≦0.5とすることで最も良好な電極特性を示す
ものとなる。ただし、ある程度の初期容量の低下、サイ
クル寿命の劣化を許容するならば、上の最適組成範囲を
拡張して、0.O1≦X≦0.08.4.9≦A十B十
C+D≦5.1の範囲内で支障ないと考える。実施例で
示したいずれの合金も、従来のhを用C)た比較例1の
MmNi5.5Coo、 Jio、 *合金に比べて、
実用的なサイクル寿命特性を有しつつ、非常に大きな放
電容量を持つものとなっている。
From the above results, the general formula MmZr, lNiaCOIMn
The newly developed alloy for hydrogen storage electrodes, denoted by cAln, is
Its composition is 0.01≦X≦-0,05,3,2≦A≦3
.. 6.0.6≦B≦1.0.0.3≦C≦0.5.0.
When 4≦D≦0.5, the best electrode characteristics are exhibited. However, if a certain degree of decrease in initial capacity and deterioration in cycle life is acceptable, the above optimum composition range can be expanded to 0. It is considered that there is no problem within the range of O1≦X≦0.08.4.9≦A0B0C+D≦5.1. All of the alloys shown in the examples used C) MmNi5.5Coo, Jio, *alloy compared to Comparative Example 1 using conventional h.
It has a very large discharge capacity while having practical cycle life characteristics.

以上、ニッケルー金属水素化物二次電池の水素吸蔵電極
に使用するものとして、本願発明の合金が優れた電極特
性を発揮することをその効果発現の機構をも含めて述べ
てきたが、その作用はアルカリ電解液を用いる二次電池
に共通のものであり、工種に二酸化マンガンを用いる二
次電池にも当該電極を使用することができる。
It has been described above that the alloy of the present invention exhibits excellent electrode properties when used as a hydrogen storage electrode for nickel-metal hydride secondary batteries, including the mechanism of its effect. This electrode is common to secondary batteries that use an alkaline electrolyte, and can also be used for secondary batteries that use manganese dioxide as a material.

〔発明の効果] Mmの一部をZrで、Niの一部をCoとMn、 AI
で置換した御飯弐Mml−1(ZrXNiACOllM
n(AIDで表される水素吸蔵合金は、その合金組成を
0.01≦X≦0.08.4.9≦A+B+C十D≦5
.1.3.2≦A≦3.6.0.5≦B≦1.0.0.
3≦C≦0.5の範囲で示されるものとすることによっ
て、充放電容量が大きく、サイクル寿命特性が高いなど
の優れた電極特性を兼ね備えた電極とすることができる
[Effect of the invention] Part of Mm is Zr, part of Ni is Co and Mn, AI
ZrXNiACOllM substituted with
n (The hydrogen storage alloy represented by AID has an alloy composition of 0.01≦X≦0.08.4.9≦A+B+C1D≦5
.. 1.3.2≦A≦3.6.0.5≦B≦1.0.0.
By setting the range of 3≦C≦0.5, it is possible to obtain an electrode that has excellent electrode properties such as a large charge/discharge capacity and a high cycle life characteristic.

しかも、原料中にMgやCI等の不純物を総量の0.5
重量%以上含有するhなど安価な原材料に用いることも
でき、かつ高価なCoの含有量が少ないこともあって、 低価格の水素吸蔵電極とし て実用性の高いものとなった。
Moreover, impurities such as Mg and CI are contained in the raw materials by 0.5 of the total amount.
It can be used as a cheap raw material such as h containing more than % by weight, and the content of expensive Co is small, making it highly practical as a low-cost hydrogen storage electrode.

Claims (1)

【特許請求の範囲】 一般式Mm_1_−_XZr_XNi_ACo_BMn
_CAl_Dで表わされる水素吸蔵合金を用いたことを
特徴とする水素吸蔵電極。 ただし、上記一般式において、Mmはミッシュメタルで
あり、0.01≦X≦0.08、4.9≦A+B+C+
D≦5.1、3.2≦A≦3.6、0.5≦B≦1.0
、0.3≦C≦0.5および0.3≦D≦0.5である
[Claims] General formula Mm_1_-_XZr_XNi_ACo_BMn
A hydrogen storage electrode characterized by using a hydrogen storage alloy represented by _CAl_D. However, in the above general formula, Mm is misch metal, 0.01≦X≦0.08, 4.9≦A+B+C+
D≦5.1, 3.2≦A≦3.6, 0.5≦B≦1.0
, 0.3≦C≦0.5 and 0.3≦D≦0.5.
JP2096840A 1990-04-11 1990-04-11 Hydrogen occluding electrode Granted JPH03294444A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2096840A JPH03294444A (en) 1990-04-11 1990-04-11 Hydrogen occluding electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2096840A JPH03294444A (en) 1990-04-11 1990-04-11 Hydrogen occluding electrode

Publications (2)

Publication Number Publication Date
JPH03294444A true JPH03294444A (en) 1991-12-25
JPH0514018B2 JPH0514018B2 (en) 1993-02-24

Family

ID=14175718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2096840A Granted JPH03294444A (en) 1990-04-11 1990-04-11 Hydrogen occluding electrode

Country Status (1)

Country Link
JP (1) JPH03294444A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5512385A (en) * 1994-02-28 1996-04-30 Matsushita Electric Industrial Co., Ltd. Hydrogen storage alloy and nickel-metal hydride storage battery using the same
EP0756343A1 (en) * 1995-07-27 1997-01-29 VARTA Batterie Aktiengesellschaft Alloys for use as active material for the negative electrode of an alkaline,rechargeable, nickel metal-hybride battery and its method of preparation
WO1998027604A1 (en) * 1996-12-19 1998-06-25 Duracell Inc. Hydrogen storage alloys of the ab5 type for use in rechargeable electrochemical cells, and methods of producing them
CN1045690C (en) * 1994-12-05 1999-10-13 北京有色金属研究总院 Hydrogen storage alloy for secondary cell
CN1056017C (en) * 1994-08-10 2000-08-30 北京有色金属研究总院 Hydrogen-storage alloy material for negative electrode of alkaline accumulator and mfg. process thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61214361A (en) * 1985-03-18 1986-09-24 Matsushita Electric Ind Co Ltd Sealed alkaline storage battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61214361A (en) * 1985-03-18 1986-09-24 Matsushita Electric Ind Co Ltd Sealed alkaline storage battery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5512385A (en) * 1994-02-28 1996-04-30 Matsushita Electric Industrial Co., Ltd. Hydrogen storage alloy and nickel-metal hydride storage battery using the same
CN1056017C (en) * 1994-08-10 2000-08-30 北京有色金属研究总院 Hydrogen-storage alloy material for negative electrode of alkaline accumulator and mfg. process thereof
CN1045690C (en) * 1994-12-05 1999-10-13 北京有色金属研究总院 Hydrogen storage alloy for secondary cell
EP0756343A1 (en) * 1995-07-27 1997-01-29 VARTA Batterie Aktiengesellschaft Alloys for use as active material for the negative electrode of an alkaline,rechargeable, nickel metal-hybride battery and its method of preparation
WO1998027604A1 (en) * 1996-12-19 1998-06-25 Duracell Inc. Hydrogen storage alloys of the ab5 type for use in rechargeable electrochemical cells, and methods of producing them

Also Published As

Publication number Publication date
JPH0514018B2 (en) 1993-02-24

Similar Documents

Publication Publication Date Title
US4107405A (en) Electrode materials based on lanthanum and nickel, and electrochemical uses of such materials
JPH0515774B2 (en)
JPS60241652A (en) Electrochemical electrode employing metal hydride
JP2000073132A (en) Hydrogen storage alloy and secondary battery
EP0451575B1 (en) Hydrogen absorbing electrode for use in nickel-metal hydride secondary batteries
JPH03294444A (en) Hydrogen occluding electrode
JP2847874B2 (en) Hydrogen storage electrode
JPH0562429B2 (en)
JPS6243064A (en) Hydrogen occlusion alloy for alkaline storage battery
JPH0953136A (en) Hydrogen storage alloy and hydrogen storage alloy electrode
JPH0765833A (en) Hydrogen storage alloy electrode
JP2011014258A (en) Hydrogen storage alloy for nickel-hydrogen secondary battery, and nickel-hydrogen secondary battery
JPH09298059A (en) Hydrogen storage alloy for battery
JP2847873B2 (en) Hydrogen storage electrode
JPH0953137A (en) Hydrogen storage alloy and hydrogen storage alloy electrode
JPH06306515A (en) Hydrogen storage alloy and electrode using the same
JPH02148568A (en) Hydrogen occludent electrode
JPS62259344A (en) Hydrogen absorbing electrode
JPH03289042A (en) Hydrogen storage electrode
JPH0953135A (en) Hydrogen storage alloy and hydrogen storage alloy electrode
EP0566055B1 (en) A hydrogen storage alloy electrode
JPH0463240A (en) Hydrogen storage alloy electrode and battery using it
JPH08319529A (en) Hydrogen storage alloy and hydrogen storage alloy electrode
US5480740A (en) Hydrogen storage alloy and electrode therefrom
JPH03274239A (en) Hydrogen occluding electrode

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term