JPH0586029B2 - - Google Patents

Info

Publication number
JPH0586029B2
JPH0586029B2 JP59105817A JP10581784A JPH0586029B2 JP H0586029 B2 JPH0586029 B2 JP H0586029B2 JP 59105817 A JP59105817 A JP 59105817A JP 10581784 A JP10581784 A JP 10581784A JP H0586029 B2 JPH0586029 B2 JP H0586029B2
Authority
JP
Japan
Prior art keywords
alloy
battery
mmni
electrode
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59105817A
Other languages
Japanese (ja)
Other versions
JPS60250558A (en
Inventor
Nobuyuki Yanagihara
Hiroshi Kawano
Munehisa Ikoma
Koji Gamo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP59105817A priority Critical patent/JPS60250558A/en
Publication of JPS60250558A publication Critical patent/JPS60250558A/en
Publication of JPH0586029B2 publication Critical patent/JPH0586029B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/383Hydrogen absorbing alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は、電気化学的に水素を吸蔵、放出する
水素吸蔵合金を負極に用いた密閉形アルカリ蓄電
池に関する。 従来例の構成とその問題点 二次電池としては、鉛蓄電池、ニツケル−カド
ミウム蓄電池が最もよく知られているが、これら
の蓄電池は負極中に固形状の活物質を含むため
に、重量または容量の単位当りエネルギー貯蔵容
量が比較的少ない。このエネルギー貯蔵容量を向
上させるため、水素吸蔵合金を負極とし、正極に
は例えばニツケル酸化物を用いた蓄電池が提案さ
れている。負極にはLaNi系やCaNi系などの水素
吸蔵合金が用いられる。この電池系はニツケル−
カドミウム蓄電池より高容量化が可能で低公害の
蓄電池として期待されている。 Ca−Ni系合金の中で代表的なものである
CaNi5合金を電極として用いる場合、安価で初期
容量が大きいが、サイクル寿命は短い上に、放電
電位が低いという欠点がある。 一方、LaNi系合金の代表例としてLaNi5合金
を負極として用いた電池は、サイクル寿命は
CaNi5を用いたものと比べて比較的良好である
が、単温付近における放電容量が小さいという問
題がある。また、合金の構成金属であるLaが高
価であるため、電極自体のコストも当然高くな
る。 また、La1-xRxNi5-y(Rは希土類元素、Mは
Co,Cu,Fe,O<x<1,O≦y≦1)で表わ
され合金が提案されている(特開昭51−15234)。
この合金を用いると比較的高い放電電圧と容量を
示すが、密閉化した電池では過充電サイクルトと
共に電池内圧の上昇が見られ、放電容量も小さく
なり、サイクル寿命も短くなるなどの問題点があ
つた。 発明の目的 本発明は、比較的安価な材料を用いて負極を構
成し、放電容量が大きく、充放電サイクル寿命が
長く、過充電時の発生ガスによる内圧上昇が少な
い密閉形アルカリ蓄電池を得ることを目的とす
る。 発明の構成 本発明の密閉形アルカリ蓄電池は、式MmNix
CoyMz(式中、Mmはミツシユメタルで希土類金
属の複数混合物、MはAl,Sn,Sb,Cu,Fe,
Mn,Cr,Mo,V,Nb,Ta,Zn及びMgよりな
る群から選んだ少なくとも1種、1.5<x<4.0,
0≦z≦1.5,2.5<x+y<5.5,4<x+y+z
<55)で表わされる水素吸蔵合金を負極とし、セ
パレータを介して正極を配置し、アルカリ性電解
液と共に密閉構造としたものである。 実施例の説明 市販のミツシユメタル(La:40重量%,Ce:
40重量%、Nd:14重量%,Pr:4重量%,その
他)にNi(純度99%以上)、Co(純度99%以上)の
他に、Mとして、Al,Sn,Sb,Cu,Fe,Mn,
Cr,Mo,V,Nb,Ta,Zn,Mgなど少なくと
も一種を選択し、各試料を一定の組成比に秤量、
混合し、アーク溶解炉に入れて、10-4〜10-5
Torrまで真空状態にした後減圧状態のArガス雰
囲気中でアーク放電し、加熱溶解させた。試料の
均質化を図るため数回反転させて合金試料とし
た。比較のために、LaNi5,La0.5 Ce0.5 Ni4.5
CO0.5合金を用いた。 これらの合金を粗粉砕後、ボールミルなどで
38μm以下の微粉末にした後、ポリエチレン7.5重
量%と混合した。グローボツクス内で各混合粉末
をアルコールと共にニツケル製発泡状金属多孔体
内に充填し、乾燥後、1.8トン/cm2の圧力で加圧
し、次に真空中120℃で熱処理を行ない、リード
を取り付け電極とした。実施例で用いた電極の合
金組成を表に示す。 各合金約15gを用いて負極とし、公知の焼結式
ニツケル極を正極として単2型の密閉形ニツケル
−水素蓄電池(公称容量2.0Ah)を構成した。な
お、正極律則になるように、正極容量より負極容
量を大きくした。 これらの電池を0.1Cで13時間充電し、0.2Cで放
電する充放電を繰り返し、サイクル寿命と電池内
圧を調べた。その結果を次表に示す。
INDUSTRIAL APPLICATION FIELD The present invention relates to a sealed alkaline storage battery using a hydrogen storage alloy that electrochemically absorbs and releases hydrogen as a negative electrode. Structures of conventional examples and their problems Lead-acid batteries and nickel-cadmium storage batteries are the most well-known secondary batteries, but because these batteries contain a solid active material in the negative electrode, their weight or capacity increases. The energy storage capacity per unit of is relatively low. In order to improve this energy storage capacity, storage batteries have been proposed in which a hydrogen storage alloy is used as the negative electrode and, for example, nickel oxide is used as the positive electrode. Hydrogen storage alloys such as LaNi and CaNi are used for the negative electrode. This battery system is Nickel-
It is expected to be a storage battery with higher capacity and lower pollution than cadmium storage batteries. It is a typical type of Ca-Ni alloy.
When CaNi 5 alloy is used as an electrode, it is inexpensive and has a large initial capacity, but has short cycle life and low discharge potential. On the other hand, batteries using LaNi 5 alloy as a negative electrode, which is a typical example of LaNi alloy, have a short cycle life.
Although the performance is relatively good compared to that using CaNi 5 , there is a problem in that the discharge capacity is small near a single temperature. Furthermore, since La, which is a constituent metal of the alloy, is expensive, the cost of the electrode itself is naturally high. In addition, La 1-x R x Ni 5-y (R is a rare earth element, M is
An alloy represented by Co, Cu, Fe, O<x<1, O≦y≦1) has been proposed (Japanese Patent Laid-Open No. 15234-1983).
Using this alloy shows relatively high discharge voltage and capacity, but in sealed batteries, there are problems such as an increase in battery internal pressure with overcharging cycles, a decrease in discharge capacity, and a shortened cycle life. It was hot. Purpose of the Invention The present invention provides a sealed alkaline storage battery in which the negative electrode is constructed using relatively inexpensive materials, has a large discharge capacity, has a long charge/discharge cycle life, and has little increase in internal pressure due to gas generated during overcharging. With the goal. Structure of the Invention The sealed alkaline storage battery of the present invention has the formula MmNi x
Co y M z (where Mm is Mitsushi metal, a mixture of rare earth metals, M is Al, Sn, Sb, Cu, Fe,
At least one member selected from the group consisting of Mn, Cr, Mo, V, Nb, Ta, Zn and Mg, 1.5<x<4.0,
0≦z≦1.5, 2.5<x+y<5.5, 4<x+y+z
<55) is used as a negative electrode, a positive electrode is placed with a separator in between, and the structure is sealed together with an alkaline electrolyte. Description of Examples Commercially available Mitsushi Metal (La: 40% by weight, Ce:
40% by weight, Nd: 14% by weight, Pr: 4% by weight, others), Ni (purity 99% or more), Co (purity 99% or more), and M as Al, Sn, Sb, Cu, Fe. ,Mn,
Select at least one of Cr, Mo, V, Nb, Ta, Zn, Mg, etc., weigh each sample to a certain composition ratio,
Mix and put into arc melting furnace, 10 -4 ~ 10 -5
After vacuuming to Torr, arc discharge was performed in a reduced pressure Ar gas atmosphere to heat and melt. In order to homogenize the sample, it was inverted several times to obtain an alloy sample. For comparison, LaNi 5 , La 0.5 Ce 0.5 Ni 4.5
CO 0.5 alloy was used. After coarsely grinding these alloys, use a ball mill etc.
After making it into a fine powder of 38 μm or less, it was mixed with 7.5% by weight of polyethylene. Each mixed powder is filled with alcohol into a nickel foam metal porous body in a glow box, and after drying, it is pressurized at a pressure of 1.8 tons/cm 2 , and then heat treated in a vacuum at 120°C, and the leads are attached to the electrodes. And so. The alloy composition of the electrodes used in the examples is shown in the table. About 15 g of each alloy was used as a negative electrode, and a known sintered nickel electrode was used as a positive electrode to construct a AA sealed nickel-hydrogen storage battery (nominal capacity 2.0 Ah). Note that the negative electrode capacity was made larger than the positive electrode capacity so as to comply with the positive electrode rule. These batteries were charged at 0.1C for 13 hours and discharged at 0.2C, and the cycle life and internal pressure of the batteries were investigated. The results are shown in the table below.

【表】【table】

【表】 表から明らかなように、LaNi5からなる電極1
を用いた電池は、放充電サイクル初期の電池内圧
は3.5Kg/cm2と低いが、50サイクルに達すると、
放電容量は著しく低下し、初期容量の1/3程度と
なると共に過充電状態が激しくなるため電池内圧
も10Kg/cm2以上にまで上昇する。 また、従来の電極2を用いた電池は、50サイク
ルまでは5Kg/cm2以下の電池内圧であるが、電池
容量が小さく、100サイクルに達すると電池内圧
も10Kg/cm2以上にまで上昇する。したがつて、
LaNi5と同様に放電容量の低下が認められた。こ
れは合金中に占めるCo量が少ないことに起因し
ている。 これに対して、本発明の電極3〜17を用いた
電池は、充放電を200サイクル継続しても放電容
量の低下は非常に少なく、充電末期の電池内圧も
3.5〜7.0Kg/cm2程度である。電極18は前記式に
おけをM、たとえばAlを電子比で1.5以上添加し
たものであり、サイクル寿命も短く、200サイク
ルの電池内圧は測定できなかつたが、高くなる傾
向にあつた。したがつて、Zは1.5以下が望まし
い。電極19は合金中のNi原子が4以上の場合
であり、電極20は合金中のNi原子が1.5以下の
場合である。電極19はMmNi5合金系に近くな
り、密閉電池係における放電容量も小さく、サイ
クル寿命も短い。また100サイクル程度で電池内
圧も10Kg/cm2まで上昇する。電極20はMmCo5
合金系に近くなり、密閉電池系における放電容量
も小さく、サイクル寿命も短く、Co量が多いた
め一部溶解現象が認められた。しかがつて、Ni
とCoの量の間には好ましい相間関係がある。 一方、ZがOの場合、すなわちMmNi3Co2
どはサイクル寿命は長いが、やや電池内圧が上昇
する傾向にある。 したがつて添加金属Mは電池内圧上昇を抑制す
る効果がある。中でもAl,Sb,Cu,Mn,Cr,
V,Fe,などが比較的効果が大きい。 この様に合金中のNiが1.5原子以下であればCc
量が当然多くなり、電池の放電電圧の低下と共に
一部Coの溶解が認められるので、逆にNiを4原
子と多くすればCo量が少なくなり、優れた密閉
形アルカリ蓄電池ができない。そこで、xの値と
して、1.5<x<4の範囲が適している。 この様な電極を用いた電池は、正極から発生す
る酸素ガスが負極の表面で負極中に含有する水素
と電気化学的に反応して水にかえす過程をくりか
えすために電池内圧の上昇が少ない。しかも負極
の表面では優先的に水素と酸素のみが作用するし
くみになつている。そして酸素に対して腐食され
ない耐久性のある合金負極を与えていることがわ
かる。すなわち、合金中のNiは1.5原子から4原
子までにしてCoを1原子以上とすることが好ま
しい。さらに、添加金属Mは1.5原子以下とし、
MmNixCoyMzにおいて、4<x+y+z<5.5の
範囲内が優れている。中でも、とくにx+y+z
=5の合金組成でMmNi3Co1.5Al0.5,MmNi2.5
Co2.0Al0.5などが優れている。MmNixCoy合金で
はMmNi3Co2が比較的良い性能を示している。 合金中のNi原子を減少させることにより、水
素の吸蔵性能を、またCo原子を増加させること
によりサイクル寿命の向上と電池内ガス圧上昇の
抑制を図り、さらに添加金属Alなどで耐久性な
どが増加し、電池全体のコストダウンと性能を著
しく向上させることができる。LaNi5合金電極と
比べて約1/4にコストダウンが図れる。 実施例に用いたミツシユメタル(Mm)のLa
含有量は40重量%であるが、25重量%から70重量
%の範囲が実用電池には最適である。25重量%未
満では有効な成分Laが少なく、Ceの量が多くな
り過ぎて平衡圧が高くなり、水素吸蔵量が少なく
なる。よつて、電池を構成した場合充電が困難に
なり、有効な放電容量が得られなくなる。また容
器耐圧を高くせねばならない。一方70重量%を超
えると有効なLaの量は多く、特性は優れている
が高価となる。また、寿命が悪くなる。したがつ
て、電池を構成すると当然コストアツプにつなが
るので実用上大きな障害の要因となる。したがつ
て、比較的安価に入手できる25〜70重量%のLa
含有量が望ましい。また希土類金属の種類も1〜
2種では当然高価になるので、少なくとも3種の
希土類金属からなるミツシユメタルMmが比較的
に安価に入手しやすい。また性能的にも逆に優れ
ている場合がある。とくに耐食性に優れている。 発明の効果 以上のように、本発明によれば、負極が比較的
安価であり、しかも充放電サイクル寿命に優れ、
過充電による電池内ガス圧の上昇が抑制され、信
頼性の高い密閉形アルカリ蓄電池が得られる。
[Table] As is clear from the table, electrode 1 made of LaNi 5
In batteries using this, the internal pressure of the battery at the beginning of the discharge/charge cycle is as low as 3.5Kg/ cm2 , but when it reaches 50 cycles,
The discharge capacity decreases significantly, to about 1/3 of the initial capacity, and the battery internal pressure increases to over 10 kg/cm 2 as the overcharge condition becomes severe. In addition, for batteries using conventional electrode 2, the battery internal pressure is 5 kg/cm 2 or less until 50 cycles, but the battery capacity is small and the battery internal pressure rises to 10 kg/cm 2 or more when it reaches 100 cycles. . Therefore,
Similar to LaNi 5 , a decrease in discharge capacity was observed. This is due to the small amount of Co in the alloy. On the other hand, batteries using electrodes 3 to 17 of the present invention show very little decrease in discharge capacity even after 200 cycles of charging and discharging, and the internal pressure of the battery at the end of charging is also low.
It is about 3.5-7.0Kg/ cm2 . Electrode 18 is one in which M in the above formula, for example Al, is added in an electron ratio of 1.5 or more, and the cycle life is short, and although the internal pressure of the battery could not be measured after 200 cycles, it tended to increase. Therefore, Z is preferably 1.5 or less. Electrode 19 is a case where the number of Ni atoms in the alloy is 4 or more, and electrode 20 is a case where the number of Ni atoms in the alloy is 1.5 or less. The electrode 19 is close to the MmNi 5 alloy system, has a small discharge capacity in a sealed battery, and has a short cycle life. Furthermore, the internal pressure of the battery increases to 10 kg/cm 2 after about 100 cycles. Electrode 20 is MmCo 5
It is close to an alloy system, has a small discharge capacity in a sealed battery system, has a short cycle life, and because of the high Co content, some dissolution phenomena were observed. However, Ni
There is a favorable correlation between the amount of Co and the amount of Co. On the other hand, when Z is O, ie, MmNi 3 Co 2 etc., the cycle life is long, but the battery internal pressure tends to rise slightly. Therefore, the additive metal M has the effect of suppressing an increase in battery internal pressure. Among them, Al, Sb, Cu, Mn, Cr,
V, Fe, etc. are relatively effective. In this way, if Ni in the alloy is 1.5 atoms or less, Cc
Naturally, the amount increases, and as the discharge voltage of the battery decreases, some of the Co dissolves.Conversely, if the amount of Ni is increased to 4 atoms, the amount of Co decreases, making it impossible to produce an excellent sealed alkaline storage battery. Therefore, the range of 1.5<x<4 is suitable as the value of x. In a battery using such an electrode, the internal pressure of the battery does not increase much because the oxygen gas generated from the positive electrode electrochemically reacts with the hydrogen contained in the negative electrode on the surface of the negative electrode and is converted into water. Moreover, the structure is such that only hydrogen and oxygen act preferentially on the surface of the negative electrode. It can be seen that a durable alloy negative electrode that is not corroded by oxygen is provided. That is, it is preferable that Ni in the alloy is 1.5 to 4 atoms and Co is 1 or more atoms. Furthermore, the additive metal M is 1.5 atoms or less,
For MmNix Co y M z , the range of 4<x+y+z<5.5 is excellent. Especially x+y+z
= 5 alloy composition MmNi 3 Co 1.5 Al 0.5 , MmNi 2.5
Co 2.0 Al 0.5 etc. are excellent. Among the MmNi x Co y alloys, MmNi 3 Co 2 has shown relatively good performance. By reducing the Ni atoms in the alloy, hydrogen storage performance is improved, and by increasing the Co atoms, the cycle life is improved and the increase in gas pressure inside the battery is suppressed.Furthermore, the added metal such as Al improves durability. This can significantly reduce the overall cost and improve the performance of the battery. The cost can be reduced to about 1/4 compared to LaNi 5 alloy electrodes. La of Mitsushi Metal (Mm) used in the example
The content is 40% by weight, but a range of 25% to 70% by weight is optimal for practical batteries. If it is less than 25% by weight, the effective component La will be small, and the amount of Ce will be too large, resulting in a high equilibrium pressure and a small amount of hydrogen storage. Therefore, when a battery is constructed, charging becomes difficult and effective discharge capacity cannot be obtained. In addition, the pressure resistance of the container must be increased. On the other hand, when it exceeds 70% by weight, the effective amount of La is large and the properties are excellent, but it becomes expensive. In addition, the lifespan is shortened. Therefore, constructing a battery naturally leads to an increase in cost, which is a major hindrance in practical use. Therefore, 25-70% by weight of La, which is available relatively cheaply,
content is desirable. In addition, the types of rare earth metals are 1 to 1.
Naturally, two types of metals are expensive, so Mitsushi Metal Mm, which is made of at least three types of rare earth metals, is relatively inexpensive and easily available. In some cases, it may even be superior in terms of performance. It has particularly excellent corrosion resistance. Effects of the Invention As described above, according to the present invention, the negative electrode is relatively inexpensive, has an excellent charge/discharge cycle life,
Increase in gas pressure inside the battery due to overcharging is suppressed, and a highly reliable sealed alkaline storage battery can be obtained.

Claims (1)

【特許請求の範囲】 1 式MmNixCoyMz(但し、MはAl,Sn,Sb,
Cu,Fe,Mn,Cr,Mo,V,Nb,Ta,Zn及び
Mgよりなる群から選んだ少なくとも1種、1.5<
x<4.0,0≦z≦1.5,2.5<x+y<5.5,4<
x+y+z<5.5)で表わされ、Mmが少なくと
も3種の希土類金属からなり、Laを25〜70重量
%含有するミツシユメタルである水素吸蔵合金か
らなる負極、正極、セパレータ及びアルカリ電解
液を有する密閉形アルカリ蓄電池。 2 x+y+z=5である特許請求の範囲第1項
記載の密閉形アルカリ蓄電池。 3 水素吸蔵合金が、MmNi3Co1.5Al0.5
MmNi2.5Co2Al0.5またはMmNi3Co2である特許請
求の範囲第2項記載の密閉形アルカリ蓄電池。
[Claims] 1 Formula MmNi x Co y M z (where M is Al, Sn, Sb,
Cu, Fe, Mn, Cr, Mo, V, Nb, Ta, Zn and
At least one species selected from the group consisting of Mg, 1.5<
x<4.0, 0≦z≦1.5, 2.5<x+y<5.5, 4<
x + y + z < 5.5), Mm is composed of at least three kinds of rare earth metals, and has a negative electrode, a positive electrode, a separator, and an alkaline electrolyte made of a hydrogen storage alloy that is Mitsushi metal containing 25 to 70% by weight of La. alkaline storage battery. 2. The sealed alkaline storage battery according to claim 1, wherein x+y+z=5. 3 The hydrogen storage alloy is MmNi 3 Co 1.5 Al 0.5 ,
The sealed alkaline storage battery according to claim 2, which is MmNi 2.5 Co 2 Al 0.5 or MmNi 3 Co 2 .
JP59105817A 1984-05-25 1984-05-25 Enclosed type alkaline storage battery Granted JPS60250558A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59105817A JPS60250558A (en) 1984-05-25 1984-05-25 Enclosed type alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59105817A JPS60250558A (en) 1984-05-25 1984-05-25 Enclosed type alkaline storage battery

Publications (2)

Publication Number Publication Date
JPS60250558A JPS60250558A (en) 1985-12-11
JPH0586029B2 true JPH0586029B2 (en) 1993-12-09

Family

ID=14417631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59105817A Granted JPS60250558A (en) 1984-05-25 1984-05-25 Enclosed type alkaline storage battery

Country Status (1)

Country Link
JP (1) JPS60250558A (en)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61168871A (en) * 1985-01-19 1986-07-30 Sanyo Electric Co Ltd Hydrogen occlusion electrode
JP2713881B2 (en) * 1985-06-21 1998-02-16 株式会社東芝 Sealed metal oxide / hydrogen battery
US4696873A (en) * 1985-06-21 1987-09-29 Kabushiki Kaisha Toshiba Rechargeable electrochemical cell with a negative electrode comprising a hydrogen absorbing alloy including rare earth component
JPS6276254A (en) * 1985-09-30 1987-04-08 Sanyo Electric Co Ltd Hydrogen occlusion electrode
JP2745501B2 (en) * 1985-11-20 1998-04-28 松下電器産業株式会社 Sealed alkaline storage battery
JPH0690924B2 (en) * 1985-12-12 1994-11-14 松下電器産業株式会社 Storage battery electrode
JPS62271348A (en) * 1986-05-19 1987-11-25 Sanyo Electric Co Ltd Hydrogen occlusion electrode
JPS6347345A (en) * 1986-08-14 1988-02-29 Japan Metals & Chem Co Ltd Hydrogen storage material
JP2740175B2 (en) * 1987-12-18 1998-04-15 三洋電機株式会社 Hydrogen storage alloy electrode for alkaline storage batteries
JP2975625B2 (en) * 1989-02-16 1999-11-10 三洋電機株式会社 Hydrogen storage alloy electrode and method for producing the same
JP2926734B2 (en) * 1989-02-23 1999-07-28 松下電器産業株式会社 Alkaline storage battery using hydrogen storage alloy
JP2771592B2 (en) * 1989-04-18 1998-07-02 三洋電機株式会社 Hydrogen storage alloy electrode for alkaline storage batteries
JPH0393159A (en) * 1989-09-05 1991-04-18 Sanyo Electric Co Ltd Hydrogen storage alloy
JPH03188236A (en) * 1989-12-18 1991-08-16 Agency Of Ind Science & Technol Hydrogen storage electrode and its manufacture
JPH0685323B2 (en) * 1990-06-18 1994-10-26 古河電池株式会社 Hydrogen storage electrode
US5512385A (en) * 1994-02-28 1996-04-30 Matsushita Electric Industrial Co., Ltd. Hydrogen storage alloy and nickel-metal hydride storage battery using the same
JP3152845B2 (en) * 1994-08-22 2001-04-03 株式会社東芝 Nickel-metal hydride battery
JPH09298059A (en) * 1996-05-01 1997-11-18 Japan Metals & Chem Co Ltd Hydrogen storage alloy for battery
US5864072A (en) * 1997-01-09 1999-01-26 Shin-Etsu Chemical Co., Ltd. Hydrogen storage alloy and method for producing the same
US6063524A (en) * 1997-11-06 2000-05-16 Shin-Etsu Chemical Co., Ltd. Hydrogen absorbing alloy for a negative electrode of an alkaline storage battery
US5910379A (en) * 1997-11-06 1999-06-08 Shin-Etsu Chemical Co., Ltd. Hydrogen absorbing alloy for a negative electrode of an alkaline storage battery
CN1078909C (en) 1997-12-26 2002-02-06 丰田自动车株式会社 Hydrogen absorbing alloys, processes for producing hydrogen absorbing alloy, hydrogen absorbing alloy electrode, process for producing hydrogen absorbing alloy electrode, and battery
JPH11269501A (en) 1998-03-20 1999-10-05 Shin Etsu Chem Co Ltd Manufacture of hydrogen occlusion alloy powder, and hydrogen occlusion alloy electrode
KR100289339B1 (en) * 1998-07-10 2001-05-02 리-호 야오 Hydrogen Absorption Alloys for Alkaline Batteries
JP2001313066A (en) 2000-04-27 2001-11-09 Matsushita Electric Ind Co Ltd Alkaline storage battery
TWI315344B (en) * 2005-03-23 2009-10-01 Chih Kang Shih Hydrogen storage alloy

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5662942A (en) * 1979-10-23 1981-05-29 Agency Of Ind Science & Technol Misch metal alloy for storing hydrogen
JPS5719347A (en) * 1980-07-04 1982-02-01 Agency Of Ind Science & Technol Misch metal-nickel alloy for occluding hydrogen
JPS5763670A (en) * 1980-10-03 1982-04-17 Agency Of Ind Science & Technol Manufacture of misch metal-nickel quaternary alloy for occluding hydrogen and manufacture
JPS57140848A (en) * 1981-02-26 1982-08-31 Agency Of Ind Science & Technol Quaternary alloy for occluding hydrogen

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5662942A (en) * 1979-10-23 1981-05-29 Agency Of Ind Science & Technol Misch metal alloy for storing hydrogen
JPS5719347A (en) * 1980-07-04 1982-02-01 Agency Of Ind Science & Technol Misch metal-nickel alloy for occluding hydrogen
JPS5763670A (en) * 1980-10-03 1982-04-17 Agency Of Ind Science & Technol Manufacture of misch metal-nickel quaternary alloy for occluding hydrogen and manufacture
JPS57140848A (en) * 1981-02-26 1982-08-31 Agency Of Ind Science & Technol Quaternary alloy for occluding hydrogen

Also Published As

Publication number Publication date
JPS60250558A (en) 1985-12-11

Similar Documents

Publication Publication Date Title
JPH0586029B2 (en)
EP0293660B1 (en) Hydrogen storage electrodes
JP2771592B2 (en) Hydrogen storage alloy electrode for alkaline storage batteries
EP0383991B1 (en) Alkaline storage battery using hydrogen absorbing alloy
JPS60250557A (en) Enclosed type alkaline storage battery
JPS6191863A (en) Sealed alkaline storage battery
JP4010630B2 (en) Hydrogen storage alloy electrode
JPH0562429B2 (en)
JPS62271349A (en) Hydrogen occlusion electrode
JPH0953136A (en) Hydrogen storage alloy and hydrogen storage alloy electrode
JPH0562428B2 (en)
US6063524A (en) Hydrogen absorbing alloy for a negative electrode of an alkaline storage battery
JPS62249358A (en) Hydrogen storage electrode
US6329100B1 (en) Hydrogen absorbing alloy electrode and process for producing same
US5910379A (en) Hydrogen absorbing alloy for a negative electrode of an alkaline storage battery
JP2566912B2 (en) Nickel oxide / hydrogen battery
JP2713881B2 (en) Sealed metal oxide / hydrogen battery
JP3198896B2 (en) Nickel-metal hydride battery
JPS6220245A (en) Enclosed type alkaline storage battery
JP2679441B2 (en) Nickel-metal hydride battery
JPS62223971A (en) Metal oxide-hydrogen battery
JPH06145849A (en) Hydrogen storage alloy electrode
JPH0690924B2 (en) Storage battery electrode
JPS61233966A (en) Manufacture of sealed nickel-hydrogen storage battery
JP3729913B2 (en) Hydrogen storage alloy electrode

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term