JPH02147388A - Information recording medium - Google Patents

Information recording medium

Info

Publication number
JPH02147388A
JPH02147388A JP63300681A JP30068188A JPH02147388A JP H02147388 A JPH02147388 A JP H02147388A JP 63300681 A JP63300681 A JP 63300681A JP 30068188 A JP30068188 A JP 30068188A JP H02147388 A JPH02147388 A JP H02147388A
Authority
JP
Japan
Prior art keywords
film
recording film
recording
gas
recording medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63300681A
Other languages
Japanese (ja)
Inventor
Hideki Okawa
秀樹 大川
Norio Ozawa
小沢 則雄
Motonari Matsubara
松原 基成
Hiroyuki Tono
宏行 東野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63300681A priority Critical patent/JPH02147388A/en
Publication of JPH02147388A publication Critical patent/JPH02147388A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24302Metals or metalloids
    • G11B2007/24308Metals or metalloids transition metal elements of group 11 (Cu, Ag, Au)
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24302Metals or metalloids
    • G11B2007/24316Metals or metalloids group 16 elements (i.e. chalcogenides, Se, Te)
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24318Non-metallic elements
    • G11B2007/24326Halides (F, CI, Br...)
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24318Non-metallic elements
    • G11B2007/24328Carbon

Abstract

PURPOSE:To contrive higher C/N by providing a substrate and a recording film thereon comprising an Au-Te alloy, carbon and fluorine for recording information by irradiation with a laser light. CONSTITUTION:An information recording medium 18 comprises a substrate and a recording film 14 provided thereon. The recording film 14 comprises an Au-Te alloy, carbon and fluorine, with the Au content being 2-47atom%. This construction enables pit formation at a melting temperature approximate to or lower than the melting point of Te, and ensures uniformity of pit size. Therefore, a high C/N can be obtained.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、例えばレーザ光の照射により情報の記録及び
再生が行われる情報記録媒体に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Field of Industrial Application) The present invention relates to an information recording medium on which information is recorded and reproduced by, for example, irradiation with laser light.

(従来の技術) レーザ光の照射により情報が記録され、さらに、記録さ
れた情報の再生がなされる情報記録媒体の一種として、
Teを主成分とする記録膜を具備したものが開発されて
いる。さらに、このTeを主成分とする記録膜に炭素並
びに水素を含んだ記録膜が開発され、実用化に至ってい
る(特開昭58−9234号公報参照)。
(Prior Art) As a type of information recording medium, information is recorded by irradiation with laser light and the recorded information is reproduced.
A device equipped with a recording film containing Te as a main component has been developed. Furthermore, a recording film containing carbon and hydrogen in addition to the Te-based recording film has been developed and put into practical use (see Japanese Patent Laid-Open No. 58-9234).

この記録膜を作成する際には、Teを炭化水素ガスを含
む雰囲気中でスパッタする。すると、Te単体の膜(T
e膜)よりも高感度でかつ耐酸化性能に優れた記録膜(
以下Te−C膜と称す)が得られる。この記録膜は、非
晶質膜であり、Te。
When creating this recording film, Te is sputtered in an atmosphere containing hydrocarbon gas. Then, a film of simple Te (T
A recording film (
A Te-C film (hereinafter referred to as Te-C film) is obtained. This recording film is an amorphous film made of Te.

C及びHを含み、また少なくともCとHは化学結合をし
ていることが分っている。
It is known that it contains C and H, and at least C and H form a chemical bond.

この記録膜は、Te膜にならってTeと炭化水素をソー
スとする蒸着(プラズマを用いない)で形成しようとし
ても形成することができず、プラズマを利用して初めて
得られる。これは、炭化水素ガスがプラズマ中で一旦分
解した後、CとHが化学反応をして成膜されるためであ
り、これが光記録膜形成時の大きな特徴となっている。
This recording film cannot be formed even if it is attempted to be formed by vapor deposition using Te and hydrocarbon as sources (without using plasma), following the Te film, and can only be obtained by using plasma. This is because a film is formed by a chemical reaction between C and H after the hydrocarbon gas is once decomposed in plasma, and this is a major feature when forming an optical recording film.

(発明が解決しようとする課題) しかし、Te−C膜は、記録閾値を越えた書込みレーザ
パワーにおいてはピットが大きく、また形状が不揃いと
なるため、C/ N (Carrier/N oise
)比が急激に低下するという問題点があった。
(Problem to be Solved by the Invention) However, in the Te-C film, the pits become large and the shape becomes irregular when the writing laser power exceeds the recording threshold.
) There was a problem in that the ratio suddenly decreased.

本発明は、上記問題点を解決するために、高いC/N比
が得られる情報記録媒体を提供することを目的とする。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, it is an object of the present invention to provide an information recording medium that can obtain a high C/N ratio.

[発明の構成] (課題を解決するための手段) 本発明は上記目的を達成するために、基板とこの基板上
に形成され、レーザ光の照射により情報が記録される、
Au X Te too−x  (2≦x≦47原子%
)合金並びに炭素及びフッ素を含む記録膜とを具備した
情報記録媒体を提供するものである。
[Structure of the Invention] (Means for Solving the Problem) In order to achieve the above object, the present invention includes a substrate, a substrate formed on the substrate, and information recorded by irradiation with a laser beam.
Au X Te too-x (2≦x≦47 atomic%
) alloy and a recording film containing carbon and fluorine.

(作 用) 本発明によれば、従来の記録膜に比べて、記録膜/基板
界面張力に変化を与えることができるため、ビットの口
径を小さくしかつ均一に揃えることが可能になる。その
ため、高いC/N比が得ることができるものである。
(Function) According to the present invention, since it is possible to change the recording film/substrate interfacial tension compared to conventional recording films, it is possible to reduce the diameter of the bit and make it uniform. Therefore, a high C/N ratio can be obtained.

(実施例) 以下、本発明の一実施例を図面を参照して説明する。(Example) Hereinafter, one embodiment of the present invention will be described with reference to the drawings.

第1図は、本発明の情報記録媒体の構造を概略的に示し
た断面図である。本発明の情報記録媒体18は、基板1
3及びこの基板13上に積層された記録膜14により構
成されるものである。
FIG. 1 is a cross-sectional view schematically showing the structure of the information recording medium of the present invention. The information recording medium 18 of the present invention has a substrate 1
3 and a recording film 14 laminated on this substrate 13.

基板13は、情報の記録及び再生のために情報記録媒体
上に照射されるレーザ光に対して透明な材質のものが用
いられる。例えば、近赤外近傍の発振波長を有するレー
ザ光を用いる場合は、ポリカーボネート(PC)、ポリ
メチルメタクリレ−) (PMMA) 、ガラス、ポリ
オレフィン並びにエポキシ樹脂等が適用される。
The substrate 13 is made of a material that is transparent to laser light that is irradiated onto the information recording medium for recording and reproducing information. For example, when using a laser beam having an oscillation wavelength near infrared, polycarbonate (PC), polymethyl methacrylate (PMMA), glass, polyolefin, epoxy resin, etc. are used.

また、記録膜14は、Au−Te合金に炭素及びフッ素
を含ませているものである。
The recording film 14 is made of an Au-Te alloy containing carbon and fluorine.

本発明におけるAu−Te合金の組成比について説明す
る。
The composition ratio of the Au-Te alloy in the present invention will be explained.

すでに知られている通り、Au−Te二元系の状態図に
よれば、Auの添加量が47原子%までであれば、Te
の融点を若干越えるかそれ以下の融点を持つ。
As already known, according to the phase diagram of the Au-Te binary system, if the amount of Au added is up to 47 at%, Te
It has a melting point slightly above or below the melting point of

単純には、Teの融点以下の範囲は、Auが2原子%〜
20原子%となるが、T e E A uを加えること
によって、ビット形成時のリムのでき方に変化が生じる
ことになる。この変化により、きれいなリムが形成され
るのは、Auの含有量が2原子%〜47原子%の範囲で
あることが判明した。
Simply put, the range below the melting point of Te is 2 atomic % to Au
Although the amount is 20 atomic %, the addition of T e E A u causes a change in the way the rim is formed during bit formation. As a result of this change, it was found that a clean rim was formed when the Au content was in the range of 2 at.% to 47 at.%.

Auが47原子%を越えてTeに添加された記録膜にお
いては、Teの融点よりもかなり高くなり、レーザ光に
よる記録感度が悪化するために好ましくない。
In a recording film in which Au is added to Te in an amount exceeding 47 atomic %, the melting point is considerably higher than the melting point of Te, and the recording sensitivity by laser light is deteriorated, which is not preferable.

すなわち、本発明においては、Teの同程度あるいはT
eよりも低い融点てビットが形成され、しかも、ビット
の大きさが揃いかつリム部分が少なくなって記録密度が
高まる等の効果を得るために、Auの含有量は、2原子
%〜47原子%の範囲とする。
That is, in the present invention, the same degree of Te or T
In order to obtain effects such as forming bits with a melting point lower than that of e, and increasing the recording density by making the bits uniform in size and reducing the rim portion, the Au content should be between 2 at.% and 47 at. % range.

また、記録膜14の厚さは、1000オングストローム
以上あると書込み感度が低下する。そのため、1000
オングストローム以下が好ましいが、さらには、500
オングストローム以下、好ましくは100〜300オン
グストロームがよい。
Furthermore, if the thickness of the recording film 14 is 1000 angstroms or more, the writing sensitivity will decrease. Therefore, 1000
The thickness is preferably 500 angstroms or less, and more preferably 500 angstroms or less.
The thickness is preferably 100 to 300 angstroms or less.

これは第2図に示すように、パルス幅60 n5ecs
線速5. 5m /seeの条件下でPC基板越しにレ
ーザを入射した場合の書込み感度特性からも明らかであ
る。また、100オングストローム以下になると、記録
膜が不連続になってピンホ゛−ルが形成される確率が増
加するため好ましくない。このピンホールは、ヒートモ
ード記録の場合は、読出し時に本来のビットと間違う恐
れがあり、また、記録膜酸化のトリガーともなる。
As shown in Figure 2, this has a pulse width of 60 n5ecs.
Linear speed 5. This is also clear from the writing sensitivity characteristics when the laser is incident through the PC board under the condition of 5 m /see. Further, if the thickness is less than 100 angstroms, the recording film becomes discontinuous and the probability of forming pinholes increases, which is not preferable. In the case of heat mode recording, this pinhole may be mistaken for an original bit during readout, and may also trigger oxidation of the recording film.

次に、第1図に示した情報記録媒体18における再生レ
ーザパワーの許容度(記録膜に変質を起こすことなく再
生できるパワーレベル)について説明する。ビットに記
録した情報を読出す再生レーザ光は、通常連続発振させ
る。この状態において良好なS/N比で情報を読出すた
めには、再生レーザパワーも大きくする必要がある。し
かしながら、ある閾値を越えるとビット(情報)を破壊
し、再生反射光のレベルが低下することがある。
Next, the tolerance of the reproduction laser power (the power level at which reproduction can be performed without causing deterioration of the recording film) of the information recording medium 18 shown in FIG. 1 will be explained. The reproducing laser light used to read information recorded in bits is normally continuously oscillated. In order to read out information with a good S/N ratio in this state, it is also necessary to increase the reproduction laser power. However, if a certain threshold is exceeded, bits (information) may be destroyed and the level of reproduced reflected light may decrease.

そこで、線速5.5■/seeのトラックに連続的にホ
ールドし、再生レーザパワーを変化させて反射光レベル
の変化をシンクロスコープで観察した。
Therefore, the track was continuously held at a linear velocity of 5.5 cm/see, the reproduction laser power was varied, and changes in the reflected light level were observed using a synchroscope.

その観察結果を第3図に示J0 この観察結果によれば、どの膜厚の記録膜においても、
0.6又は0.8■Wのレーザパワーならば、3時間は
反射光のレベルが変化しなかった。
The observation results are shown in Figure 3J0 According to the observation results, no matter the thickness of the recording film,
With a laser power of 0.6 or 0.8 ■W, the level of reflected light did not change for 3 hours.

しかしながら、パワーを1■Wにすると数時間で反射光
のレベルが低下した。そしてこの場合、膜厚の薄い方が
低下の程度が大きかった。反射光のレベルは、再生直後
のものを1として規格化しである。
However, when the power was increased to 1W, the level of reflected light decreased within several hours. In this case, the smaller the film thickness, the greater the degree of decrease. The level of reflected light is normalized with the level immediately after reproduction set at 1.

現在標準化が進みつつある追記型記録膜の再生許容パワ
ーは、回転数180 Orpmで線速5.5■/see
の場合には、最大で0.5■Wと決められている。許容
最大再生レーザパワーP■aX  (■W)は、Psa
x =0.2+0.05Vt’与えられる。ここでVは
記録媒体の線速度(m /see )であ。また、P 
laXで10 サイクル連続的に再生しても反射光レベ
ルに変化がないことが要求されているが、これは回転数
180 Orpm ・線速度5゜5s/seeの場合は
少なくとも1時間変化してはならないということである
。従って、本発明の記録膜14においては、該条件下で
0.8■Wのパワーでも3時間まで変化が起こらないた
めに十分にその要求を満たすことになる。
The allowable playback power of the write-once recording film, which is currently being standardized, is a linear velocity of 5.5 ■/see at a rotational speed of 180 orpm.
In this case, the maximum power is set at 0.5 ■W. The maximum allowable reproduction laser power P■aX (■W) is Psa
x=0.2+0.05Vt' is given. Here, V is the linear velocity (m/see) of the recording medium. Also, P
It is required that the level of reflected light does not change even after 10 cycles of continuous playback with laX, but this must not change for at least 1 hour when the rotation speed is 180 orpm and the linear velocity is 5°5 s/see. This means that it will not happen. Therefore, in the recording film 14 of the present invention, even with a power of 0.8 .mu.W under the above conditions, no change occurs for up to 3 hours, which fully satisfies this requirement.

実施例1 第1図に示した情報記録媒体18を形成する方法につい
て説明する。
Example 1 A method for forming the information recording medium 18 shown in FIG. 1 will be described.

第4図は、本発明の記録膜14を形成するスパッタ装置
の概略図である。まず、このスパッタ装置のバルブ2を
ロータリーポンプ3側に開いてチェンバ1内を0.2T
orrまで排気した。次いでバルブ2をクライオポンプ
5側に開いて1×10−’Torr以下まで排気した。
FIG. 4 is a schematic diagram of a sputtering apparatus for forming the recording film 14 of the present invention. First, open the valve 2 of this sputtering device to the rotary pump 3 side and apply 0.2T inside the chamber 1.
Exhausted to orr. Next, the valve 2 was opened to the cryopump 5 side, and the temperature was evacuated to 1×10 −′ Torr or less.

この時、排気量は制御する必要がないので、コンダクタ
ンスバルブ4は全開しておいた。
At this time, since there was no need to control the displacement, the conductance valve 4 was left fully open.

次にバルブ6を開けて、Arガスライン7からArガス
をマスフローコントローラ(図示せず)で調節しながら
、チェンバ1内に1108CC導入した。次いでチェン
バ1内の圧力をイオンゲージ(図示せず)でモニターし
ながら、コンダクタンスバルブ4で5 X 10−’T
orrに調整した。この圧力が変動しないことを確認し
てから、Au −Te合金ターゲット9(直径5インチ
:組成はAu +□Te as ;原子%)I;:DC
パワーサプライ10から100Wを印加し、シャッタ1
1を閉じたままスパッタ放電を5分間行なってスパッタ
クリーニングをした。
Next, the valve 6 was opened, and 1108 CC of Ar gas was introduced into the chamber 1 from the Ar gas line 7 while being controlled by a mass flow controller (not shown). Next, while monitoring the pressure inside the chamber 1 with an ion gauge (not shown), the conductance valve 4
Adjusted to orr. After confirming that this pressure does not fluctuate, the Au-Te alloy target 9 (diameter 5 inches; composition is Au + □Te as ; atomic %) I;:DC
Apply 100W from power supply 10, shutter 1
1 was closed and sputter discharge was performed for 5 minutes to perform sputter cleaning.

Arガスの供給とDCパワーの供給を停止した後、クラ
イオポンプ5を用いてチェンバ1内を一旦I X 10
−’Torr以下に排気した。その後バルブ6と17を
開けてチェンバ1内にArガスとCiF’sガスを、A
rガスライン7とC,F8ガスライン8を通してマスフ
ローコントローラ(図示せず)で調節しながら、IO8
CCMづつ導入した。次いでコンダクタンスバルブ4を
用いてチェンバ1内の圧力を5 X 10−’Torr
に制御した。
After stopping the supply of Ar gas and the supply of DC power, the inside of the chamber 1 was once
-'Torr or less. After that, open valves 6 and 17 to introduce Ar gas and CiF's gas into chamber 1.
While adjusting with a mass flow controller (not shown) through r gas line 7 and C, F8 gas line 8, IO8
CCM was introduced one by one. Then, using the conductance valve 4, the pressure inside the chamber 1 is reduced to 5 x 10-' Torr.
was controlled.

圧力変動がないことを確認した後、A u T eター
ゲット9にDCパワーサプライ10から100Wを印加
し、スパッタ放電させた。安定に放電していることを確
かめた後、シャッタ11を開けて、予め回転子12にセ
ットしておいたポリカーボネート(PC)基板13上に
Au Te合金並びに炭素及びフッ素を含んだ記録膜1
4を積層した回転子は60 rpmで回転させた。膜厚
が250オングストロームになったところで、シャッタ
を閉じ、パワーの供給を停止した。
After confirming that there was no pressure fluctuation, 100 W was applied to the AUTE target 9 from the DC power supply 10 to cause sputter discharge. After confirming that the discharge is stable, the shutter 11 is opened and the recording film 1 containing AuTe alloy and carbon and fluorine is deposited on the polycarbonate (PC) substrate 13 that has been set in advance on the rotor 12.
The rotor laminated with 4 was rotated at 60 rpm. When the film thickness reached 250 angstroms, the shutter was closed and power supply was stopped.

次いで、コンダクタンスバルブ4を全開し、クライオポ
ンプ5を用いてチェンバ1内をI×10−’T orr
以下まで排気した。次いでバルブ15を開けて、N2ガ
スライン16からN2ガスをチェンバ1内に導入して大
気圧に戻した後、媒体18を取出すことにより、第1図
に示す情報記録媒体18が形成された。
Next, the conductance valve 4 is fully opened, and the inside of the chamber 1 is heated to I×10-' Torr using the cryopump 5.
Exhausted to below. Next, the valve 15 was opened, N2 gas was introduced into the chamber 1 from the N2 gas line 16, the pressure was returned to atmospheric pressure, and the medium 18 was taken out, thereby forming the information recording medium 18 shown in FIG. 1.

このようにして形成された記録膜14は、X線回折分析
の結果、特定の回折角度からの回折ピークが認められな
い非晶質膜であることが確認された。この非晶質膜は、
多結晶と違って結晶粒界がないため、再生レーザ光が粒
界部分で変調されて粒界ノイズを生ずることがない。
As a result of X-ray diffraction analysis, it was confirmed that the recording film 14 thus formed was an amorphous film in which no diffraction peak was observed from a specific diffraction angle. This amorphous film is
Unlike polycrystals, there are no grain boundaries, so the reproduced laser light is not modulated at the grain boundaries and does not generate grain boundary noise.

実施例2 実施例1に示した方法により、製造された情報記録媒体
18において、耐える酸化性の指標となる酸化による表
面のザラツキの結果起こる読出しエラーの比率(エラー
レート)を分析した。75℃−90%の加速条件下に、
実施例1に示したのと同じ膜厚のTe膜及びTe−C膜
、並びに本発明の記録膜14を含有する情報記録媒体を
一定時間報知した後、書込みを行ないエラーレートを測
定した。その結果を第5図に示す。エラーレートは、加
速条件下に置く前の値を1として規格化した。この図に
よれば、Te膜はわずか数日でエラーレートが増加して
いる。Te−C膜も100時間以後は徐々に増加してい
る。一方、本発明の記録膜14は、1000時間放置し
てもほとんど変化がなかった。従って、高温高湿下でも
耐酸化性が良好で、長寿命であることが分る。尚、本発
明の記録膜では、この測定後にX線回折分析をした時も
非晶質膜であった。
Example 2 In the information recording medium 18 manufactured by the method shown in Example 1, the ratio of read errors (error rate) occurring as a result of surface roughness due to oxidation, which is an index of oxidation resistance, was analyzed. Under accelerated conditions of 75°C-90%,
After the information recording medium containing the Te film and the Te-C film having the same film thickness as shown in Example 1 and the recording film 14 of the present invention was alerted for a certain period of time, writing was performed and the error rate was measured. The results are shown in FIG. The error rate was normalized with the value before being placed under acceleration conditions as 1. According to this figure, the error rate of the Te film increases in just a few days. The Te-C film also gradually increases after 100 hours. On the other hand, the recording film 14 of the present invention showed almost no change even after being left for 1000 hours. Therefore, it can be seen that it has good oxidation resistance even under high temperature and high humidity conditions and has a long life. Note that the recording film of the present invention was an amorphous film even when subjected to X-ray diffraction analysis after this measurement.

第6図は、パルス幅50 n5ecs書込み周波数37
MH2%波長830 nsのGa As系半導体レーザ
を用い、対物レンズ開口数(NA)0.52、線速5.
 5m /seeの条件下でのC/N(Carrier
/ N olse)比の大きさを示している。この結果
から、本願発明の記録膜においては、従来のTe−C膜
よりもさらに高感度になっていることが分る。
Figure 6 shows a pulse width of 50 n5ecs and a writing frequency of 37.
A GaAs-based semiconductor laser with a MH2% wavelength of 830 ns was used, an objective lens numerical aperture (NA) of 0.52, and a linear velocity of 5.
C/N (Carrier
/Nolse) ratio. This result shows that the recording film of the present invention has higher sensitivity than the conventional Te-C film.

実施例3 Au Te合金ターゲットをフルオロカーボンガスだけ
でスパッタする場合には、次の2つの欠点がある。
Example 3 When sputtering an AuTe alloy target using only fluorocarbon gas, there are the following two drawbacks.

1)Au Te合金ターゲットをフルオロカーボンガス
100%雰囲気中でスパッタして得られる記録膜は、光
学吸収係数(吸収率)が小さくなる。
1) A recording film obtained by sputtering an AuTe alloy target in a 100% fluorocarbon gas atmosphere has a small optical absorption coefficient (absorption rate).

このためレーザ光を吸収した時に生ずる熱によってビッ
トを形成して情報の記録を行なうヒートモード記録方式
の場合には、記録感度の低下が認められる。
For this reason, in the case of a heat mode recording method in which information is recorded by forming bits using heat generated when laser light is absorbed, a decrease in recording sensitivity is observed.

2)Au Te合金ターゲットのスパッタ時に、フルオ
ロカーボンガスの分解生成物と考えられる炭素粉のター
ゲット表面における付着が顕著である。そのため、長期
間連続スパッタをするとスパッタ成膜速度が低下する恐
れがある。
2) During sputtering of an AuTe alloy target, carbon powder, which is considered to be a decomposition product of fluorocarbon gas, is noticeably deposited on the target surface. Therefore, if sputtering is performed continuously for a long period of time, there is a possibility that the sputtering film formation rate will decrease.

ここでフルオロカーボンガスの流量をX1希望ガスの流
量をYとし、ガス流量比をQ−(X/(X十Y))x1
00%と定義して、Q−30゜50.60及び100%
の各ガス流量比(C3F8ガスとアルゴンガスを用いた
)に従って成膜した記録膜(膜厚250オングストロー
ム、組成Au 、2Te 、、)の書込み感度特性を調
べてみた結果、第7図に示すような結果を得ることがで
きた。この感度特性を検出する際、回転数は1850 
rp■パルス幅は60 n5ecとした。この検出結果
によりQ−100%の場合は、一定の再生信号振幅を得
るのに必要なレーザパワーが他のQ値のものに比べ、大
きく、書込み感度が悪化していることが分る。また、各
Q値下でのターゲット表面の状態はQ−100%の場合
が最も黒変し、付着物が多かった。Q値が減少するにつ
れて、付着物の割合は低下する傾向にあった。第8図は
、第7図と同じ条件下において種々のQ値下で成膜した
記録膜について、第5図と同じ記録条件でエラーレート
を測定した結果を示す。従って、スパッタ条件Qは、第
7図と第8図の結果から、5≦Q≦50%が好ましいこ
とが分る。
Here, the flow rate of fluorocarbon gas is X1, the flow rate of desired gas is Y, and the gas flow rate ratio is Q-(X/(X0Y))x1
Defined as 00%, Q-30°50.60 and 100%
As a result of investigating the write sensitivity characteristics of a recording film (film thickness 250 angstroms, composition Au, 2Te, etc.) formed according to each gas flow rate ratio (using C3F8 gas and argon gas), the results are as shown in Fig. 7. I was able to get good results. When detecting this sensitivity characteristic, the rotation speed is 1850
The rp pulse width was 60 n5ec. This detection result shows that in the case of Q-100%, the laser power required to obtain a constant reproduced signal amplitude is larger than in the case of other Q values, and the writing sensitivity is deteriorated. In addition, regarding the state of the target surface under each Q value, the case of Q-100% was the most blackened and had a large amount of deposits. As the Q value decreased, the percentage of deposits tended to decrease. FIG. 8 shows the results of measuring error rates under the same recording conditions as in FIG. 5 for recording films formed under various Q values under the same conditions as in FIG. 7. Therefore, it can be seen from the results of FIGS. 7 and 8 that the sputtering condition Q is preferably 5≦Q≦50%.

実施例4 第9図にガス流量比Qのスパッタレートに及ぼす効果を
示す。Q−50%(ガスはC,F、ガスとアルゴンガス
、CsFgガスの流量は10108CCを越える条件で
スパッタを続けていくと、スパッタレートが減少してい
く。第9図及び第10図において、スパッタレートは第
1回目の値を1として規格化しである。第10図は同一
流量比(Q−50%)ながら、フルオロカーボンガスC
Cs Fsガス)の流量を10.20及び11005C
Cとした場合のスパッタレートを示している。流量が多
くなると、ターゲット表面の付着物は多くなる傾向があ
った。従って、フルオロカ−ボンガスの流量比はIO8
CCM以下が好ましいことが分る。
Example 4 FIG. 9 shows the effect of the gas flow rate ratio Q on the sputtering rate. If sputtering is continued under the condition that Q-50% (gases are C, F, gas and argon gas, CsFg gas flow rate exceeds 10108 CC), the sputtering rate decreases. In Figs. 9 and 10, The sputtering rate is normalized with the first value as 1. Figure 10 shows the same flow rate ratio (Q-50%) but the fluorocarbon gas C
Cs Fs gas) flow rate to 10.20 and 11005C.
The sputtering rate when C is shown. As the flow rate increased, the amount of deposits on the target surface tended to increase. Therefore, the flow rate ratio of fluorocarbon gas is IO8
It can be seen that CCM or less is preferable.

尚、本実施例においては、フルオロカーボンガス(Ci
Fs)と希ガス(アルゴン)の混合雰囲気下でAu T
eターゲットをスパッタ放電したが希ガスを含まない雰
囲気下で放電させてもよい。
In this example, fluorocarbon gas (Ci
Au T under a mixed atmosphere of Fs) and rare gas (argon)
Although the e-target was sputter-discharged, the discharge may be performed in an atmosphere that does not contain a rare gas.

さらに本実施例においては、透明な有機樹脂基板を用い
たが、書込み及び再生レーザ光を、基板を透過させない
で記録膜面側から入射させるときは、基板は不透明であ
っても構わない。
Further, in this embodiment, a transparent organic resin substrate is used, but the substrate may be opaque when the writing and reproducing laser beams are made incident from the recording film side without passing through the substrate.

[発明の効果] 以上説明したように本発明によれば、高いCZN比で高
密度の記録ができる情報記録媒体を提供できる。
[Effects of the Invention] As explained above, according to the present invention, it is possible to provide an information recording medium that can perform high-density recording with a high CZN ratio.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す情報記録媒体の断面図
、第2図は記録膜の膜厚と書込み感度の関係を示す図、
第3図は再生時間と反射レベルの変化を示す図、第4図
は第1図に示す情報記録媒体を製造するスパッタ装置を
示す図、第5図は加速条件を経た記録膜のエラーレート
を示す図、第6図は記録膜の記録感度を示す図、第7図
は各ガス流量比についての書込みレーザパワーと変調度
の関係を示す図、第8図は各ガス流量比についての加速
時間とエラーレートの関係を示す図、第9図は各ガス流
量比についてのスパッタレートの変化を示す図、第10
図は各フルオロカーボンガス流量についてのスパッタレ
ートの変化を示す図である。 13 ・・・ 基板 14 ・・・ 記録膜 18 ・・・ 情報記録媒体
FIG. 1 is a cross-sectional view of an information recording medium showing an embodiment of the present invention, and FIG. 2 is a diagram showing the relationship between recording film thickness and writing sensitivity.
Fig. 3 is a diagram showing changes in reproduction time and reflection level, Fig. 4 is a diagram showing a sputtering apparatus for manufacturing the information recording medium shown in Fig. 1, and Fig. 5 is a diagram showing the error rate of the recording film after undergoing acceleration conditions. Figure 6 is a diagram showing the recording sensitivity of the recording film, Figure 7 is a diagram showing the relationship between writing laser power and modulation degree for each gas flow rate ratio, and Figure 8 is a diagram showing the acceleration time for each gas flow rate ratio. Figure 9 is a diagram showing the relationship between the error rate and error rate, Figure 9 is a diagram showing changes in sputtering rate for each gas flow rate ratio,
The figure is a diagram showing changes in sputtering rate for each fluorocarbon gas flow rate. 13... Substrate 14... Recording film 18... Information recording medium

Claims (1)

【特許請求の範囲】[Claims] (1)基板と、 この基板上に形成され、レーザ光の照射により情報が記
録される、Au_xTe_1_0_0_−_x(2≦x
≦47原子%)合金並びに炭素及びフッ素を含む記録膜
と、 を具備したことを特徴とする情報記録媒体。
(1) A substrate, Au_xTe_1_0_0_-_x(2≦x
≦47 atomic %) alloy, and a recording film containing carbon and fluorine.
JP63300681A 1988-11-30 1988-11-30 Information recording medium Pending JPH02147388A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63300681A JPH02147388A (en) 1988-11-30 1988-11-30 Information recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63300681A JPH02147388A (en) 1988-11-30 1988-11-30 Information recording medium

Publications (1)

Publication Number Publication Date
JPH02147388A true JPH02147388A (en) 1990-06-06

Family

ID=17887796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63300681A Pending JPH02147388A (en) 1988-11-30 1988-11-30 Information recording medium

Country Status (1)

Country Link
JP (1) JPH02147388A (en)

Similar Documents

Publication Publication Date Title
JPS63200331A (en) Recording medium and recording and reproducing method
US5013635A (en) Information storage medium
JPH01196743A (en) Information recording medium
JPH02171286A (en) Information recording medium
JPH02147388A (en) Information recording medium
JPH02147390A (en) Information recording medium
JP2558844B2 (en) Information recording medium
JPH02147392A (en) Information recording medium
EP0307750B1 (en) Use of a storage meedium in a method of recording information
JPH02147385A (en) Information recording medium
JPH02121887A (en) Data recording medium
JPH02147387A (en) Information recording medium
JPH02147391A (en) Information recording medium
JPH02121888A (en) Data recording medium
JPH02121889A (en) Data recording medium
JP2731202B2 (en) Information recording medium
JPH02117886A (en) Information recording medium
JPH02169293A (en) Information recording medium
JPH02169294A (en) Information recording medium
JPH02167780A (en) Information recording medium
JP2596902B2 (en) Optical information recording medium
JPH02147386A (en) Information recording medium
JP2509561B2 (en) optical disk
JPH02167778A (en) Information recording medium
EP0335275A2 (en) Information storage medium