JPS6021858A - Ceramic composition - Google Patents

Ceramic composition

Info

Publication number
JPS6021858A
JPS6021858A JP58127220A JP12722083A JPS6021858A JP S6021858 A JPS6021858 A JP S6021858A JP 58127220 A JP58127220 A JP 58127220A JP 12722083 A JP12722083 A JP 12722083A JP S6021858 A JPS6021858 A JP S6021858A
Authority
JP
Japan
Prior art keywords
capacitance
dielectric constant
capacitor
composition
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58127220A
Other languages
Japanese (ja)
Other versions
JPS6227024B2 (en
Inventor
治彦 宮本
米沢 正智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP58127220A priority Critical patent/JPS6021858A/en
Publication of JPS6021858A publication Critical patent/JPS6021858A/en
Publication of JPS6227024B2 publication Critical patent/JPS6227024B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)
  • Ceramic Capacitors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は磁器組成物、特に、1000℃以下の低温で焼
結でき、誘電率と比抵抗の積が高(、しかも機械的強度
の高い磁器組成物に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a porcelain composition, particularly a porcelain composition that can be sintered at a low temperature of 1000°C or less, has a high product of dielectric constant and specific resistance (and has high mechanical strength). .

従来、誘電体磁器組成物として、チタン酸バリウム(B
aTiO,)を主成分とする磁器組成物が広く実用化さ
れていることは周知のとおりである。しかしながら、チ
タン酸バリウム(BaTjOs )を主成分とするもの
は、焼結温度が通常1300〜1400℃の高温である
。このためこれを414形コンデンサに利用する場合に
は内部電極としてこの焼結温度に耐え得る材料、例えば
白金、パラジウムなどの高温な責金編を使用しなければ
ならず、製造コストが高くつくという欠点がある。積層
形コンデンサを安く作るためには銀、ニッケルなどを主
成分とする安価な金属が内部電極に使用できるようなで
きるだけ低温、特に1000℃以下で焼結できる磁器組
成物が必要である。
Conventionally, barium titanate (B
It is well known that porcelain compositions containing aTiO, ) as a main component have been widely put into practical use. However, those whose main component is barium titanate (BaTjOs) have a sintering temperature of usually 1300 to 1400°C. Therefore, if this material is used in a 414-type capacitor, a material that can withstand this sintering temperature must be used for the internal electrodes, such as a high-temperature metal material such as platinum or palladium, which increases manufacturing costs. There are drawbacks. In order to manufacture multilayer capacitors at low cost, a porcelain composition that can be sintered at as low a temperature as possible, particularly below 1000° C., is required so that inexpensive metals mainly composed of silver, nickel, etc. can be used for internal electrodes.

ところで磁器組成物を用い、実用的な積層形コンデンサ
を作製するときに磁器組成物の電気的特性として多くの
項目が評価されなければならない1、一般的に誘電率は
できるだけ大きく、誘電損失はできるだけ小さく、比抵
抗はできるだけ大きく、誘電率の温度変化は小さいこと
などが要求される。
By the way, when producing a practical multilayer capacitor using a ceramic composition, many items must be evaluated as the electrical properties of the ceramic composition.1 Generally, the dielectric constant should be as high as possible, and the dielectric loss should be as high as possible. It is required that the resistivity be as small as possible, that the specific resistance be as large as possible, and that the change in dielectric constant with temperature be small.

しかしながら、実用上積層形コンデンサにおいては誘電
率でなく、まず容量、次に容量の温度変化率、誘電損失
などの値が必要とされる。積層形コンデンサにおいて、
容量は磁器組成物の誘電率に比例するが、しかしその厚
みに反比例し、電極面積、積層数に比例するので、一定
の容量を得るためには磁器組成物の誘電率が大きいこと
は必ずしも絶対的な要因でない。さらに容量の温度変化
率(誘電率の温度変化率)は用途により種々許容された
範囲があり、磁器組成物の誘1率の温度変化率も積層形
コンデンサを作製するときの絶対的な要因でない。
However, for practical purposes, multilayer capacitors require values such as capacitance, temperature change rate of capacitance, dielectric loss, etc., rather than dielectric constant. In multilayer capacitors,
Capacity is proportional to the dielectric constant of the porcelain composition, but it is inversely proportional to its thickness, and proportional to the electrode area and the number of laminated layers, so it is not necessarily necessary that the dielectric constant of the porcelain composition be large in order to obtain a constant capacitance. It is not a factor. Furthermore, the temperature change rate of capacitance (temperature change rate of permittivity) has various allowable ranges depending on the application, and the temperature change rate of permittivity of the ceramic composition is not an absolute factor when manufacturing multilayer capacitors. .

一方誘厩損失は用途により一定の値以下でなければなら
ないという規定があり室温で最大5.0%以下である。
On the other hand, there is a regulation that the induced loss must be below a certain value depending on the application, and the maximum is 5.0% or below at room temperature.

さらに比抵抗に関しては、例えばI(IAJ規格〔日本
電子機械工業会の電子機器用積層磁器コンデンサ(チッ
プ形)RC−3698B)に述べられているごとく、積
層コンデンサの絶縁抵抗として10000 MΩ以上ま
たは容量抵抗積で500μF −MΩ以上のいずれか小
さい方以上と規定されている。すなオ)ち磁器組成物の
誘電率と比抵抗の積がある絶対値以上ljければ、任意
の容量、特に大きな容量のコンデンサを実用的規格に合
せることができず、゛その用途が非常に限定され、実用
的な意味がなくなる。この点を詳しく説明すると次の様
になる。積層形コンデンサでは、n+1個の内部電極を
構成して一般にn個の同じ厚さの層からなる単一層コン
デンサが積層された構造になっている。この場合、単一
層当りの容量をco、絶縁抵抗を鳥とすれば、積層形コ
ンデンサの容量CはCoQ)n倍になり、絶縁抵抗Rは
馬の1/nになる。
Furthermore, regarding specific resistance, for example, as stated in I (IAJ standard [Japan Electronics Industry Association's Multilayer Ceramic Capacitor (Chip Type) RC-3698B)], the insulation resistance of the multilayer capacitor should be 10,000 MΩ or more or the capacity. It is specified that the resistance product is 500 μF - MΩ or more, whichever is smaller. In other words, if the product of the permittivity and resistivity of the porcelain composition exceeds a certain absolute value lj, a capacitor of any capacitance, especially a large capacitance, cannot meet practical standards; , and has no practical meaning. This point will be explained in detail as follows. A multilayer capacitor has a structure in which single-layer capacitors are stacked, generally consisting of n layers of the same thickness and forming n+1 internal electrodes. In this case, if the capacitance per single layer is Co and the insulation resistance is Tori, then the capacitance C of the multilayer capacitor will be CoQ)n times, and the insulation resistance R will be 1/n of Horse.

ここで磁器組成物の誘電率を6.真壁の誘電率をεo、
磁器組成物の比抵抗をρ、単一層コンデンサの磁器の厚
さを41重なる電極面積をSとすれば、単一層コンデン
サのC6は(ε。C8)/d となりR6は(ρd)/
8となる。従ってn層からなる積層コンデンサの容量(
C)と絶縁抵抗(R1の積CXRは〔(ρd)/(”8
)) X ((ng、g8)/d) == goερ 
となる。すなわち、どのような容量の積層コンデンサも
その容量・抵抗積(CXR)は、磁器組成物のεとρの
積に60を乗じた一定値(ε0ερ)に規格化される。
Here, the dielectric constant of the porcelain composition is 6. The dielectric constant of Makabe is εo,
If the specific resistance of the ceramic composition is ρ, and the thickness of the ceramic of the single-layer capacitor is 41, and the area of the overlapping electrodes is S, then C6 of the single-layer capacitor is (ε.C8)/d, and R6 is (ρd)/
It becomes 8. Therefore, the capacitance of a multilayer capacitor consisting of n layers (
The product CXR of C) and insulation resistance (R1 is [(ρd)/(”8
)) X ((ng, g8)/d) == goερ
becomes. That is, the capacitance-resistance product (CXR) of a multilayer capacitor of any capacity is normalized to a constant value (ε0ερ) obtained by multiplying the product of ε and ρ of the ceramic composition by 60.

容量・抵抗積CXRが500μF@MΩすなわち500
F・Ω以上ということは、ε。= 8.855刈Q−”
F/cm より、CXR= g、 ip = 8.85
5X10−”(F/(m)Xε×ρ≧500F・Ω、よ
ってερ≧5.65 XIO”Ω壷αなる要求がある。
Capacitance/resistance product CXR is 500μF@MΩ, or 500
More than F・Ω means ε. = 8.855 mochi Q-”
From F/cm, CXR = g, ip = 8.85
5X10-''(F/(m)Xε×ρ≧500F·Ω, therefore, there is a requirement that ερ≧5.65

例えばε= 10000ではρ≧5.65X10”Ω・
α。
For example, when ε=10000, ρ≧5.65X10”Ω・
α.

ε= 3000ではρ≧1.88 XIO鳳2Ω・譚、
ε=500 ではρ≧1.13 X 10”Ω・儂が要
求される。誘電率に応じてこれらの値以上のρを持つ磁
器組成物であればどのような大きな容量の積層コンデン
サも容量・抵抗積は500μF、MΩを満足する。もし
εが3000でρが要求値より1桁低い1.88 XI
O”Ω・いとすればε0ερ=50μF@MΩで500
μF−MΩは満足せず、絶縁抵抗の規格値である110
0OOΩすなわち、10100以上を満足するには容量
Cとして0.005μF以下に限定されなければならな
い。それはこの積層コンデンサの容量・抵抗積(CxR
)は常に50μF、MΩを示しているので、■が100
0OOΩのとき、Cは0.005μFとなり、Cがこれ
より太きiれば几は10000 MΩより小さくなり、
 0.005μFが規格を満たす最高の容量となるため
である。
When ε = 3000, ρ≧1.88 XIO Otori 2Ω・Tan,
When ε=500, ρ≧1.13×10”Ω・儂 is required. Depending on the dielectric constant, any large-capacity multilayer capacitor can have a capacitance of ρ greater than or equal to these values. The resistance product satisfies 500 μF and MΩ.If ε is 3000 and ρ is 1.88 XI, which is one order of magnitude lower than the required value.
If O”Ω, then ε0ερ=50μF@MΩ and 500
μF-MΩ is not satisfied, and the standard value of insulation resistance is 110
In order to satisfy 0OOΩ, that is, 10100 or more, the capacitance C must be limited to 0.005 μF or less. It is the capacitance-resistance product (CxR
) always indicates 50 μF and MΩ, so ■ is 100
When it is 0OOΩ, C is 0.005 μF, and if C is thicker than this, the value becomes smaller than 10000 MΩ,
This is because 0.005 μF is the highest capacitance that satisfies the standard.

従って磁器組成物の比抵抗が低いとその材料の笑用性、
特に積層形コしデンサの特長である小型大容量の特長を
生かすことはできないし、全く意味のないことにもなる
。よって磁器組成物の誘電率と比抵抗の積がある値以上
を持つことが実用上極めて重要なことである。
Therefore, if the specific resistance of the porcelain composition is low, the usability of the material will be reduced.
In particular, it is not possible to take advantage of the small size and large capacity, which is a feature of the laminated copper capacitor, and it is completely meaningless. Therefore, it is extremely important in practice that the product of the dielectric constant and specific resistance of the ceramic composition has a certain value or more.

また、!*Jf4形チップコンデンサの場合は、チップ
コンデンサを基板に実装したさき、基板とチップコンデ
ンサを構成している磁器組成物との熱膨張係数の違いに
より、チップコンデンサに機械的な歪が加わり、チップ
コンデンサにクラックが発生したり、破損したりするこ
とがある。またエポキシ系樹脂等を外装したディップコ
ンデンサの場合も外装樹脂の応力でディップコンデンサ
にクラックが発生する場合がある。いずれの場合もコン
デンサを形成している磁器の機械的強度が低いほど、ク
ラックが入りやすく容易に破損するため、信頼性が低く
なる。したがって、磁器の機械的強度をできるだけ増大
させることは実用上極めて重要なことである。
Also,! *In the case of Jf4 type chip capacitors, after the chip capacitor is mounted on a board, mechanical strain is applied to the chip capacitor due to the difference in thermal expansion coefficient between the board and the ceramic composition that makes up the chip capacitor. The capacitor may crack or be damaged. Furthermore, in the case of a dip capacitor coated with epoxy resin or the like, cracks may occur in the dip capacitor due to the stress of the coat resin. In either case, the lower the mechanical strength of the porcelain forming the capacitor, the more likely it is to crack and break, resulting in lower reliability. Therefore, it is of practical importance to increase the mechanical strength of porcelain as much as possible.

ところでPb(MgバW%)0.−PbTiO,系磁器
組成物については既にエヌ、エヌ、クライニクとエイア
イ、アグラノフスカヤ(N 、N 、Krainik 
andA +I 、 Agranovskaya (F
iziko Tverdogo T、ela。
By the way, Pb (Mg bar W%) 0. -PbTiO, based porcelain compositions have already been reported by N, N, Krainik and AI, Agranovskaya.
andA +I, Agranovskaya (F
iziko Tverdogo T, ela.

Vo、2.Jcil 、 pp’yo 〜72.Jan
vara 1960))より提案があったが、積層形コ
ンデンサを作製する際に評価されるべき特性の中で誘電
率とその温度特性記載しかなく、その実用性は明らかで
なかった。また( 5rxPb1−xTiOa )a(
PbMgo、sWo、sOs )b〔タタシ、x= 0
−0.10 、 aハ0.35〜0.5 、 bハ0.
5〜0.65であり、モしてa+b=1)について、モ
ノリシックコンデンザおよびその製造方法としてI#開
昭52−21662号公報に開示され、また@電体粉末
組成物として特開昭52−21699号公報に開示され
ている。ここにおいても組成物の特性として誘電率が約
2000〜8000 銹電損失カ0.!ll〜5.0チ
という記載はあるが比抵抗あるいは容量抵抗積について
は全く記載がなく実用性は明らかであツタ。さらニPb
(Mg、W、)0. トPbTiOs ヲ主トスル組成
物テあッテ、pb(Mg34w% ) 0. カ20.
0〜70.0 モ/L、 % 、 PbTi0. カ3
0.0〜80.Oモ/l、 %(7)範囲の組成物に対
し、MgO量を計算値の30−以下添加含有したことを
特徴とする高誘電率磁器組成物が特開昭55−1446
09号公報として開示されている。
Vo, 2. Jcil, pp'yo ~72. Jan
Vara (1960)), but among the characteristics to be evaluated when manufacturing a multilayer capacitor, only the dielectric constant and its temperature characteristics were described, and its practicality was not clear. Also (5rxPb1-xTiOa)a(
PbMgo, sWo, sOs) b [Tatashi, x = 0
-0.10, a 0.35 to 0.5, b 0.
5 to 0.65, and a + b = 1), it is disclosed in Japanese Patent Application Laid-open No. 1982-21662 as a monolithic capacitor and its manufacturing method, and as @Electric powder composition It is disclosed in Japanese Patent No.-21699. Here again, the characteristics of the composition are that the dielectric constant is approximately 2000 to 8000, and the galvanic loss is 0. ! There is a description of 11 to 5.0 inches, but there is no mention of specific resistance or capacitance-resistance product, and the practicality is clear. Sarani Pb
(Mg, W,)0. PbTiOs Main composition: Pb (Mg34w%) 0. F20.
0 to 70.0 mo/L, %, PbTi0. Ka3
0.0~80. A high dielectric constant porcelain composition characterized in that it contains an amount of MgO added to a calculated value of 30 or less is disclosed in Japanese Patent Application Laid-open No. 55-1446.
It is disclosed as Publication No. 09.

しかしながら、この特許においても誘電率が約2300
〜7100で誘電損失が0゜3チ〜2.1チという記載
のほかに誘電率の温度特性の記載はあるが、比抵抗ある
いは容量抵抗積に関する記載はなくこの組成物について
も実用性は明らかでない。次に本発明者達は既に910
℃〜950℃の温度で焼結でき、Pb (Mg MW3
A) 03とPbTios系二成分からなり、これを(
Pb(Mg34W%)Os)xl:PbTi0s)、−
xと表わしたときにXが0.65 (x≦1.00の範
囲にある組成物を提案している。この組成物は、誘電率
と比抵抗の積が5.65 X 1o15Ω・ぼ以上の高
い値を持ち、誘電損失の小さい優れた電気的特性を有し
ている。
However, even in this patent, the dielectric constant is about 2300.
In addition to the description that the dielectric loss is 0.3 to 2.1 inches for ~7100, there is also a description of the temperature characteristics of the dielectric constant, but there is no description of specific resistance or capacitance-resistance product, and the practicality of this composition is clear. Not. Next, the inventors have already identified 910
It can be sintered at temperatures between ℃ and 950℃, and Pb (Mg MW3
A) It consists of two components of 03 and PbTios system, which is (
Pb(Mg34W%)Os)xl:PbTi0s), -
We are proposing a composition in which X is in the range of 0.65 (x≦1.00). This composition has a product of dielectric constant and specific resistance of 5.65 x 1015 Ω or more. It has a high value of , and has excellent electrical properties with low dielectric loss.

しかしながら、上記組成物は、いずれも機械的強度が低
いため、その用途は自ら狭い範囲に限定せざるを得なか
った。
However, since all of the above compositions have low mechanical strength, their applications have had to be limited to a narrow range.

本発明は以上の点にかんがみ900〜1000℃の低温
領域で焼結でき、かつ誘電率と比抵抗の積が5.65 
×lQ’5Qec1rL(すなわち容量抵抗積が500
 p F −Mn)以上の高い値を持ち、誘電損失が小
さい優れた電気的特性を有し、更に機械的強度も大きい
磁器組成物を提供しようとするものであり、マグネシウ
ム・タングステン酸鉛(Pb(MgMW%)0.〕とチ
タン酸鉛(PbTiO,)からなる二成分組成物をpb
(Mg%w%)o、 )x(PbTiO,)I X と
表わしたときにXが0.50≦X≦1.00の範囲内に
ある主成分組成物に副成分として、マンガン(Mn)を
主成分に対して0.01〜1原子係添加含有せしめるこ
とを特徴とするものである。
In view of the above points, the present invention can be sintered in a low temperature range of 900 to 1000°C, and has a product of dielectric constant and specific resistance of 5.65.
×lQ'5Qec1rL (that is, the capacitance-resistance product is 500
The purpose of this project is to provide a porcelain composition that has a high value of p F -Mn) or higher, has excellent electrical properties with low dielectric loss, and also has high mechanical strength. (MgMW%) 0.] and lead titanate (PbTiO,).
(Mg%w%)o, )x(PbTiO,)I It is characterized by containing 0.01 to 1 atomic percentage of the main component.

以下、本発明を実施例により詳細に説明する。Hereinafter, the present invention will be explained in detail with reference to Examples.

出発原料として純度99.9%以上の酸化鉛(PbO)
Lead oxide (PbO) with a purity of 99.9% or more as a starting material
.

酸化マグネシウム(MgO)、酸化タングステン(Wo
s)酸化チタン(Tie、)、および炭酸マンガン(M
nCO,)を使用し、表に示した配合比となるように各
々秤量する。次に秤量した各材料をボールミル中で湿式
混合した後750〜800℃で予焼を行ない、この粉末
をボールミルで粉砕し、日別、乾燥後、有機バインダー
を入れ整粒後プレスし、直径1611m、厚さ約2鮎の
円板4枚と、直径16朋、厚さ約IQ++nの円柱を作
製した。次に空気中900〜1000℃の温度で1時間
焼結した。焼結した円板4枚の上下面に600”Cで銀
電極を焼付け、デジタルLCRメーターで周波数I K
Hz 、 [圧I Vr、m、 s 、温度20℃で容
量と誘電損失を測定し、誘電率を算出した。次に超絶縁
抵抗計で50Vの電圧を1分間印加して絶縁抵抗を温度
20℃で測定し、比抵抗を算出した。
Magnesium oxide (MgO), tungsten oxide (Wo
s) Titanium oxide (Tie, ) and manganese carbonate (M
nCO,), and weigh each to achieve the blending ratio shown in the table. Next, the weighed materials were wet-mixed in a ball mill, pre-baked at 750-800°C, and the powder was ground in a ball mill. After drying, an organic binder was added and the particles were sized and pressed. The diameter was 1611 m. , four disks each having a thickness of approximately 2 mm and a cylinder having a diameter of 16 mm and a thickness of approximately IQ++n were prepared. Next, it was sintered in air at a temperature of 900 to 1000°C for 1 hour. Silver electrodes were baked on the top and bottom surfaces of four sintered disks at 600"C, and the frequency IK was measured using a digital LCR meter.
The capacitance and dielectric loss were measured at Hz, [pressure I Vr, m, s, and temperature 20° C., and the dielectric constant was calculated. Next, a voltage of 50 V was applied for 1 minute using a super insulation resistance meter, the insulation resistance was measured at a temperature of 20° C., and the specific resistance was calculated.

機械的性質を抗折強度で評価するため、焼結した円柱か
ら厚さ0.5 art 、幅211In、長さ約131
1IIIIの矩形板を10枚切り出した。支点間距離を
9鴎により、三なる式に従い、抗折強度τ〔ψ徳2〕を
めた。ただしノは支点間距離、tは試料の厚み、Wは試
料の幅である。電気的特性は円板試料4点の平均値、抗
折強度は矩形板試料10点の平均値よりめた。
In order to evaluate the mechanical properties by bending strength, a sintered cylinder with a thickness of 0.5 art, a width of 211 In, and a length of approximately 131 In was prepared.
Ten rectangular plates of 1III were cut out. The bending strength τ [ψtoku 2] was calculated using the distance between the fulcrums as 9 and according to the three formulas. Here, ① is the distance between the supporting points, t is the thickness of the sample, and W is the width of the sample. The electrical properties were determined from the average value of 4 disk samples, and the bending strength was determined from the average value of 10 rectangular plate samples.

このようにして得られた磁器の主成分(Pb(iV1g
3(W)4 ) Os ) x (Pb’I t Os
 ) 1−Xの配合比Xおよび副成分添加量と抗折強度
、誘電率、誘電損失および容量抵抗積(表ではε0ερ
と表示した)の関係を表に示す。
The main component of the porcelain thus obtained (Pb (iV1g
3(W)4 ) Os ) x (Pb'I t Os
) 1-X blending ratio X and amount of subcomponents added, bending strength, dielectric constant, dielectric loss, and capacitance-resistance product (ε0ερ in the table)
) is shown in the table.

注)試料番号化*印を付したものは本発明の請求範囲に
含まれない。
Note) Sample numbering marked with * is not included in the scope of the present invention.

表に示した結果からも明らかなように副成分として、マ
ンガン(Mn)を添加含有せしめることにより、抗折強
度および容量抵抗積を共に高め、しかも低い誘電損失の
値を保った信頼性に富む優れた高誘電率磁器組成物が得
られることがわかる。
As is clear from the results shown in the table, adding manganese (Mn) as a subcomponent increases both the bending strength and the capacitance-resistance product, while maintaining a low dielectric loss value, which is highly reliable. It can be seen that an excellent high dielectric constant ceramic composition can be obtained.

こうした優れた特性を示す本発明の磁器組成物は焼結温
度が1000℃以下の低温であるため積層コンデンサの
内部電極の低価格化を実現できると共に、省エネルギー
や炉材の節約にもなるという棲めて優れた効果も生じる
The ceramic composition of the present invention, which exhibits these excellent properties, has a low sintering temperature of 1000°C or less, which makes it possible to reduce the cost of the internal electrodes of multilayer capacitors, as well as save energy and furnace materials. It also produces excellent effects.

なお主成分配合比Xが0.5オ満では、容量抵抗積が規
格値より小さくなり、誘tt損失も5.0%を越えるた
め実用的でない。また副成分であるマンカン(Mn)の
添加量が0.01原子96未満では抗折強度の改善効果
が小さく、1原子チを超えると逆に抗折強度が小さくな
り実用的でない。
It should be noted that if the main component compounding ratio X is less than 0.5 ohms, the capacitance-resistance product will be smaller than the standard value and the induced tt loss will also exceed 5.0%, which is not practical. Furthermore, if the amount of manguin (Mn) added as a subcomponent is less than 0.01 atom 96, the effect of improving the bending strength will be small, and if it exceeds 1 atom H, the bending strength will become so small that it is not practical.

Claims (1)

【特許請求の範囲】[Claims] マグネシウム・タングスデンi!鉛(Pb(Mg%W3
.4 ) Os )とチタン牟°鉛(PbTIOs)か
らなる二成分組成物ヲ(Pb (Mg3(W3() (
J3 ) X (Pb’i 103 )I Xと表わし
たときにXが0.50≦X≦1.00の範囲内にある主
成分組成物に副成分としてマンカン(M口)を主成分に
対して0.01〜1原子係添加含有せしめることを特徴
とする磁器組成物。
Magnesium Tungsden i! Lead (Pb(Mg%W3
.. 4) A binary composition consisting of Os) and titanium lead (PbTIOs) (Pb(Mg3(W3())
J3) X (Pb'i 103 )I When expressed as A porcelain composition characterized in that it contains 0.01 to 1 atomic percentage of .
JP58127220A 1983-07-13 1983-07-13 Ceramic composition Granted JPS6021858A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58127220A JPS6021858A (en) 1983-07-13 1983-07-13 Ceramic composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58127220A JPS6021858A (en) 1983-07-13 1983-07-13 Ceramic composition

Publications (2)

Publication Number Publication Date
JPS6021858A true JPS6021858A (en) 1985-02-04
JPS6227024B2 JPS6227024B2 (en) 1987-06-11

Family

ID=14954692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58127220A Granted JPS6021858A (en) 1983-07-13 1983-07-13 Ceramic composition

Country Status (1)

Country Link
JP (1) JPS6021858A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01214497A (en) * 1988-02-22 1989-08-28 Dainippon Printing Co Ltd Method of forming rugged pattern and rugged pattern forming sheet for use in said method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01214497A (en) * 1988-02-22 1989-08-28 Dainippon Printing Co Ltd Method of forming rugged pattern and rugged pattern forming sheet for use in said method

Also Published As

Publication number Publication date
JPS6227024B2 (en) 1987-06-11

Similar Documents

Publication Publication Date Title
JPS6227026B2 (en)
JPS6021858A (en) Ceramic composition
JPS6227025B2 (en)
JPS6234707B2 (en)
JPS6227029B2 (en)
JPS6227028B2 (en)
JPS6021859A (en) Ceramic composition
JPS6234708B2 (en)
JPS6234706B2 (en)
JPS6033256A (en) Ceramic composition
JPH0143405B2 (en)
JPS6235990B2 (en)
JPS6033255A (en) Ceramic composition
JPS6230151B2 (en)
JPH0360788B2 (en)
JPS6256605B2 (en)
JPS6021857A (en) Ceramic composition
JPS5957956A (en) Ceramic composition
JPS6227027B2 (en)
JPH0457631B2 (en)
JPH0419648B2 (en)
JPS6149268B2 (en)
JPS6033259A (en) Ceramic composition
JPS6051665A (en) Ceramic composition
JPS63176351A (en) Dielectric ceramic composition