JPH0419648B2 - - Google Patents

Info

Publication number
JPH0419648B2
JPH0419648B2 JP58158427A JP15842783A JPH0419648B2 JP H0419648 B2 JPH0419648 B2 JP H0419648B2 JP 58158427 A JP58158427 A JP 58158427A JP 15842783 A JP15842783 A JP 15842783A JP H0419648 B2 JPH0419648 B2 JP H0419648B2
Authority
JP
Japan
Prior art keywords
composition
main component
porcelain
pbtio
sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58158427A
Other languages
Japanese (ja)
Other versions
JPS6049504A (en
Inventor
Haruhiko Myamoto
Masatomo Yonezawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP58158427A priority Critical patent/JPS6049504A/en
Publication of JPS6049504A publication Critical patent/JPS6049504A/en
Publication of JPH0419648B2 publication Critical patent/JPH0419648B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Capacitors (AREA)
  • Inorganic Insulating Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、磁器組成物、時に1000℃以下の低温
で焼結でき、誘電率が高く、誘電損失が小さく、
絶縁抵抗が高く、しかも機械的強度の高い磁器組
成物に関するものである。 従来、誘電体磁器組成物として、チタン酸バリ
ウム(BaTiO3)を主成分とする磁器が広く実用
化されていることは周知のとおりである。しかし
ながら、チタン酸バリウム(BaTiO3)を主成分
とするものは、焼結温度が通常1300〜1400℃の高
温である。このためこれを積層形コンデンサに利
用する場合には内部電極としてこの焼結温度に耐
え得る材料、例えば白金、パラジウムなどの高価
な貴金属を使用しなければならず、製造コストが
高くつくという欠点がある。積層形コンデンサを
安く作るためには、銀、ニツケルなどを主成分と
する安価な金属が内部電極に使用できるような、
できるだけ低温、特に1000℃以下で焼結できる磁
器が必要である。 また、磁器組成物の電気的特性として、誘電率
が高く、誘電損失が小さく、絶縁抵抗が高いこと
が基本的に要求される。 また、積層形チツプコンデンサの場合は、チツ
プコンデンサを基板に実装したとき、基板とチツ
プコンデンサを構成している磁器との熱膨張係数
の違いにより、チツプコンデンサに機械的な歪が
加わり、チツプコンデンサにクラツクが発生した
り、破損したりすることがある。またエポキシ系
樹脂等を外装したデイツプコンデンサの場合も外
装樹脂の応力でデイツプコンデンサにクラツクが
発生する場合がある。いずれの場合もコンデンサ
が形成している磁器の機械的強度が低いほど、ク
ラツクが入りやすく容易に破損するため、信頼性
が低くなる。したがつて、磁器の機械的強度をで
きるだけ増大させることは実用上極めて重要なこ
とである。 本発明の目的は900〜1000℃の低温領域で焼結
でき、誘電率が高く、誘電損失が小さく、絶縁抵
抗が高い優れた電気的特性を有し、特に機械的強
度も大きい信頼性の高い磁器組成物を提供するこ
とにある。 本発明の磁器組成物は、ニツケル・タングステ
ン酸鉛〔Pb(Ni1/2W1/2)O3〕とチタン酸鉛
〔PbTiO3〕とを主成分とし、その組成を〔Pb
(Ni1/2W1/2)O3x〔PbTiO31-xと表わしたときの
主成分配合比xが0.30≦x≦0.60の範囲内にある
主成分組成物に、副成分としてマンガン(Mn)
を前記主成分組成物に対して0.01〜1原子%添加
含有せしめてなることを特徴とする。 以下、本発明をその実施例により詳細に説明す
る。 出発原料として純度99.9%以上の酸化鉛
(PbO)、酸化ニツケル(NiO)、酸化タングステ
ン(WO3)、酸化チタン(TiO2)および炭酸マン
ガン(MnCO3)を使用し、第1表に示した配合
比となるように各々秤量した各材料をボールミル
中で湿式混合した後、750〜800℃で予焼を行な
い、この粉末をボールミルで粉砕し、口別、乾燥
後、有機バインダーを入れ、整粒後プレスし、試
料として直径16mm、厚さ約2mmの円板4枚と、直
径16mm、厚さ約10mmの円柱とを作製した。次にこ
の試料を空気中900〜1000℃の温度で1時間焼結
し、焼結した円板4枚の上下面に600℃で銀電極
を焼付け、デジタルLCRメーター周波数1KHz、
電圧1Vr.m.s温度20℃で容量と誘電損失を測定
し、誘電率を算出した。次に超絶縁抵抗計で50V
の電圧を1分間印加して絶縁抵抗を温度20℃で測
定し、比抵抗を算出した。機械的性質を抗折強度
で評価するため、焼結した円柱から厚さ0.5mm、
幅2mm、長さ13mmの矩形板を10枚切り出した。支
点間距離を9mmにより、三点法で破壊荷重Pm
〔Kg〕を測定し、τ=2/3Pml/Wt2〔Kg/cm2〕なる
式 に従い、抗折強度τ〔Kg/cm2〕を求めた。ただし
lは支点間距離、tは試料の厚み、Wは試料の幅
である。電気的特性は円板試料4点の平均値、抗
折強度は矩形板試料10点の平均値より求めた。こ
のようにして得られた磁器組成物の主成分〔Pb
(Ni1/2W1/2)O3x〔PbTiO31-xの配合比xおよび
副成分添加量と誘電率、誘電損失、比抵抗および
抗折強度の関係を第1表中に示す。なお、試料番
号に*印を付したものは本発明の範囲に含まれな
い。
The present invention provides a porcelain composition that can be sintered at low temperatures, sometimes below 1000°C, has a high dielectric constant, low dielectric loss,
The present invention relates to a ceramic composition that has high insulation resistance and high mechanical strength. It is well known that ceramics containing barium titanate (BaTiO 3 ) as a main component have been widely put into practical use as dielectric ceramic compositions. However, those whose main component is barium titanate (BaTiO 3 ) have a sintering temperature of usually 1300 to 1400°C. Therefore, when using this material in a multilayer capacitor, a material that can withstand this sintering temperature must be used for the internal electrodes, such as an expensive noble metal such as platinum or palladium, which has the disadvantage of high manufacturing costs. be. In order to make multilayer capacitors cheaply, it is necessary to use inexpensive metals mainly composed of silver, nickel, etc., which can be used for the internal electrodes.
Porcelain that can be sintered at as low a temperature as possible, especially below 1000°C, is needed. Additionally, the electrical properties of the ceramic composition are basically required to have a high dielectric constant, low dielectric loss, and high insulation resistance. In addition, in the case of multilayer chip capacitors, when the chip capacitor is mounted on a board, mechanical strain is applied to the chip capacitor due to the difference in thermal expansion coefficient between the board and the porcelain that makes up the chip capacitor. This may cause cracks or damage. Furthermore, in the case of a dip capacitor coated with epoxy resin or the like, cracks may occur in the dip capacitor due to the stress of the coating resin. In either case, the lower the mechanical strength of the porcelain that the capacitor is made of, the more likely it is to crack and break, resulting in lower reliability. Therefore, it is of practical importance to increase the mechanical strength of porcelain as much as possible. The purpose of the present invention is to sinter in the low temperature range of 900 to 1000℃, have excellent electrical properties such as high dielectric constant, low dielectric loss, and high insulation resistance, and in particular, have high mechanical strength and high reliability. An object of the present invention is to provide a porcelain composition. The porcelain composition of the present invention has lead nickel tungstate [Pb(Ni 1/2 W 1/2 ) O 3 ] and lead titanate [PbTiO 3 ] as main components, and its composition is [Pb
(Ni 1/2 W 1/2 ) O 3 ] x [PbTiO 3 ] A subcomponent is added to the main component composition in which the main component blending ratio x, expressed as 1-x, is within the range of 0.30≦x≦0.60. as manganese (Mn)
It is characterized by containing 0.01 to 1 atomic % of the above-mentioned main component composition. Hereinafter, the present invention will be explained in detail with reference to examples thereof. Lead oxide (PbO), nickel oxide (NiO), tungsten oxide (WO 3 ), titanium oxide (TiO 2 ), and manganese carbonate (MnCO 3 ) with a purity of 99.9% or higher were used as starting materials, and the results were as shown in Table 1. After wet-mixing each weighed material in a ball mill so that the mixing ratio is achieved, pre-baking is performed at 750-800℃, this powder is pulverized in a ball mill, divided into portions, dried, an organic binder is added, and the mixture is prepared. After the grains were pressed, four disks with a diameter of 16 mm and a thickness of about 2 mm and a cylinder with a diameter of 16 mm and a thickness of about 10 mm were produced as samples. Next, this sample was sintered in air at a temperature of 900 to 1000℃ for 1 hour, silver electrodes were baked at 600℃ on the top and bottom surfaces of four sintered disks, and a digital LCR meter frequency was 1KHz.
The capacitance and dielectric loss were measured at a voltage of 1 Vr.ms and a temperature of 20°C, and the dielectric constant was calculated. Next, check 50V using a super insulation resistance tester.
The voltage was applied for 1 minute, the insulation resistance was measured at a temperature of 20°C, and the specific resistance was calculated. In order to evaluate the mechanical properties by bending strength, a sintered cylinder with a thickness of 0.5 mm,
Ten rectangular plates with a width of 2 mm and a length of 13 mm were cut out. Using the three-point method with a distance between fulcrums of 9mm, the breaking load Pm
[Kg] was measured, and the bending strength τ [Kg/cm 2 ] was determined according to the formula: τ=2/3Pml/Wt 2 [Kg/cm 2 ]. However, l is the distance between the supporting points, t is the thickness of the sample, and W is the width of the sample. The electrical properties were determined from the average value of 4 disk samples, and the bending strength was determined from the average value of 10 rectangular plate samples. The main component of the porcelain composition thus obtained [Pb
(Ni 1/2 W 1/2 ) O 3 ] x [PbTiO 3 ] The relationship between the compounding ratio x of 1-x and the amount of added subcomponents, dielectric constant, dielectric loss, specific resistance and bending strength is shown in Table 1. Shown below. Note that samples marked with * are not included in the scope of the present invention.

【表】【table】

【表】 この結果から明らかなように、本発明のもの
は、誘電率が1100〜6900と高く、誘電損失が0.3
〜2.6%と小さく、比抵抗が1×1011〜2〜
1013Ω・cmという高い値を示し、さらに抗折強度
も950〜1460Kg/cm2と実用上十分高い値を示す信
頼性の高い実用性の極めて高い磁器組成物が得ら
れた。このように優れた特性を示す本発明の磁器
は焼結温度が1000℃以下の低温であるため積層コ
ンデンサの内部電極の低価格化を実現できると共
に、省エネルギーや炉材の節約にもなるという極
めて優れた効果も生じる。なお、主成分配合比x
はx<0.30ではキユリー温度が実用範囲より高く
なりすぎ室温での誘電率が小さくなり、また誘電
損失も大きくなるため実用的でない。x>0.60で
は磁器としての焼結せず実用的でない。また副成
分であるMnの添加量が0.01原子%未満では抗折
強度の改善効果が小さく、1原子%を超えると逆
に抗折強度が小さくなるため実用的でない。
[Table] As is clear from this result, the material of the present invention has a high dielectric constant of 1100 to 6900 and a dielectric loss of 0.3.
〜2.6%, specific resistance 1×10 11 〜2〜
A highly reliable and highly practical ceramic composition was obtained which exhibited a high value of 10 13 Ω·cm and also had a transverse strength of 950 to 1460 Kg/cm 2 , which was sufficiently high for practical use. The porcelain of the present invention, which exhibits such excellent properties, is sintered at a low temperature of 1000°C or less, making it possible to reduce the cost of internal electrodes in multilayer capacitors, as well as save energy and furnace materials. Excellent effects also occur. In addition, the main component blending ratio x
When x<0.30, the Curie temperature becomes too high than the practical range, the dielectric constant at room temperature becomes small, and the dielectric loss becomes large, which is not practical. If x > 0.60, it will not be sintered as porcelain and is not practical. Furthermore, if the amount of the subcomponent Mn added is less than 0.01 atomic %, the effect of improving the flexural strength is small, and if it exceeds 1 atomic %, the flexural strength decreases, which is not practical.

Claims (1)

【特許請求の範囲】 1 ニツケル・タングステン酸鉛〔Pb(Ni1/2
W1/2)O3〕とチタン酸鉛〔PbTiO3〕とを主成分
とし、その組成を〔Pb(Ni1/2W1/2)O3x
〔PbTiO31-xと表わしたときの主成分配合比xが
0.30≦x≦0.60の範囲内にある主成分組成物に、
副成分としてマンガン(Mn)を前記主成分組成
物に対して0.01〜1原子%添加含有せしめてなる
ことを特徴とする磁器組成物。
[Claims] 1. Lead nickel tungstate [Pb(Ni 1/2
The main components are [Pb(Ni 1/2 W 1/2 )O 3 ] and lead titanate [PbTiO 3 ], and the composition is [Pb(Ni 1/2 W 1/2 )O 3 ] x
[PbTiO 3 ] When expressed as 1-x , the main component blending ratio x is
The main component composition is within the range of 0.30≦x≦0.60,
A porcelain composition characterized in that it contains manganese (Mn) as a subcomponent in an amount of 0.01 to 1 atomic % based on the main component composition.
JP58158427A 1983-08-30 1983-08-30 Porcelain composition Granted JPS6049504A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58158427A JPS6049504A (en) 1983-08-30 1983-08-30 Porcelain composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58158427A JPS6049504A (en) 1983-08-30 1983-08-30 Porcelain composition

Publications (2)

Publication Number Publication Date
JPS6049504A JPS6049504A (en) 1985-03-18
JPH0419648B2 true JPH0419648B2 (en) 1992-03-31

Family

ID=15671517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58158427A Granted JPS6049504A (en) 1983-08-30 1983-08-30 Porcelain composition

Country Status (1)

Country Link
JP (1) JPS6049504A (en)

Also Published As

Publication number Publication date
JPS6049504A (en) 1985-03-18

Similar Documents

Publication Publication Date Title
JPH0449503B2 (en)
JPS6227026B2 (en)
JPS6227029B2 (en)
JPS6227028B2 (en)
JPH0360788B2 (en)
JPH0419648B2 (en)
JPS6230151B2 (en)
JPS6256605B2 (en)
JPS6050807A (en) Porcelain composition
JP2926827B2 (en) Dielectric porcelain composition
JPS6227025B2 (en)
JPH0360789B2 (en)
JPS6033259A (en) Ceramic composition
JPH0457631B2 (en)
JPS6049505A (en) Porcelain composition
JPS6050808A (en) Porcelain composition
JPS6149269B2 (en)
JPS6149268B2 (en)
JPS6046965A (en) Ceramic composition
JPS6236326B2 (en)
JPS6224382B2 (en)
JPH0534302B2 (en)
JPS6224383B2 (en)
JPS63117959A (en) Dielectric ceramic composition
JPS6224389B2 (en)