JPH02148568A - Hydrogen occludent electrode - Google Patents

Hydrogen occludent electrode

Info

Publication number
JPH02148568A
JPH02148568A JP63300630A JP30063088A JPH02148568A JP H02148568 A JPH02148568 A JP H02148568A JP 63300630 A JP63300630 A JP 63300630A JP 30063088 A JP30063088 A JP 30063088A JP H02148568 A JPH02148568 A JP H02148568A
Authority
JP
Japan
Prior art keywords
alloy
discharge capacity
hydrogen
hydrogen storage
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63300630A
Other languages
Japanese (ja)
Other versions
JPH0810597B2 (en
Inventor
Hiroshi Ishikawa
博 石川
Tetsuo Sakai
哲男 境
Keisuke Oguro
小黒 啓介
Akihiko Kato
明彦 加藤
Tokuichi Hazama
狭間 徳一
Shizuo Sakamoto
坂本 静男
Hiroyuki Kawashima
弘之 川島
Keizo Sakaguchi
坂口 景三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurimoto Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Kurimoto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Kurimoto Ltd filed Critical Agency of Industrial Science and Technology
Priority to JP63300630A priority Critical patent/JPH0810597B2/en
Publication of JPH02148568A publication Critical patent/JPH02148568A/en
Publication of JPH0810597B2 publication Critical patent/JPH0810597B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/383Hydrogen absorbing alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To manufacture a low-cost electrode with large discharge capacity and no characteristic deterioration for a long term by having a mischmetal- nickel-aluminium hydrogen occludent alloy as a base while adding a small amount of Zr and V. CONSTITUTION:A part of an Mm quantity of a general formula to be expressed by Mm1-xZrxNiaAlbVc (provided that Mm denotes mischmetal) is Zr, and a part of an Ni quantity is replaced by Al and V, while being included respectively in the range of 0.05<=x<=0.2, 4.8<=a+b+c<=5.2, 3.9<=a<4.2, 0.6<=b<=0.9, 0.05<=c<=0.3. This hydrogen occludent alloy has a large discharge capacity and no characteristic deterioration is caused in the long-term repetition of a occlusion-discharge cycle of hydrogen. Further, its manufacture is based on the relatively low-priced mischmetal and it contains no expensive Co, and therefore it is formed inexpensively.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本願発明は電気化学的に水素を吸蔵、放出する水素吸蔵
合金を負1かに用いた密閉式アルカリ蓄電池に関する技
術である。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a sealed alkaline storage battery using a hydrogen storage alloy that electrochemically stores and releases hydrogen.

[従来の技術] 従来から最も一般的な蓄電池としては鉛、又はニッケル
カドミウムを使用したものが普及しているが、最近はこ
れらより軽量で容量も高くなる期待の元に水素吸蔵合金
を負極とし、正極にはたとえば水酸化ニッケルなどを使
用する金属−水素アルカリ蓄電池が発表されている。
[Conventional technology] Traditionally, the most common storage batteries have been those using lead or nickel cadmium, but recently, with the expectation that they will be lighter and have higher capacity than these, hydrogen storage alloys have been used as negative electrodes. A metal-hydrogen alkaline storage battery using, for example, nickel hydroxide for the positive electrode has been announced.

蓄電池として要請される条件としては充放電容量が高い
ことと、繰り返し使用してもその特性が劣化しないこと
が特に求められるが、水素吸蔵合金を使用するに当って
は合金の酸化、微粉化による劣化が問題となる。この酸
化による電極特性の劣化問題は、電極製造過程における
合金酸化等も含まれるが、主として、電池の充電末期あ
るいは過度の充電時において正極側で発止した酸素ガス
が負極にまで拡散してきて、負極の水素吸蔵合金を一部
酸化させてしまうことに起因している。また、微粉化に
よる電極特性の劣化問題は、電池の充電・放電に伴う水
素吸蔵合金の膨張・収縮により、合金は粒界部分で破砕
され、その繰り返しを経るにしたがい微粉化した一部の
合金が電極成形体から脱落していく。これらいずれの劣
化現象も電池容量の低下をもたらし、サイクル寿命を縮
めることになる。
The conditions required for a storage battery are that it has a high charge/discharge capacity and that its characteristics do not deteriorate even after repeated use. Deterioration becomes a problem. This problem of deterioration of electrode properties due to oxidation includes alloy oxidation during the electrode manufacturing process, but mainly occurs when oxygen gas released from the positive electrode side diffuses to the negative electrode at the end of battery charging or during excessive charging. This is caused by partially oxidizing the hydrogen storage alloy of the negative electrode. In addition, the problem of deterioration of electrode properties due to pulverization is that due to the expansion and contraction of the hydrogen storage alloy as the battery is charged and discharged, the alloy is fractured at the grain boundaries, and as this process is repeated, some alloys become pulverized. falls off from the electrode molded body. Any of these deterioration phenomena results in a decrease in battery capacity and shortens cycle life.

これを改善するために従来から多数の提案が出されてい
る。
Many proposals have been made to improve this problem.

たとえば「水素吸蔵合金」 (特開昭62−11986
2@公報)における 巨N1xCOyAlz合金、「密
閉形アルカリ蓄電池」 (特開昭60−250558@
公報)における MynN”+xC07Mz(但しMは
Atl、Sn、sb、Cu、Fe、Mn。
For example, "hydrogen storage alloy" (Japanese Patent Application Laid-Open No. 62-11986
Giant N1xCOyAlz alloy, "sealed alkaline storage battery" in JP-A-60-250558@
MynN"+xC07Mz (where M is Atl, Sn, sb, Cu, Fe, Mn.

Cr、Mo、V、Nb、Ta、Zn、M9よりなる群か
ら選んだ少くとも1種)など多数ある。
There are many materials including at least one selected from the group consisting of Cr, Mo, V, Nb, Ta, Zn, and M9).

また学界又は業界で実務上高い指標として自他ともにL
’lr V&されている合金としては、フィリップス社
で開発されたLaN i 2.5 co2.4 A I
20.1や1−ao、8 N d□、2 N i 2.
5 CO2,4S i □、1が著名である。
Also, in academia or industry, L
'lr V & alloys include LaN i 2.5 co2.4 A I developed by Phillips
20.1, 1-ao, 8 N d□, 2 N i 2.
5 CO2,4S i □,1 is well known.

文献ニジニー・ジエー・ジー・ウィリアムスrLa  
Nrs関連組成物の水素吸蔵電池の安定性j (JJ、
G、Willems”Metal Hydride E
lectrodesStabi l ity of L
aN i 5−related Compounds”
、 Phi 1ips Journal of Re5
earch Vol、395upp1.No、1.19
[発明が解決しようとする課題] 前記のように水素吸蔵電池の基本物質をLa−Ni5と
し、これを出発点として電池の望ましい機能を改善する
公知技術は多岐に亘るが、最も有効な手段として着目さ
れているのがCoである点に共通点が見出される。
LiteratureNigney G.G.WilliamsrLa
Stability of hydrogen storage batteries of Nrs-related compositions (JJ,
G, Willems”Metal Hydride E
Electrodes Stability of L
aN i 5-related Compounds”
, Phi 1ips Journal of Re5
earth Vol, 395upp1. No, 1.19
[Problems to be Solved by the Invention] As mentioned above, there are a wide variety of known techniques for using La-Ni5 as the basic material of a hydrogen storage battery and improving the desired functions of the battery using this as a starting point. A common feature can be found in that the focus is on Co.

すなわちCoの添加は、合金の耐食性、耐酸化性を向上
させ、さらに合金の粒界強度を上げ、合金の水素吸蔵量
の減少から水素吸放出に伴う膨張・収縮を抑制するため
微粉化をも抑えることになる。このようなことからCo
添加は、上記のような電極特性の劣化を防止するには最
も適した方法の一つとして考えられている。
In other words, the addition of Co improves the corrosion resistance and oxidation resistance of the alloy, increases the grain boundary strength of the alloy, and also reduces the hydrogen storage capacity of the alloy to suppress expansion and contraction associated with hydrogen absorption and release. It will be suppressed. Because of this, Co
Addition is considered to be one of the most suitable methods for preventing the deterioration of electrode characteristics as described above.

ところが−面この有効性をもたらすCoは非常に高価で
ありざらに、合金の特性劣化防止のために施す処理も電
極製造コストを押し上げる原因になっている。したがっ
て、水素吸蔵電極は現在のところカドミウム電極等に比
べても比較的高価なものとなっており、このような事情
がニッケル水素二次電池の普及を妨げる非常に大きな課
題となっていた。
However, Co, which provides this effectiveness, is very expensive, and furthermore, the treatment applied to prevent the properties of the alloy from deteriorating also increases the cost of manufacturing the electrode. Therefore, hydrogen storage electrodes are currently relatively expensive compared to cadmium electrodes and the like, and this situation has been a very big problem that hinders the widespread use of nickel-metal hydride secondary batteries.

本願発明は以上に述べた課題を解決するために、希土類
元素としてLa、Nd、Ce等の諸元素を含み精製・分
離工程を踏んでいないため比較的安価なミツシュメタル
を用い、高価なCo元素を含まない合金系の提供をその
目的とする。
In order to solve the above-mentioned problems, the present invention uses Mitsushi metal, which is relatively inexpensive because it contains various elements such as La, Nd, and Ce as rare earth elements and does not undergo a purification or separation process, and replaces the expensive Co element. The objective is to provide an alloy system that does not contain

[課題を解決するための手段] 本願発明に係る水素吸蔵電極は、一般式がMyn+−x
ZyxNiaA7bVc  (但しMmはミツシュメタ
ル)で表わされ、Mmffiの一部をZrで、またNi
量の一部をAeおよび■とで置換し、かつ0.05≦x
≦0.2゜ 468≦a十b+c≦5.2.3.9≦a≦4.2゜0
.6≦b≦0.9,0.05≦c≦0.3の範囲にそれ
ぞれ含まる水素吸蔵合金を使用することにより前記の課
題を解決した。
[Means for Solving the Problems] The hydrogen storage electrode according to the present invention has a general formula of Myn+-x.
It is expressed as ZyxNiaA7bVc (however, Mm is Mitsushi metal), and a part of Mmffi is Zr and Ni
Part of the amount is replaced with Ae and ■, and 0.05≦x
≦0.2゜468≦a+b+c≦5.2.3.9≦a≦4.2゜0
.. The above problem was solved by using hydrogen storage alloys falling within the ranges of 6≦b≦0.9 and 0.05≦c≦0.3.

すなわち水素吸蔵電極材料としての合金は、電池の自己
放電を抑制するという観点から、水素吸蔵合金の平衡水
素解離圧が大気圧以下になるよう組成を決める必要があ
る。ミツシュメタルを用いる場合、ランタン系合金と同
様の組成では平衡解離圧が高くなり、平衡解離圧を下げ
るための合金元素添加が不可欠となる。充放電容量やサ
イクル寿命を損わないことを前提に平衡解離圧を下げる
ためにはAQ、による置換が最も適しており、合金の基
本組成をMm Ni、t−a Al! a  とした。
That is, from the viewpoint of suppressing self-discharge of the battery, the composition of the alloy used as the hydrogen storage electrode material must be determined so that the equilibrium hydrogen dissociation pressure of the hydrogen storage alloy is equal to or lower than atmospheric pressure. When Mitshu metal is used, the equilibrium dissociation pressure will be high if the composition is similar to that of a lanthanum-based alloy, and it is essential to add alloying elements to lower the equilibrium dissociation pressure. In order to lower the equilibrium dissociation pressure without impairing the charge/discharge capacity or cycle life, substitution with AQ is most suitable, and the basic composition of the alloy is Mm Ni, t-a Al! It was set as a.

このような合金系を電極材料とする場合に生じる主な問
題は、初期充放電古里の減少と、上にも記した長期充放
電の繰り返しによる充放電容量の低下でおり、それぞれ
について適当な合金元素を加えることにより改善を図っ
た。
The main problems that arise when using such alloys as electrode materials are a decrease in the initial charge/discharge range and a decrease in charge/discharge capacity due to repeated long-term charging and discharging as described above. Improvements were made by adding elements.

まず、初期の充放電容量を下げるためにはMmNi5を
基本組成にしたNiの一部を■で置換することが非常に
有効であることを多くの実験事実の中から見出した。こ
のときの■置換旦によっては、サイクル寿命上の面でも
多少効果のあることが見出されたが、単独の添加だけで
は実用的に十分とは言えない。そして、この寿命改善に
は、ミツシュメタル側の一部をZrで置換することが最
も効果的であることを見出し、上記のV置換と合せて用
いることによって初期充放電容量が高く、しかも、充放
電の繰り返しによる劣化が少ない水素吸蔵合金を発明す
ることができた。
First, we have found from many experimental facts that it is very effective to replace part of the Ni in MmNi5 as a basic composition with ■ in order to lower the initial charge/discharge capacity. It has been found that depending on the replacement date (1) at this time, there is some effect on cycle life, but adding it alone cannot be said to be practically sufficient. We discovered that the most effective way to improve this lifespan is to replace a part of the Mitshu metal side with Zr, and by using it in conjunction with the above-mentioned V replacement, the initial charge and discharge capacity is high, and the charge and discharge speed is also increased. We were able to invent a hydrogen storage alloy that shows little deterioration due to repeated cycles.

新たに開発した水素吸蔵電極用の合金は組成式%式% ものであり、組成式中の各指数は、 0.05≦x≦0.2 4.8≦a+b十c≦5.23
.9≦a≦4.2 0.6≦b≦0.90.05≦c≦
0.3 の各範囲で示されるものである。
The newly developed alloy for hydrogen storage electrodes has the composition formula %, and each index in the composition formula is as follows: 0.05≦x≦0.2 4.8≦a+b+c≦5.23
.. 9≦a≦4.2 0.6≦b≦0.90.05≦c≦
It is shown in each range of 0.3.

[作用・実施例] 本願発明の作用を確認するため第1表に示す水素吸蔵合
金を真空アーク炉で溶解し、これらの合金を機械的に粉
砕した後、無電解銅鍍金法により合金粉末の表面に鍍金
後合金重量の約20重量%に相当する銅被覆層を形成し
た。得られた銅被覆合金に決着剤としてのフッソ樹脂(
四フッ化エチレン・フッ化プロピレン共重合体、樹脂添
加量:10重世%相当)を加えて冷間プレスで成形し、
これを集電体であるニッケルメツシュとともに300℃
でポットプレスすることによって合金電極を作製した。
[Operation/Example] In order to confirm the operation of the present invention, the hydrogen storage alloys shown in Table 1 were melted in a vacuum arc furnace, these alloys were mechanically pulverized, and then alloy powder was formed by electroless copper plating. A copper coating layer corresponding to about 20% by weight of the alloy after plating was formed on the surface. The resulting copper-coated alloy was coated with fluorocarbon resin (
Tetrafluoroethylene/propylene fluoride copolymer, resin addition amount: equivalent to 10%) is added and molded by cold press.
This was heated to 300°C along with the nickel mesh as a current collector.
Alloy electrodes were prepared by pot pressing.

これらの電極成形体の形状は直径13mm、厚さ0.2
5〜0.30mmであり、そのニッケルメツシュ材を除
いた重量は約300myである。
These electrode molded bodies have a diameter of 13 mm and a thickness of 0.2 mm.
The thickness is 5 to 0.30 mm, and the weight excluding the nickel mesh material is approximately 300 my.

この水素吸蔵電極を負極に、正極としてニッケルーカド
ミウム蓄電池と同じ酸化ニッケル電極を、電解液として
6M水酸化カリウム溶液を用いて試験用電池を構成した
。なお、照合電極としては酸化水銀電極を用いた。この
試験用電池を温度20℃の恒温室の中において、充電電
流40mAで285時間充電し、0.5時間休止した後
、放電電流20mAで電圧が0.6Vに低下するまで放
電するといったサイクルで、長期間繰り返し充放電試験
を行った。この試験で得られた初期の最大放電容量と3
00サイクル経過した時点における放電容量の残存率に
ついての結果を表1に示ず。後者の放電容量残存率は電
池の1ナイクル寿命の指標となるものである。なお、こ
こでは示していないが、それぞれの合金について気相P
CT試験を実施し、温度20℃の平衡状態における水素
解離圧−組成等温線図(PCT線図)から水素雰囲気1
気圧での合金の水素吸蔵量を求めている。
A test battery was constructed using this hydrogen storage electrode as a negative electrode, the same nickel oxide electrode as the nickel-cadmium storage battery as a positive electrode, and a 6M potassium hydroxide solution as an electrolyte. Note that a mercury oxide electrode was used as the reference electrode. This test battery was charged in a constant temperature room at a temperature of 20°C for 285 hours at a charging current of 40 mA, rested for 0.5 hour, and then discharged at a discharge current of 20 mA until the voltage dropped to 0.6 V. , a long-term repeated charge-discharge test was conducted. The initial maximum discharge capacity obtained in this test and 3
Table 1 does not show the results regarding the residual rate of discharge capacity after 00 cycles. The latter discharge capacity remaining rate is an index of the 1-night life of the battery. Although not shown here, the gas phase P for each alloy
A CT test was carried out, and from the hydrogen dissociation pressure-composition isotherm diagram (PCT diagram) in an equilibrium state at a temperature of 20 ° C.
We are looking for the hydrogen storage capacity of an alloy at atmospheric pressure.

この表ではまずZr、Vの単独添加による作用を知るた
めの実験を示し、MmN i 4.2 A ff104
合金をベースとして比較例1とし、比較例2〜4はVを
単独で添加した合金系であり、比較例2および3は■を
Niの一部に代えて、比較例4はミツシュメタルの一部
に代えて置換したものである。
This table first shows an experiment to understand the effect of adding Zr and V alone, and MmN i 4.2 A ff104
Comparative Example 1 is based on an alloy, Comparative Examples 2 to 4 are alloy systems in which V is added alone, Comparative Examples 2 and 3 are alloys in which ■ is replaced with a part of Ni, and Comparative Example 4 is a part of Mitshu metal. It has been replaced with .

比較例5および6はZrを単独で添加した合金系であり
、比較例5はZrをNiの一部に代えて、比較例6はミ
ツシュメタルの一部に代えて置換したものである。
Comparative Examples 5 and 6 are alloy systems in which Zr is added alone; in Comparative Example 5, Zr is replaced by a part of Ni, and in Comparative Example 6, Zr is replaced by a part of Mitshu metal.

比較例7は同じ系列に属する水素吸蔵合金であり、電池
としての作用を高めるためにCOを配合した従来技術に
属する合金である。
Comparative Example 7 is a hydrogen storage alloy belonging to the same series, and is an alloy belonging to the prior art in which CO is blended in order to enhance the action as a battery.

以下余白 まず、比較例1のMmN i 4.2 A ffi□、
6合金を基準に■とZrを単独で添加した場合の効果を
見てみる。Niの一部を■で置換すると、比較例21、
比較例3と置換比率が高くなるにしたがって初期放電容
量も上昇している。また、300サイクル経過時点にお
ける放電容量残存率は、比較例1、比較例2、比較例3
と■置換比率が増すにつれて若干ではめるが上昇してい
る。このようにNiの一部をVで置換する比率が少量の
範囲内では、初期放電容量を増加させるだけでなく、サ
イクル寿命向上に対しても多少有効であることが窺える
Below are the margins: First, MmN i 4.2 A ffi□ of Comparative Example 1,
Let's look at the effects of adding ■ and Zr alone based on alloy No. 6. When part of Ni is replaced with ■, Comparative Example 21,
As compared with Comparative Example 3, the initial discharge capacity also increased as the substitution ratio increased. In addition, the remaining discharge capacity after 300 cycles is Comparative Example 1, Comparative Example 2, and Comparative Example 3.
and ■As the substitution ratio increases, it increases, albeit slightly. It can be seen that when the ratio of replacing part of Ni with V is within a small range, it is somewhat effective not only for increasing the initial discharge capacity but also for improving the cycle life.

ただ、PCT試験の結果からV置換比率がある限度を越
して大きくなると、その合金の水素吸蔵量が低下するこ
とが判っており、後述のするように多大な■置換は初期
放電容量の低下を引き起こす元となるので注意を要する
。なお、ミツシュメタルの一部を■で置換した場合には
、比較例4で示されるように、初期放電@母の低下を招
くだ【ブででおってサイクル寿命への影響はさほど認め
られない。
However, from the results of the PCT test, it is known that when the V substitution ratio increases beyond a certain limit, the hydrogen storage capacity of the alloy decreases. You need to be careful as it can cause problems. In addition, when a part of Mitsushimetal is replaced with ■, as shown in Comparative Example 4, the initial discharge @ mother is reduced, and no significant influence on the cycle life is observed.

一方、ミツシュメタルの一部を微量のZrで置換した比
較例6の合金では、比較例1の無置換の合金に比べて初
期放電容量は増加している。ただ、この場合にもZr置
換比率があまり大きくなるとPCT試験で求められた水
素吸蔵量が減少することから、過度のZr置換で初期放
電容量を増大させようと期待するのには無理があろう。
On the other hand, in the alloy of Comparative Example 6 in which a portion of Mitshu metal was replaced with a small amount of Zr, the initial discharge capacity was increased compared to the alloy of Comparative Example 1 in which no substitution was made. However, in this case too, if the Zr substitution ratio becomes too large, the hydrogen storage capacity determined by the PCT test will decrease, so it would be unreasonable to expect that excessive Zr substitution will increase the initial discharge capacity. .

放電容量残存率については、比較例6の場合で明らかな
ように、微量のZr置換により大幅に改善されている。
As is clear from Comparative Example 6, the discharge capacity residual rate was significantly improved by substituting a small amount of Zr.

このようにミツシュメタルの一部をZrで置換する比率
が少量の場合には、多少の初期放電容量の増加とともに
大幅なサイクル寿命の向トが期待できる。他方、Niの
一部をZrで置換した場合には、比較例5初期敢電容担
はあまり変化なく、寿命も多少改善される程度である。
In this way, when a portion of the Mitshu metal is replaced with Zr in a small proportion, it is expected that the initial discharge capacity will increase somewhat and the cycle life will be greatly improved. On the other hand, when part of Ni was replaced with Zr, the initial charge capacity of Comparative Example 5 did not change much, and the life span was only slightly improved.

以上述べたようにNiの一部をVで適但置換することに
より初期放電容量を増大させることが可能であり、ミツ
シュメタルの一部を適但のZrで置換することによりサ
イクル寿命を向上することも確認できたのでV、Zr両
者置換による相乗作用を最大限発現する適量の上下限を
知るために、第2表に示すような成分で同じ処理と同じ
測定を行って範囲を特定した。
As mentioned above, it is possible to increase the initial discharge capacity by replacing a portion of Ni with a suitable amount of V, and it is possible to improve the cycle life by replacing a portion of Mitshu metal with a suitable amount of Zr. In order to find out the upper and lower limits of the appropriate amount to maximize the synergistic effect of V and Zr substitution, the same treatment and the same measurements were carried out using the components shown in Table 2 to specify the range.

以下余白 Niの一部をVで置換した合金系では、前記単独置換の
場合と同様に、置換比率0.2付近で初期放電容量が最
も高くなっている。例えば、実施例2、実施例3、実施
例403つの合金の中では置換比率0.2の実施例3の
合金が、さらに実施例5、実施例6、実施例7、比較例
8の4つの合金の中では、同じく置換比率0.2の実施
例6の合金がそれぞれ最も高い初期放電容量を有してい
る。また、実施例4や実施例7、比較例8などの例に見
られるように置換比率0.2を越えるような■置換を行
った合金系では、仝くv置換を行わない比較例1に比べ
ても初期放電容量が低くなっている。PC下試験での結
果でも、置換比率が0.2を越えた付近から合金の水素
吸蔵量が減少してくる傾向が認められ、よい対応の一致
が1?られている。このように初期放電容量向上の観点
からNiの一部をVで置換することは非常に有効であり
、置換比率O32前後で最も高い初期放電容量を得るこ
とができるものの、逆に、その限度を越すと初期放電容
量の低下を招くことが判る。一方、ミツシュメタルの一
部を微■のZrで置換した実施例1の合金では、比較例
2のものに比べて初期放電容量は増加している。しかし
ながら、Zr置換量がある一定量を越えると、実施例1
に対する実施例2、実施例3に対する実施例5などの場
合に見られるように、初期放電容量は減少してしまう。
In the alloy system in which a portion of the Ni margin is replaced with V, the initial discharge capacity is highest at a substitution ratio of around 0.2, as in the case of the single substitution described above. For example, among the three alloys of Example 2, Example 3, and Example 40, the alloy of Example 3 with a substitution ratio of 0.2 is the alloy of Example 3, and the alloy of Example 3 has a substitution ratio of 0.2. Among the alloys, the alloy of Example 6, which also had a substitution ratio of 0.2, had the highest initial discharge capacity. In addition, as seen in examples such as Example 4, Example 7, and Comparative Example 8, in alloy systems in which Ⅰ substitution was performed such that the substitution ratio exceeded 0.2, Comparative Example 1 without Ⅰ substitution The initial discharge capacity is lower than that. The results of the PC test also show that the hydrogen storage capacity of the alloy tends to decrease when the substitution ratio exceeds 0.2, indicating a good correspondence of 1? It is being In this way, it is very effective to replace a part of Ni with V from the viewpoint of improving the initial discharge capacity, and the highest initial discharge capacity can be obtained at a substitution ratio of around O32. It can be seen that if the value is exceeded, the initial discharge capacity decreases. On the other hand, in the alloy of Example 1 in which part of Mitsushi metal was replaced with a small amount of Zr, the initial discharge capacity was increased compared to that of Comparative Example 2. However, when the amount of Zr substitution exceeds a certain amount, Example 1
As seen in the cases of Example 2 relative to Example 3 and Example 5 relative to Example 3, the initial discharge capacity decreases.

PCT試験でも水素吸蔵量に関して同様の傾向が1qら
れており、水素吸蔵量と初期放電容量とはよく対応して
いる。概ねZrの置換比率が0.1以上となれば、初期
放電容量の低下を’rB<ことになる。このように初期
放電容量の増加という点に着目すれば、Niの一部をV
で置換するその比率を0.2程度とし、ミツシュメタル
の一部をZrで置換するその比率を0.1以下とするの
が適当と考えられる。
A similar tendency was observed in the PCT test regarding the amount of hydrogen storage, and the amount of hydrogen storage and initial discharge capacity correspond well. If the Zr substitution ratio is approximately 0.1 or more, the initial discharge capacity will be reduced by 'rB<. Focusing on the increase in initial discharge capacity, it is possible to reduce some of the Ni to V
It is considered appropriate to set the ratio of substitution with Zr to about 0.2, and to set the ratio of substitution of part of Mitshu metal with Zr to 0.1 or less.

300サイクル経過時点にお【プる放電容量残存率につ
いては、Niの一部を同比率のVで置換した合金系で、
比較例2、実施例1、実施例2どミツシュメタルに対す
るZrの置換比率を増すにしたがって、また、同様に比
較例3、実施例3、実施例5とZrの置換比率を増すに
したがって放電容量残存率が上昇してくる。このように
ミツシュメタルの一部をZrで置換することにより、サ
イクル寿命の向上がもたらされることが判る。ただし、
N1の一部をVで置換するその比率が0.3と高い実施
例4や実施例7ではZr置換比率が増えると放電容量残
存率が低下する逆傾向が現出するのでVの置換比率の臨
界を特定しなければならない。
Regarding the discharge capacity remaining rate after 300 cycles, an alloy system in which part of Ni was replaced with V at the same ratio,
As the substitution ratio of Zr to Comparative Example 2, Example 1, and Example 2 and Mitsushi Metal increases, and similarly as the substitution ratio of Zr to Comparative Example 3, Example 3, and Example 5 increases, the remaining discharge capacity decreases. rate is rising. It can be seen that by substituting part of the Mitshu metal with Zr in this way, the cycle life is improved. however,
In Examples 4 and 7, where the ratio of replacing part of N1 with V is as high as 0.3, an opposite tendency appears in which the discharge capacity remaining rate decreases as the Zr replacement ratio increases, so the V replacement ratio is Criticality must be identified.

ざらに、■置換比率が0.4の比較例8の場合にも、か
なり高いZr置換比率にしているにもががわらず放電容
量残存率が低いという結果が出ている。これらのことは
、Niの一部をVで置換するその比率が0.3以上と高
い場合には、ミツシュメタ/L、の一部をZrで置換す
ることにより得られるサイクル寿命の向上効果が失われ
てしまうことを意味している。したがって、サイクル寿
命の向上に着目すれば、Niの一部をVで買換する比率
を0.2程度とするのがベストであり、多くとも0.3
を越えてはならないことが立証される。
In general, even in the case of Comparative Example 8 in which the substitution ratio (1) was 0.4, the residual discharge capacity was still low despite the relatively high Zr substitution ratio. These things mean that if the ratio of replacing part of Ni with V is high, such as 0.3 or more, the cycle life improvement effect obtained by replacing part of Mitsushmetal/L with Zr will be lost. It means being lost. Therefore, if we focus on improving cycle life, it is best to set the ratio of replacing part of Ni with V to about 0.2, and at most 0.3.
It is proven that the

実施例5および実施例6の同じV置換比率0.2の2つ
の合金で放電容量残存率に多少の差が生じている。元来
、Affiの添加はサイクル寿命にも好影響を与えると
されており、その要素も幾分加わっての結果かと推測さ
れる。先にも記したようにミツシュメタルの一部を置換
するZrの置換比率が大きくなるほどサイクル寿命は改
善され、適切なZrの置換比率を求めることは難しいが
、初期放電容量との兼合いから0.10−0.15が適
当でおる。
The two alloys of Example 5 and Example 6 having the same V substitution ratio of 0.2 have some difference in discharge capacity remaining rate. It is originally believed that the addition of Affi has a positive effect on cycle life, and it is presumed that this factor is also a result. As mentioned earlier, the cycle life improves as the substitution ratio of Zr that partially replaces Mitsushi metal increases.It is difficult to find an appropriate Zr substitution ratio, but from the viewpoint of balance with the initial discharge capacity, the cycle life is improved. 10-0.15 is appropriate.

以上に示した実験事実から、電池としての高い放電容量
と長いサイクル寿命とを兼ね備えた水素吸蔵合金として
は、特許請求の範囲で記した組成式t’lyn 1−*
 ZY X N; a Alb Vcにおいて指数Xは
0.10−0.15の範囲内に、指数Cは0.2前後、
多くとも0.3をこえないことが要件となる。
From the experimental facts shown above, a hydrogen storage alloy that has both high discharge capacity and long cycle life as a battery has the compositional formula t'lyn 1-* described in the claims.
ZY
The requirement is that it does not exceed 0.3 at most.

比較例7はミツシュメタルを用い、フィリップス社で開
発されたLaN i 2.5 Ga4.4 A E□、
1に近い組成を持つ合金であるが、この合金は極めて良
好なサイクル寿命特性を有するものの放電容量がかなり
低い。実施例で示したなかでも、高い放電容量と良好な
サイクル寿命特性を兼ね備えた実施例6のような新規開
発の水素吸蔵合金は、従来の合金に比して性能面でも大
いな優位性を持っている。しかも、新規U■発金合金比
較的安価なミツシュメタルを用い、さらには高価なCo
を含んでいないため、安価な水素吸蔵電極とすることが
できる。
Comparative Example 7 uses Mitsushmetal, LaN i 2.5 Ga4.4 A E□ developed by Philips,
Although the alloy has a composition close to 1, this alloy has very good cycle life characteristics but has a fairly low discharge capacity. Among the examples shown, the newly developed hydrogen storage alloy shown in Example 6, which has both high discharge capacity and good cycle life characteristics, has a significant performance advantage over conventional alloys. There is. In addition, we use the new U■ metal alloy, which is relatively inexpensive, and furthermore, we use the expensive Co metal.
Since it does not contain hydrogen, it can be used as an inexpensive hydrogen storage electrode.

[発明の効果] 比較的安価なミツシュメタルを用い高価なC。[Effect of the invention] Expensive C using relatively inexpensive Mitsushi metal.

を含まないミツシュメタル−ニッケルーアルミニウム水
素吸蔵合金をベースとして、ZrとVとをそれぞれ少量
ずつ複合添加した合金を電極材に適用することによって
、充放電容量が大きく、かつ、電気化学的な水素の吸蔵
・放出サイクルの長期繰り返しにおいて特性が劣化しな
い水素吸蔵電極を安価に提供することができるようにな
った。
By applying an alloy containing small amounts of Zr and V to the electrode material based on a Mitsushmetal-nickel-aluminum hydrogen storage alloy that does not contain hydrogen, it has a large charge/discharge capacity and an electrochemical hydrogen storage alloy. It has become possible to provide a hydrogen storage electrode at a low cost whose characteristics do not deteriorate even after repeated storage/desorption cycles over a long period of time.

Claims (1)

【特許請求の範囲】[Claims] 一般式がMm_1_−_xZr_xNi_aAl_bV
c(但しMmはミツシユメタル)で表わされ、Mm量の
一部をZrで、またNi量の一部をAlおよびVとで置
換し、かつ0.05≦x≦0.2、4.8≦a+b+c
≦5.2、3.9≦a≦4.2、0.6≦b≦0.9、
0.05≦c≦0.3の範囲にそれぞれ含まれる水素吸
蔵合金を使用したことを特徴とする水素吸蔵電極。
The general formula is Mm_1_-_xZr_xNi_aAl_bV
c (however, Mm is Mitsushi Metal), a part of the Mm amount is replaced with Zr, a part of the Ni amount is replaced with Al and V, and 0.05≦x≦0.2, 4.8 ≦a+b+c
≦5.2, 3.9≦a≦4.2, 0.6≦b≦0.9,
A hydrogen storage electrode characterized in that it uses a hydrogen storage alloy that falls within the range of 0.05≦c≦0.3.
JP63300630A 1988-11-30 1988-11-30 Hydrogen storage electrode Expired - Lifetime JPH0810597B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63300630A JPH0810597B2 (en) 1988-11-30 1988-11-30 Hydrogen storage electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63300630A JPH0810597B2 (en) 1988-11-30 1988-11-30 Hydrogen storage electrode

Publications (2)

Publication Number Publication Date
JPH02148568A true JPH02148568A (en) 1990-06-07
JPH0810597B2 JPH0810597B2 (en) 1996-01-31

Family

ID=17887175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63300630A Expired - Lifetime JPH0810597B2 (en) 1988-11-30 1988-11-30 Hydrogen storage electrode

Country Status (1)

Country Link
JP (1) JPH0810597B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5284619A (en) * 1990-03-24 1994-02-08 Japan Storage Battery Company, Limited Hydrogen absorbing electrode for use in nickel-metal hydride secondary batteries
US5330709A (en) * 1992-02-14 1994-07-19 Korea Advanced Institute Of Science And Technology Zirconium-based hydrogen storage materials useful as negative electrodes for rechargeable battery

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61214361A (en) * 1985-03-18 1986-09-24 Matsushita Electric Ind Co Ltd Sealed alkaline storage battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61214361A (en) * 1985-03-18 1986-09-24 Matsushita Electric Ind Co Ltd Sealed alkaline storage battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5284619A (en) * 1990-03-24 1994-02-08 Japan Storage Battery Company, Limited Hydrogen absorbing electrode for use in nickel-metal hydride secondary batteries
US5330709A (en) * 1992-02-14 1994-07-19 Korea Advanced Institute Of Science And Technology Zirconium-based hydrogen storage materials useful as negative electrodes for rechargeable battery

Also Published As

Publication number Publication date
JPH0810597B2 (en) 1996-01-31

Similar Documents

Publication Publication Date Title
JP2771592B2 (en) Hydrogen storage alloy electrode for alkaline storage batteries
JPH0586029B2 (en)
JPS6191863A (en) Sealed alkaline storage battery
JPS60250557A (en) Enclosed type alkaline storage battery
JPH02148568A (en) Hydrogen occludent electrode
JP2666249B2 (en) Hydrogen storage alloy for alkaline storage batteries
JPS62271349A (en) Hydrogen occlusion electrode
JP2847874B2 (en) Hydrogen storage electrode
JP2740175B2 (en) Hydrogen storage alloy electrode for alkaline storage batteries
JPS62249358A (en) Hydrogen storage electrode
JP2000234134A (en) Hydrogen storage alloy, and electrode using the same
JPH0514018B2 (en)
JP3065713B2 (en) Hydrogen storage electrode and nickel-hydrogen battery
JP3470987B2 (en) Hydrogen storage alloy and hydrogen storage alloy electrode
JP2847873B2 (en) Hydrogen storage electrode
JP2847872B2 (en) Hydrogen storage electrode
JPH03289042A (en) Hydrogen storage electrode
JP3729913B2 (en) Hydrogen storage alloy electrode
JPH0797497B2 (en) Hydrogen storage electrode
JPH0393158A (en) Hydrogen storage alloy electrode
JPH08319529A (en) Hydrogen storage alloy and hydrogen storage alloy electrode
JPH02220354A (en) Hydrogen storage electrode
JPH06145849A (en) Hydrogen storage alloy electrode
JPH02174063A (en) Hydrogen storage electrode
JPS62249357A (en) Hydrogen storage electrode

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term