JPH02146702A - Voltage-dependent nonlinear resistor - Google Patents

Voltage-dependent nonlinear resistor

Info

Publication number
JPH02146702A
JPH02146702A JP1163799A JP16379989A JPH02146702A JP H02146702 A JPH02146702 A JP H02146702A JP 1163799 A JP1163799 A JP 1163799A JP 16379989 A JP16379989 A JP 16379989A JP H02146702 A JPH02146702 A JP H02146702A
Authority
JP
Japan
Prior art keywords
voltage
varistor
main ingredient
temperature
nonlinear resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1163799A
Other languages
Japanese (ja)
Other versions
JPH0828287B2 (en
Inventor
Yutaka Irisawa
入沢 裕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Publication of JPH02146702A publication Critical patent/JPH02146702A/en
Publication of JPH0828287B2 publication Critical patent/JPH0828287B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Thermistors And Varistors (AREA)

Abstract

PURPOSE:To obtain a varistor in which an electric current does not increase beyond a certain value even though varistor voltage E10 exhibits positive temperature characteristics and a rush current of 1W or more is impressed to its device by making this varistor have a composite as a main ingredient which is expressed by means of a general formula with respect to a specific composition ratio: (SrTiO3)x.(CaTiO3) y.(BaTiO3)z and adding specific oxides to the above main ingredient with their specific quantities. CONSTITUTION:A composite which is expressed by means of a general formula: (SrTiO3)x.(CaTiO3)y.(BaTiO3)z (although the relationship: 0.325<x<0.475, 0.225<y<0.375 is applied on condition that x+y+z=1) acts as a main ingredient of this varistor and at least a kind out of composites Nb, La, and Ta or at least a kind out of oxide, Cu, Mo, Fe, Mn, and Si are added to the above main ingredient by 0.05-0.50mol% respectively. For example, the material powder of the above mentioned compositions is molded into a ring compact and a sintered compact is obtained by burning the above compact at a temperature 1350 deg.C for 3 hours in an atmosphere of a mixed gas consisting of 96vol.% nitrogen gas and 4vol.% hydrogen gas. Further, a voltage dependent nonlinear resistor is manufactured by heating the above sintered compact at a temperature 1000 deg.C for 3 hours in the air.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、電圧依存非直線抵抗体に関する。[Detailed description of the invention] (Industrial application field) TECHNICAL FIELD The present invention relates to voltage dependent nonlinear resistors.

(従来の技術) 従来、この種の電圧依存非直線抵抗体所謂バリスタとし
ては、チタン酸ストロンチウム(SrTi03)を主成
分とした組成物が知られており、電子機器等の性能向上
の要求に合せて電子機器等に用いる電圧依存非直線抵抗
体の非直線抵抗係数の向上を計るため□、前記組成物の
主成分のチタン酸ストロンチウムの一部をチタン酸カル
シウムに置換することが行われている。
(Prior Art) Conventionally, compositions containing strontium titanate (SrTi03) as a main component have been known as this type of voltage-dependent nonlinear resistor, so-called varistor. In order to improve the nonlinear resistance coefficient of voltage-dependent nonlinear resistors used in electronic devices, etc., a portion of strontium titanate, the main component of the composition, is replaced with calcium titanate. .

(発明が解決しようとする課題) 前記チタン酸ストロンチウムの一部をチタン酸カルシウ
ムに置換した組成物は、バリスタ電圧EIOが負の温度
特性を有しているため、電力が印加されたとき発熱によ
ってバリスタ電圧EIOが低下し、それに伴って電流値
が増大する性質を有する。その結果電圧依存非直線抵抗
体への突入電力がおよそIW以下の場合は第2図中曲線
Bで示されるように時間の経過と共に電流値は次第に増
加し、ある一定値に達するとその後は電流値は収束され
て該一定値を保持するが、電圧依存非直線抵抗体への突
入電力がおよそIWを超える場合は第2図中曲線Cで示
されるように時間の経過と共に電流値はある一定値に達
しても収束されることなく増加し続けるため、電子機器
等と電圧依存非直線抵抗体の接続部分が過熱し接続用半
田が溶解するという問題がある。
(Problems to be Solved by the Invention) In the composition in which a part of the strontium titanate is replaced with calcium titanate, the varistor voltage EIO has a negative temperature characteristic, so when electric power is applied, the composition generates heat when electric power is applied. The varistor voltage EIO decreases and the current value increases accordingly. As a result, if the inrush power to the voltage-dependent nonlinear resistor is approximately IW or less, the current value will gradually increase with time as shown by curve B in Figure 2, and once it reaches a certain value, the current will continue to increase. The value converges and maintains a constant value, but if the inrush power to the voltage-dependent nonlinear resistor exceeds approximately IW, the current value remains constant over time as shown by curve C in Figure 2. Since the voltage continues to increase without being converged even after reaching a certain value, there is a problem that the connecting portion between the electronic device and the voltage-dependent nonlinear resistor overheats and the connecting solder melts.

本発明は、かかる問題点を解消した電圧依存非直線抵抗
体を提供することを目的とする。
An object of the present invention is to provide a voltage-dependent nonlinear resistor that eliminates such problems.

(課題を解決するための手段) 本発明は前記目的を達成すべく、 一般式 %式%] で表される組成物を主成分とし、これにNb。(Means for solving problems) The present invention aims to achieve the above object. general formula %formula%] The composition represented by is the main component, and Nb is added to this.

La、Taの酸化物のうち少なくとも1種類を0.05
〜0.50モル%と、Cu、Mo。
0.05 of at least one kind of oxides of La and Ta
~0.50 mol%, Cu, Mo.

Fe、Mn、Siの酸化物のうち少なくとも1種類を0
.05〜0.50モル%添加して成ることを特徴とする
At least one of Fe, Mn, and Si oxides is
.. It is characterized by being added in an amount of 0.05 to 0.50 mol%.

本発明に用いるSrTiO3の組成比(x+y+z=1
)におけるXの値を0.325〜0.475としたのは
Xの値が0.325より小さいと非直線抵抗係数[α〕
値が低下し、0.475より大きいとバリスタ電圧変化
率[(ΔE+o(%/℃)]が負となる等の理由がらで
あり、またCaTi0.の組成比におけるyの値を0.
225〜0.375としたのはyの値がこの範囲を外れ
るとバリスタ電圧変化率が負となり、0.375よりも
大きいと更に非直線抵抗係数値の低下が生じる等の理由
からである。
Composition ratio of SrTiO3 used in the present invention (x+y+z=1
) is set to 0.325 to 0.475 because if the value of X is smaller than 0.325, the nonlinear resistance coefficient [α]
This is because the value decreases, and if it is larger than 0.475, the varistor voltage change rate [(ΔE+o(%/°C))] becomes negative, and the value of y at the composition ratio of CaTi0.
The reason why the value of y is set to 225 to 0.375 is because if the value of y is outside this range, the varistor voltage change rate becomes negative, and if it is larger than 0.375, the nonlinear resistance coefficient value further decreases.

また前記組成物に添加するNb、La、Taの酸化物の
うち少なくとも1種類の添加量を0.05〜0.50モ
ル%としたのはこの範囲を外れると非直線抵抗係数値の
低下が生じる等の理由からであり、また前記添加物と同
時に添加するCu、Mo、Fe、Mn、S iの酸化物
のうち少なくとも1種類の添加量を0.05〜0.50
モル%としたのは0.05モル%よりも小さいと非直線
抵抗係数値の低下が生じ、0,50モル%よりも大きい
とバリスタ電圧のバラツキが生じる等の理由からである
Furthermore, the amount of at least one of the oxides of Nb, La, and Ta added to the composition was set to 0.05 to 0.50 mol% because outside of this range, the nonlinear resistance coefficient value decreases. In addition, the amount of at least one of the oxides of Cu, Mo, Fe, Mn, and Si added at the same time as the above additives should be 0.05 to 0.50.
The reason for setting it as mol % is that if it is less than 0.05 mol %, the nonlinear resistance coefficient value will decrease, and if it is more than 0.50 mol %, the varistor voltage will vary.

(作 用) 上記組成から成る電圧依存非直線抵抗体はバリスタ電圧
EIOが正の温度特性を示し、IW以上の突入電力が印
加された場合であっても電流は一定値以上増加しない。
(Function) The voltage-dependent nonlinear resistor having the above composition exhibits a positive temperature characteristic for the varistor voltage EIO, and the current does not increase beyond a certain value even when an inrush power of IW or more is applied.

(実施例) 次に本発明の電圧依存非直線抵抗体を実施例に基づき説
明する。
(Example) Next, the voltage dependent nonlinear resistor of the present invention will be described based on an example.

まず5rTi03、CaTi0.、BaTiO3の各チ
タン酸金属粉末と、Nb、La。
First, 5rTi03, CaTi0. , BaTiO3, Nb, and La.

Taの酸化物粉末のうち少なくとも1種類と。At least one type of Ta oxide powder.

Cu、Mo、F e、Mn、S iの酸化物粉末のうち
少なくとも1種類を夫々表に示す組成比および添加量に
なるように秤量し、これを湿式ボールミルにより15時
間混合を行って混合物を得た。次に得られた混合物を空
気中で温度150℃で乾燥した後、バインダーとしてポ
リビニルアルコールを15重量部添加し、混合、造粒し
て原料粉末とした。
At least one of Cu, Mo, Fe, Mn, and Si oxide powders was weighed to have the composition ratio and addition amount shown in the table, and mixed in a wet ball mill for 15 hours to form a mixture. Obtained. Next, the obtained mixture was dried in air at a temperature of 150° C., and then 15 parts by weight of polyvinyl alcohol was added as a binder, mixed and granulated to obtain a raw material powder.

更にこの原料粉末を乾式プレスで金型を用い1、 50
0kg/cdの圧力で外径12mm、内径6mn+、厚
さ0.9關、成形体密度3.0g/ciのリング状成形
体に成型した。
Furthermore, this raw material powder is dry pressed using a mold 1, 50
It was molded at a pressure of 0 kg/cd into a ring-shaped molded body having an outer diameter of 12 mm, an inner diameter of 6 mm+, a thickness of 0.9 mm, and a molded body density of 3.0 g/ci.

続いてこのリング状成形体を窒素ガス96容積%と水素
ガス4容積%とから成る混合ガス雰囲気中で温度1,3
50℃で3時間焼成して焼結体を得た。
Subsequently, this ring-shaped molded body was heated at a temperature of 1.3 % in a mixed gas atmosphere consisting of 96% by volume of nitrogen gas and 4% by volume of hydrogen gas.
A sintered body was obtained by firing at 50°C for 3 hours.

更にこの焼結体を空気中で温度1,000°Cで3時間
の熱処理を施して電圧依存非直線抵抗体を作成し、これ
らを試料工ないし30とした。
Further, this sintered body was heat-treated in air at a temperature of 1,000° C. for 3 hours to produce voltage-dependent nonlinear resistors, which were designated as samples No. 30.

次に第3図示のように上記方法で作成された各試料(1
)の上側の表面に銀電極(2)材を塗布後、温度180
℃で10分間乾燥し、更に温度780℃で10分間焼付
けて銀電極を形成した。
Next, as shown in Figure 3, each sample (1
) After coating the silver electrode (2) material on the upper surface, the temperature was set to 180℃.
It was dried at .degree. C. for 10 minutes and then baked at a temperature of 780.degree. C. for 10 minutes to form a silver electrode.

そしてこの試料1ないし30の非直線抵抗係数と、バリ
スタ電圧を調べたところ、表に示す結果が得られた。
When the nonlinear resistance coefficients and varistor voltages of Samples 1 to 30 were investigated, the results shown in the table were obtained.

尚、非直線抵抗係数と、バリスタ電圧の変化率の測定は
、直流定電流源に試料を接続し、また直流定電流源と試
料との間に電流計を接続し、試料に並列に電圧計を接続
し、試料だけを恒温槽に浸漬して行った。
To measure the nonlinear resistance coefficient and the rate of change of varistor voltage, connect the sample to a DC constant current source, connect an ammeter between the DC constant current source and the sample, and connect a voltmeter in parallel to the sample. was connected and the sample was immersed in a constant temperature bath.

また非直線抵抗係数[αコは次式により求めただしバリ
スタ電圧EI、ElOはそれぞれ試料に1mA、10m
Aの電流を流した時の電圧値である。
In addition, the nonlinear resistance coefficient [α] is calculated using the following formula. However, the varistor voltages EI and ElO are 1 mA and 10 mA for the sample, respectively.
This is the voltage value when a current of A is applied.

またバリスタ電圧の変化率[△E+o(%/℃)]は次
式により求めた。
Further, the rate of change in varistor voltage [ΔE+o (%/°C)] was determined by the following formula.

表から明らかなように各チタン酸金属の組成比および添
加物の添加量が本発明の範囲内とした試料工ないし25
の温度特性は正であった。
As is clear from the table, the composition ratio of each metal titanate and the amount of additives added were within the range of the present invention.
The temperature characteristic of was positive.

これに対して各チタン酸金属の組成比および添加物の添
加量が本発明の範囲外の試料26ないし30の温度特性
は負であった。
On the other hand, the temperature characteristics of Samples 26 to 30, in which the composition ratio of each metal titanate and the amount of additives added were outside the range of the present invention, were negative.

また試料9の電圧依存非直線抵抗体を温度=25℃から
125℃に変化させながら各温度におけるバリスタ電圧
の変化率を調べ、その結果を第1図中曲線Aとして示し
た。また同様に試料26の電圧依存非直線抵抗体の各温
度におけるバリスタ電圧の変化率を調べ、その結果を第
1図中曲線Bとして示した。
Further, while changing the temperature of the voltage-dependent nonlinear resistor of sample 9 from 25° C. to 125° C., the rate of change in varistor voltage at each temperature was investigated, and the results are shown as curve A in FIG. Similarly, the rate of change of the varistor voltage at each temperature of the voltage-dependent nonlinear resistor of sample 26 was investigated, and the results are shown as curve B in FIG.

尚、各温度におけるバリスタ電圧の変化率の測定は前記
バリスタ電圧の変化率の測定方法に準じた。
Note that the rate of change in varistor voltage at each temperature was measured in accordance with the method for measuring the rate of change in varistor voltage described above.

第1図から明らかなように、各チタン酸金属の組成比お
よび添加物の添加量が本発明の範囲内とした試料9のバ
リスタ電圧の温度特性は正であることが確認された。こ
れに対して各チタン酸金属の組成比および添加物の添加
量が本発明の範囲外の試料26のバリスタ電圧の温度特
性は負であった。
As is clear from FIG. 1, it was confirmed that the temperature characteristic of the varistor voltage of Sample 9, in which the composition ratio of each metal titanate and the amount of additives added were within the range of the present invention, was positive. On the other hand, the temperature characteristics of the varistor voltage of Sample 26, in which the composition ratio of each metal titanate and the amount of additives added were outside the range of the present invention, was negative.

また試料9の電圧依存非直線抵抗体に1,2Wの突入電
力を印加しながら時間の経過に伴う電流の変化を調べ、
その結果を第2図中曲線Aとして示した。また同様に試
料26の電圧依存非直線抵抗体の時間の経過に伴う電流
の変化を調べ、その結果を第2図中曲線Cとして示した
In addition, while applying an inrush power of 1.2 W to the voltage-dependent nonlinear resistor of sample 9, we investigated the change in current over time.
The results are shown as curve A in FIG. Similarly, the change in current over time of the voltage-dependent nonlinear resistor of sample 26 was investigated, and the results are shown as curve C in FIG.

尚、時間の経過に伴う電流の変化の測定は、試料に直列
に接続した抵抗体の端子間電圧を測定することにより間
接的に行った。
Note that the change in current over time was measured indirectly by measuring the voltage between the terminals of a resistor connected in series with the sample.

第2図から明らかなように、各チタン酸金属の組成比お
よび添加物の添加量が本発明の範囲内とした試料9はI
W以上の突入電力が印加された場合であっても電流は一
定値以上増加しないことが確認された。これに対して各
チタン酸金属の組成比および添加物の添加量が本発明の
範囲外の試料26はIW以上の突入電力が印加された場
合は時間の経過と共に電流が増加した。
As is clear from FIG. 2, Sample 9, in which the composition ratio of each metal titanate and the amount of additives added were within the range of the present invention, was
It was confirmed that even when an inrush power of W or more was applied, the current did not increase beyond a certain value. On the other hand, in sample 26 in which the composition ratio of each metal titanate and the amount of additives added were outside the range of the present invention, the current increased with time when an inrush power of IW or more was applied.

(発明の効果) このように本発明によれば、バリスタ電圧の温度特性が
正となって、電圧依存非直線抵抗体への突入電力がIW
を超えた場合であっても電流値が一定値以上増加するこ
とがないため、電子機器等との接続部分が過熱されるの
を防止出来て、接続部分における接続用半田の溶解等の
トラブルを防止出来る効果を有する。
(Effects of the Invention) According to the present invention, the temperature characteristic of the varistor voltage is positive, and the inrush power to the voltage-dependent nonlinear resistor is reduced to IW.
Even when the current value exceeds a certain value, the current value does not increase beyond a certain value, which prevents the connection part with electronic equipment from overheating and prevents troubles such as melting of the connection solder at the connection part. It has the effect of preventing

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は電圧依存非直線抵抗体の温度と各温度における
バリスタ電圧の変化率との関係を示す特性線図、第2図
は電圧依存非直線抵抗体に一定電圧を印加したときの時
間と電流との関係を示す特性線図、第3図は上側の表面
に銀電極を形成した試料を示し、Aはその平面図、Bは
AのB−B線截断面図である。 (1)・・・試   料  (2)・・・銀 電 極特
 許 出 願 人  太陽誘電 株式会社代     
理     人   北   村   成性3名
Figure 1 is a characteristic diagram showing the relationship between the temperature of the voltage-dependent non-linear resistor and the rate of change of the varistor voltage at each temperature. FIG. 3 is a characteristic diagram showing the relationship with electric current, showing a sample in which a silver electrode was formed on the upper surface, A is a plan view thereof, and B is a cross-sectional view taken along the line B--B of A. (1)...Sample (2)...Silver electrode patent applicant Taiyo Yuden Co., Ltd.
Mr. Kitamura, 3 persons

Claims (1)

【特許請求の範囲】 一般式 [SrTiO_3]_x・[CaTiO_3]_y・[
BaTiO_3]_z ただし x+y+z=1と表したとき 0.325<x<0.475 0.225<y<0.375 で表される組成物を主成分とし、これにNb,La,T
aの酸化物のうち少なくとも1種類を0.05〜0.5
0モル%と、Cu,Mo,Fe,Mn,Siの酸化物の
うち少なくとも1種類を0.05〜0.50モル%添加
して成ることを特徴とする電圧依存非直線抵抗体。
[Claims] General formula [SrTiO_3]_x・[CaTiO_3]_y・[
BaTiO_3]_z However, when x+y+z=1, the main component is a composition represented by 0.325<x<0.475 0.225<y<0.375, and Nb, La, T
0.05 to 0.5 of at least one type of oxide of a
1. A voltage-dependent nonlinear resistor comprising: 0 mol % and 0.05 to 0.50 mol % of at least one of oxides of Cu, Mo, Fe, Mn, and Si.
JP1163799A 1988-08-12 1989-06-28 Voltage-dependent nonlinear resistor Expired - Lifetime JPH0828287B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP20022388 1988-08-12
JP63-200223 1988-08-12

Publications (2)

Publication Number Publication Date
JPH02146702A true JPH02146702A (en) 1990-06-05
JPH0828287B2 JPH0828287B2 (en) 1996-03-21

Family

ID=16420855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1163799A Expired - Lifetime JPH0828287B2 (en) 1988-08-12 1989-06-28 Voltage-dependent nonlinear resistor

Country Status (1)

Country Link
JP (1) JPH0828287B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG104950A1 (en) * 2000-11-15 2004-07-30 Tdk Corp Voltage-dependent nonlinear resistor ceramic, voltage-dependent nonlinear resistor with the ceramic, and method of manufacturing voltage-dependent nonlinear resistor ceramic
CN102013292A (en) * 2010-10-22 2011-04-13 广东风华高新科技股份有限公司 Welded circular piezoresistor as well as preparation method and application thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62179103A (en) * 1986-01-31 1987-08-06 松下電器産業株式会社 Voltage-dependant nonlinear resistance porcelain compound
JPS62230007A (en) * 1986-03-31 1987-10-08 松下電器産業株式会社 Voltage-dependent nonlinear resistance porcelain compound

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62179103A (en) * 1986-01-31 1987-08-06 松下電器産業株式会社 Voltage-dependant nonlinear resistance porcelain compound
JPS62230007A (en) * 1986-03-31 1987-10-08 松下電器産業株式会社 Voltage-dependent nonlinear resistance porcelain compound

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG104950A1 (en) * 2000-11-15 2004-07-30 Tdk Corp Voltage-dependent nonlinear resistor ceramic, voltage-dependent nonlinear resistor with the ceramic, and method of manufacturing voltage-dependent nonlinear resistor ceramic
CN102013292A (en) * 2010-10-22 2011-04-13 广东风华高新科技股份有限公司 Welded circular piezoresistor as well as preparation method and application thereof

Also Published As

Publication number Publication date
JPH0828287B2 (en) 1996-03-21

Similar Documents

Publication Publication Date Title
JPH02146702A (en) Voltage-dependent nonlinear resistor
JPH1036172A (en) Ceramic dielectric substance composition
JPH0442501A (en) Electronic device using barium titanate based semiconductor porcelain
JPH04206109A (en) Nonreduced dielectric ceramic composition
US6432558B1 (en) Semiconductor ceramic and semiconductor ceramic device
JPS606535B2 (en) porcelain composition
KR920005155B1 (en) Zno-varistor making method
JP2588951B2 (en) High temperature PTC thermistor and manufacturing method thereof
JP2585121B2 (en) Method of manufacturing voltage-dependent nonlinear resistor
JPS609102A (en) Voltage depending nonlinear resistor porcelain composition
JPH03119608A (en) Nonreducing dielectric ceramic
JPH04119601A (en) Porcelain composition for non-linear voltage resistor
JP2540048B2 (en) Voltage nonlinear resistor porcelain composition
JP2638599B2 (en) Voltage non-linear resistor ceramic composition
JPH03278402A (en) Voltage non-linear ceramic composite and manufacture thereof
JP2937024B2 (en) Semiconductor porcelain composition and method for producing the same
JPH06181102A (en) Manufacture of ptc resistor
JPH02303015A (en) Composite functional element
JPH0142606B2 (en)
JPH03109259A (en) Grain boundary oxidized voltage-nonlinear resistance composition
JPH0423301A (en) Porcelain composition for voltage-dependent nonlinear resistor
JP2588951C (en)
JPS6021858A (en) Ceramic composition
JPS5848404A (en) Barium titanate series semiconductor porcelain
JPS607701A (en) Voltage depending nonlinear resistor porcelain composition

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080321

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090321

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100321

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100321

Year of fee payment: 14