JPH0828287B2 - Voltage-dependent nonlinear resistor - Google Patents

Voltage-dependent nonlinear resistor

Info

Publication number
JPH0828287B2
JPH0828287B2 JP1163799A JP16379989A JPH0828287B2 JP H0828287 B2 JPH0828287 B2 JP H0828287B2 JP 1163799 A JP1163799 A JP 1163799A JP 16379989 A JP16379989 A JP 16379989A JP H0828287 B2 JPH0828287 B2 JP H0828287B2
Authority
JP
Japan
Prior art keywords
voltage
dependent nonlinear
nonlinear resistor
sample
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1163799A
Other languages
Japanese (ja)
Other versions
JPH02146702A (en
Inventor
裕 入沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Publication of JPH02146702A publication Critical patent/JPH02146702A/en
Publication of JPH0828287B2 publication Critical patent/JPH0828287B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Thermistors And Varistors (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、電圧依存非直線抵抗体に関する。Description: FIELD OF THE INVENTION The present invention relates to voltage-dependent nonlinear resistors.

(従来の技術) 従来、この種の電圧依存非直線抵抗体所謂バリスタと
しては、チタン酸ストロンチウム(SrTiO3)を主成分と
した組成物が知られており、電子機器等の性能向上の要
求に合せて電子機器等に用いる電圧依存非直線抵抗体の
非直線抵抗係数の向上を計るため、前記組成物の主成分
のチタン酸ストロンチウムの一部をチタン酸カルシウム
に置換することが行われている。
(Prior Art) Conventionally, as this type of voltage-dependent non-linear resistor, so-called varistor, a composition containing strontium titanate (SrTiO 3 ) as a main component has been known, and there is a demand for improving performance of electronic devices and the like. In order to improve the non-linear resistance coefficient of a voltage-dependent non-linear resistor used in electronic devices, a part of strontium titanate which is the main component of the composition is replaced with calcium titanate. .

(発明が解決しようとする課題) 前記チタン酸ストロンチウムの一部をチタン酸カルシ
ウムに置換した組成物は、バリスタ電圧E10が負の温度
特性を有しているため、電力が印加されたとき発熱によ
ってバリスタ電圧E10が低下し、それに伴って電流値が
増大する性質を有する。その結果電圧依存非直線抵抗体
への突入電力がおよそ1W以下の場合は第2図中曲線Bで
示されるように時間の経過と共に電流値は次第に増加
し、ある一定値に達するとその後は電流値は収束されて
該一定値を保持するが、電圧依存非直線抵抗体への突入
電力がおよそ1Wを超える場合は第2図中曲線Cで示され
るように時間の経過と共に電流値はある一定値に達して
も収束されることなく増加し続けるため、電子機器等と
電圧依存非直線抵抗体の接続部分が過熱し接続用半田が
溶解するという問題がある。
(Problems to be Solved by the Invention) The composition in which a part of the strontium titanate is replaced with calcium titanate has a varistor voltage E 10 having a negative temperature characteristic, and therefore generates heat when electric power is applied. Due to this, the varistor voltage E 10 decreases and the current value increases accordingly. As a result, when the rush power to the voltage-dependent nonlinear resistor is about 1 W or less, the current value gradually increases with the passage of time as shown by the curve B in FIG. The value converges and holds the constant value, but when the rush power to the voltage-dependent nonlinear resistor exceeds approximately 1 W, the current value is constant with time as shown by the curve C in FIG. Even if the value is reached, it does not converge and continues to increase, so there is a problem that the connecting portion between the electronic device and the voltage-dependent nonlinear resistor is overheated and the connecting solder is melted.

本発明は、かかる問題点を解消したバリスタ電圧変化
率が正である電圧依存非直線抵抗体を提供することを目
的とする。
It is an object of the present invention to provide a voltage-dependent nonlinear resistor having a positive varistor voltage change rate that solves the above problems.

(課題を解決するための手段) 本発明は前記目的を達成すべく、 一般式 [SrTiO3・[CaTiO3・[BaTiO3 ただし x+y+z=1と表したとき 0.325<x<0.475 0.225<y<0.375 で表される組成物を主成分とし、これにNb,La,Taの酸化
物のうち少なくとも1種類を0.05〜0.50モル%と、Cu,M
o,Fe,Mn,Siの酸化物のうち少なくとも1種類を0.05〜0.
50モル%添加して成るバリスタ電圧変化率が正であるこ
とを特徴とする。
(Means for Solving the Problems) In order to achieve the above-mentioned object, the present invention provides the following formula: [SrTiO 3 ] x · [CaTiO 3 ] y · [BaTiO 3 ] z where x + y + z = 1 0.325 <x < 0.475 0.225 <y <0.375 as a main component, and at least one of Nb, La, and Ta oxides of 0.05 to 0.50 mol% and Cu, M
At least one of oxides of o, Fe, Mn, and Si is 0.05 to 0.
The varistor voltage change rate formed by adding 50 mol% is positive.

本発明に用いるSrTiO3の組成比(x+y+z=1)に
おけるxの値を0.325〜0.475としたのはxの値が0.325
より小さいと非直線抵抗係数[α]値が低下し、0.475
より大きいとバリスタ電圧変化率[(ΔE10(%/
℃)]が負となる等の理由からであり、またCaTiO3の組
成比におけるyの値を0.225〜0.375としたのはyの値が
この範囲を外れるとバリスタ電圧変化率が負となり、0.
375よりも大きいと更に非直線抵抗係数値の低下が生じ
る等の理由からである。
The value of x in the composition ratio (x + y + z = 1) of SrTiO 3 used in the present invention is 0.325 to 0.475 because the value of x is 0.325.
If it is smaller, the non-linear resistance coefficient [α] value decreases to 0.475.
If it is larger, the varistor voltage change rate [(ΔE 10 (% /
℃]] becomes negative, and the value of y in the composition ratio of CaTiO 3 is set to 0.225 to 0.375. If the value of y is out of this range, the varistor voltage change rate becomes negative, .
This is because if it is larger than 375, the nonlinear resistance coefficient value further decreases.

また前記組成物に添加するNb,La,Taの酸化物のうち少
なくとも1種類の添加量を0.05〜0.50モル%としたのは
この範囲を外れると比直線抵抗係数値の低下が生じる等
の理由からであり、また前記添加物と同時に添加するC
u,Mo,Fe,Mn,Siの酸化物のうち少なくとも1種類の添加
量を0.05〜0.50モル%としたのは0.05モル%よりも小さ
いと非直線抵抗係数値の低下が生じ、0.50モル%よりも
大きいとバリスタ電圧のバラツキが生じる等の理由から
である。
The reason why the amount of at least one of Nb, La, and Ta oxides added to the composition is set to 0.05 to 0.50 mol% is that the specific linear resistance coefficient value decreases if it is out of this range. And C added at the same time as the above-mentioned additive
The addition amount of at least one kind of oxides of u, Mo, Fe, Mn, and Si is set to 0.05 to 0.50 mol% when the content is less than 0.05 mol%, the non-linear resistance coefficient value decreases and 0.50 mol% This is because the varistor voltage varies when the value is larger than the above value.

(作 用) 上記組成から成る電圧依存非直線抵抗体はバリスタ電
圧変化率[(ΔE10(%/℃)]が正の温度特性を示
し、1W以上の突入電力が印加された場合であっても電流
は一定値以上増加しない。
(Operation) The voltage-dependent nonlinear resistor with the above composition shows a temperature characteristic in which the varistor voltage change rate [(ΔE 10 (% / ° C)] has a positive temperature characteristic, and is obtained when inrush power of 1 W or more is applied. However, the current does not increase beyond a certain value.

(実施例) 次に本発明の電圧依存非直線抵抗体を実施例に基づき
説明する。
(Example) Next, the voltage-dependent nonlinear resistor of the present invention will be described based on examples.

まずSrTiO3、CaTiO3、BaTiO3の各チタン酸金属粉末
と、Nb,La,Taの酸化物粉末のうち少なくとも1種類と、
Cu,Mo,Fe,Mn,Siの酸化物粉末のうち少なくとも1種類を
夫々表に示す組成比および添加量になるように秤量し、
これを湿式ボールミルにより15時間混合を行って混合物
を得た。次に得られた混合物を空気中で温度150℃で乾
燥した後、バインダーとしてポリビニルアルコールを15
重量部添加し、混合、造粒して原料粉末とした。
First, each metal titanate powder of SrTiO 3 , CaTiO 3 , and BaTiO 3 and at least one of oxide powders of Nb, La, and Ta,
At least one of the oxide powders of Cu, Mo, Fe, Mn, and Si was weighed so that the composition ratios and addition amounts shown in the table were obtained,
This was mixed by a wet ball mill for 15 hours to obtain a mixture. Next, the resulting mixture was dried in air at a temperature of 150 ° C., and then polyvinyl alcohol as a binder was added thereto.
Part by weight was added, mixed and granulated to obtain a raw material powder.

更にこの原料粉末を乾式ブレスで金型を用い1,500kg/
cm2の圧力で外径12mm、内径6mm、厚さ0.9mm、成形体密
度3.0g/cm3のリング状成形体に成型した。
Furthermore, this raw material powder is used in a dry press in a mold to produce 1,500 kg /
A ring-shaped molded body having an outer diameter of 12 mm, an inner diameter of 6 mm, a thickness of 0.9 mm, and a molded body density of 3.0 g / cm 3 was molded with a pressure of cm 2 .

続いてこのリング状成形体を窒素ガス96容積%と水素
ガス4容積%とから成る混合ガス雰囲気中で温度1,350
℃で3時間焼成して焼結体を得た。
Subsequently, the ring-shaped compact was heated at a temperature of 1,350 in a mixed gas atmosphere containing 96% by volume of nitrogen gas and 4% by volume of hydrogen gas.
A sintered body was obtained by firing at 3 ° C. for 3 hours.

更にこの焼結体を空気中で温度1,000℃で3時間の熱
処理を施して電圧依存非直線抵抗体を作成し、これらを
試料1ないし30とした。
Further, this sintered body was heat-treated in air at a temperature of 1,000 ° C. for 3 hours to prepare voltage-dependent nonlinear resistors, which were used as samples 1 to 30.

次に第3図示のように上記方法で作成された各試料
(1)の上側の表面に銀電極(2)材を塗布後、温度18
0℃で10分間乾燥し、更に温度780℃で10分間焼付けて銀
電極を形成した。
Next, as shown in FIG. 3, after the silver electrode (2) material was applied to the upper surface of each sample (1) prepared by the above method, the temperature was changed to 18
It was dried at 0 ° C. for 10 minutes and then baked at a temperature of 780 ° C. for 10 minutes to form a silver electrode.

そしてこの試料1ないし30の非直線抵抗係数と、バリ
スタ電圧を調べたところ、表に示す結果が得られた。
When the nonlinear resistance coefficient and the varistor voltage of each of Samples 1 to 30 were examined, the results shown in the table were obtained.

尚、非直線抵抗係数と、バリスタ電圧の変化率の測定
は、直流定電流源に試料を接続し、また直流定電流源と
試料との間に電流計を接続し、試料に並列に電圧計を接
続し、試料だけを恒温槽に浸漬して行った。
To measure the non-linear resistance coefficient and the rate of change of varistor voltage, connect a sample to a DC constant current source, connect an ammeter between the DC constant current source and the sample, and connect a voltmeter in parallel with the sample. Was connected and only the sample was immersed in a constant temperature bath.

また非直線抵抗係数[α]は次式により求めた。 The non-linear resistance coefficient [α] was calculated by the following equation.

ただしバリスタ電圧E1、E10はそれぞれ試料に1mA,10m
Aの電流を流した時の電圧値である。
However, the varistor voltages E 1 and E 10 are 1 mA and 10 m, respectively, for the sample.
It is the voltage value when the current of A is passed.

またバリスタ電圧の変化率[ΔE10(%/℃)]は次
式により求めた。
The rate of change in varistor voltage [ΔE 10 (% / ° C)] was calculated by the following equation.

表から明らかなように各チタン酸金属の組成比および
添加物の添加量が本発明の範囲内とした試料1ないし25
の温度特性は正であった。これに対して各チタン酸金属
の組成比および添加物の添加量が本発明の範囲外の試料
26ないし30の温度特性は負であった。
As is clear from the table, the composition ratio of each metal titanate and the addition amount of the additive are within the range of the present invention.
Had positive temperature characteristics. On the other hand, the composition ratio of each metal titanate and the amount of the additive added are outside the scope of the present invention.
The temperature characteristics of 26 to 30 were negative.

また試料9の電圧依存非直線抵抗体を温度−25℃から
125℃に変化させながら各温度におけるバリスタ電圧の
変化率を調べ、その結果を第1図中曲線Aとして示し
た。また同様に試料26の電圧依存非直線抵抗体の各温度
におけるバリスタ電圧の変化率を調べ、その結果を第1
図中曲線Bとして示した。
In addition, the voltage-dependent nonlinear resistor of sample 9
The rate of change of the varistor voltage at each temperature was examined while changing the temperature to 125 ° C., and the result is shown as curve A in FIG. Similarly, the rate of change of the varistor voltage at each temperature of the voltage-dependent nonlinear resistor of sample 26 was examined, and the results were
It is shown as a curve B in the figure.

尚、各温度におけるバリスタ電圧の変化率の測定は前
記バリスタ電圧の変化率の測定方法に準じた。
The rate of change of the varistor voltage at each temperature was measured according to the method of measuring the rate of change of the varistor voltage.

第1図から明らかなように、各チタン酸金属の組成比
および添加物の添加量が本発明の範囲内とした試料9の
バリスタ電圧の温度特性は正であることが確認された。
これに対して各チタン酸金属の組成比および添加物の添
加量が本発明の範囲外の試料26のバリスタ電圧の温度特
性は負であった。
As is apparent from FIG. 1, it was confirmed that the temperature characteristics of the varistor voltage of Sample 9 in which the composition ratio of each metal titanate and the amount of the additive added were within the range of the present invention were positive.
On the other hand, the temperature characteristics of the varistor voltage of the sample 26 in which the composition ratio of each metal titanate and the addition amount of the additive were out of the range of the present invention were negative.

また試料9の電圧依存非直線抵抗体に1.2Wの突入電力
を印加しながら時間の経過に伴う電流の変化を調べ、そ
の結果を第2図中曲線Aとして示した。また同様に試料
26の電圧依存非直線抵抗体の時間の経過に伴う電流の変
化を調べ、その結果を第2図中曲線Cとして示した。
The change of the current with the passage of time was examined while applying 1.2 W of inrush power to the voltage-dependent nonlinear resistor of Sample 9, and the result is shown as curve A in FIG. Similarly, the sample
The change in current with time of the 26 voltage-dependent nonlinear resistors was investigated, and the result is shown as a curve C in FIG.

尚、時間の経過に伴う電流の変化の測定は、試料に直
列に接続した抵抗体の端子間電圧を測定することにより
間接的に行った。
The change in current with the passage of time was indirectly measured by measuring the terminal voltage of the resistor connected in series to the sample.

第2図から明らかなように、各チタン酸金属の組成比
および添加物の添加量が本発明の範囲内とした試料9は
1W以上の突入電力が印加された場合であっても電流は一
定値以上増加しないことが確認された。これに対して各
チタン酸金属の組成比および添加物の添加量が本発明の
範囲外の試料26は1W以上の突入電力が印加された場合は
時間の経過と共に電流が増加した。
As is clear from FIG. 2, the sample 9 in which the composition ratio of each metal titanate and the addition amount of the additive are within the range of the present invention is
It was confirmed that the current does not increase beyond a certain value even when an inrush power of 1 W or more is applied. On the other hand, in Sample 26 in which the composition ratio of each metal titanate and the addition amount of the additive were out of the range of the present invention, the current increased with the passage of time when the inrush power of 1 W or more was applied.

(発明の効果) このように本発明によれば、バリスタ電圧変化率、即
ちバリスタ電圧の温度特性が正となって、電圧依存非直
線抵抗体への突入電力が1Wを超えた場合であっても電流
値が一定値以上増加することがないため、電子機器等と
の接続部分が過熱されるのを防止出来て、接続部分にお
ける接続用半田の溶解等のトラブルを防止出来る効果を
有する。
(Effects of the Invention) As described above, according to the present invention, when the varistor voltage change rate, that is, the temperature characteristic of the varistor voltage becomes positive and the rush power to the voltage-dependent nonlinear resistor exceeds 1 W, Also, since the current value does not increase more than a certain value, it is possible to prevent overheating of the connection portion with the electronic device or the like, and it is possible to prevent trouble such as melting of the connection solder at the connection portion.

【図面の簡単な説明】[Brief description of drawings]

第1図は電圧依存非直線抵抗体の温度と各温度における
バリスタ電圧の変化率との関係を示す特性線図、第2図
は電圧依存非直線抵抗体に一定電圧を印加したときの時
間と電流との関係を示す特性線図、第3図は上側の表面
に銀電極を形成した試料を示し、Aはその平面図、Bは
AのB−B線截断面図である。 (1)……試料、(2)……銀電極
FIG. 1 is a characteristic diagram showing the relationship between the temperature of the voltage-dependent nonlinear resistor and the rate of change of the varistor voltage at each temperature, and FIG. 2 is the time when a constant voltage is applied to the voltage-dependent nonlinear resistor. FIG. 3 is a characteristic diagram showing the relationship with the current, FIG. 3 shows a sample having a silver electrode formed on the upper surface, A is a plan view thereof, and B is a sectional view taken along the line BB of A. (1) …… Sample, (2) …… Silver electrode

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】一般式 [SrTiO3・[CaTiO3・[BaTiO3 ただし x+y+z=1と表したとき 0.325<x<0.475 0.225<y<0.375 で表される組成物を主成分とし、これにNb,La,Taの酸化
物のうち少なくとも1種類を0.05〜0.50モル%と、Cu,M
o,Fe,Mn,Siの酸化物のうち少なくとも1種類を0.05〜0.
50モル%添加して成るバリスタ電圧変化率が正であるこ
とを特徴とする電圧依存非直線抵抗体。
1. A composition represented by the general formula [SrTiO 3 ] x. [CaTiO 3 ] y. [BaTiO 3 ] z, where x + y + z = 1 is expressed as 0.325 <x <0.475 0.225 <y <0.375. At least one of Nb, La, and Ta oxides is added to the composition as 0.05 to 0.50 mol% and Cu, M
At least one of oxides of o, Fe, Mn, and Si is 0.05 to 0.
A voltage-dependent nonlinear resistor having a positive varistor voltage change rate formed by adding 50 mol%.
JP1163799A 1988-08-12 1989-06-28 Voltage-dependent nonlinear resistor Expired - Lifetime JPH0828287B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP63-200223 1988-08-12
JP20022388 1988-08-12

Publications (2)

Publication Number Publication Date
JPH02146702A JPH02146702A (en) 1990-06-05
JPH0828287B2 true JPH0828287B2 (en) 1996-03-21

Family

ID=16420855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1163799A Expired - Lifetime JPH0828287B2 (en) 1988-08-12 1989-06-28 Voltage-dependent nonlinear resistor

Country Status (1)

Country Link
JP (1) JPH0828287B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW535174B (en) * 2000-11-15 2003-06-01 Tdk Corp Voltage-dependent nonlinear resistor ceramic, voltage-dependent nonlinear resistor with the ceramic, and method of manufacturing voltage-dependent nonlinear resistor ceramic
CN102013292B (en) * 2010-10-22 2012-09-26 广东风华高新科技股份有限公司 Welded circular piezoresistor as well as preparation method and application thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62179103A (en) * 1986-01-31 1987-08-06 松下電器産業株式会社 Voltage-dependant nonlinear resistance porcelain compound
JPS62230007A (en) * 1986-03-31 1987-10-08 松下電器産業株式会社 Voltage-dependent nonlinear resistance porcelain compound

Also Published As

Publication number Publication date
JPH02146702A (en) 1990-06-05

Similar Documents

Publication Publication Date Title
JP3822798B2 (en) Voltage nonlinear resistor and porcelain composition
JPS6257245B2 (en)
JPS5935402A (en) Semiconductor porcelain substance having voltage dependent nonlinear resistance property
US4642136A (en) PTC ceramic composition
JPH0828287B2 (en) Voltage-dependent nonlinear resistor
JP3598935B2 (en) Voltage nonlinear resistor, method of manufacturing the same, and varistor
JPH1036172A (en) Ceramic dielectric substance composition
JPH06199570A (en) Composite perovskite type ceramic body
JPS58156576A (en) Dielectric body based on lead titanate, manufacture and multi-layer capacitor containing same
JP2572310B2 (en) Composition for thermistor
US6432558B1 (en) Semiconductor ceramic and semiconductor ceramic device
JP2689439B2 (en) Grain boundary insulation type semiconductor porcelain body
JP3598177B2 (en) Voltage non-linear resistor porcelain
JP2540048B2 (en) Voltage nonlinear resistor porcelain composition
JPS6257244B2 (en)
JP2944697B2 (en) Voltage non-linear resistor ceramic composition
JP4042836B2 (en) Method for manufacturing voltage nonlinear resistor
JPH0732085B2 (en) Electrode material for voltage nonlinear resistors
JP2573466B2 (en) Voltage non-linear resistor ceramic composition
JP2638599B2 (en) Voltage non-linear resistor ceramic composition
JP2937024B2 (en) Semiconductor porcelain composition and method for producing the same
JP3469910B2 (en) Dielectric porcelain composition
JPS62115705A (en) Compound for semiconductor porcelain capacitor
JPS63301410A (en) Insulated grain boundary type semiconductor ceramic composition
JPH0613203A (en) Manufacture of semiconductor ceramic element

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080321

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090321

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100321

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100321

Year of fee payment: 14