JPS6033255A - Ceramic composition - Google Patents

Ceramic composition

Info

Publication number
JPS6033255A
JPS6033255A JP58137992A JP13799283A JPS6033255A JP S6033255 A JPS6033255 A JP S6033255A JP 58137992 A JP58137992 A JP 58137992A JP 13799283 A JP13799283 A JP 13799283A JP S6033255 A JPS6033255 A JP S6033255A
Authority
JP
Japan
Prior art keywords
capacitance
composition
dielectric constant
capacitor
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58137992A
Other languages
Japanese (ja)
Inventor
治彦 宮本
米沢 正智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP58137992A priority Critical patent/JPS6033255A/en
Publication of JPS6033255A publication Critical patent/JPS6033255A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は磁器組成物、特に、1000℃以下の低温で焼
結でき、誘電率と比抵抗の積が高く、シかも機械的強度
の高い磁器組成物に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a porcelain composition, and particularly to a porcelain composition that can be sintered at a low temperature of 1000°C or less, has a high product of dielectric constant and specific resistance, and has high mechanical strength. .

従来、誘電体磁器組成物として、チタン酸バリウム(B
aTiO3)を主成分とする磁気組成物が広く実用化さ
れていることは周知のとおシである。しかしながら、チ
タン酸バリウム(BaTi03 )を主成分とするもの
は、焼結温度が通常1300〜1400℃の高温である
。このためこれを積層形コンデンサに利用する場合には
内部電極としてこの焼結温度に耐え得る材料2例えば白
金、パラジウムなどの高価な貴金属を使用しなければな
らず、製造コストが高くつくという欠点がある。積層形
コンデンサを安く作るためには銀、ニッケルなどを主成
分とする安価な金属が内部電極に使用できるような、で
きるだけ低温、特に1000℃以下で焼結できる磁器組
成物が必要である。
Conventionally, barium titanate (B
It is well known that magnetic compositions containing aTiO3 as a main component have been widely put into practical use. However, those whose main component is barium titanate (BaTi03) have a sintering temperature of usually 1300 to 1400°C. Therefore, when using this material in a multilayer capacitor, a material 2 that can withstand this sintering temperature must be used as the internal electrode, such as an expensive noble metal such as platinum or palladium, which has the disadvantage of high manufacturing costs. be. In order to manufacture multilayer capacitors at low cost, it is necessary to have a porcelain composition that can be sintered at as low a temperature as possible, especially at 1000° C. or lower, so that inexpensive metals mainly composed of silver, nickel, etc. can be used for the internal electrodes.

ところで磁器組成物を用い、実用的な積層形コンデ゛ン
サを作製するときに磁器組成物の電気的特性として多く
の項目が評価されなければ力らない。
By the way, when producing a practical multilayer capacitor using a porcelain composition, many items regarding the electrical properties of the porcelain composition must be evaluated.

一般的に誘電率はできるだけ大きく、誘電損失はできる
だけ小さく、比抵抗はできるだけ大きく、誘電率の温度
変化は小さいことなどが要求される。
Generally, it is required that the dielectric constant be as large as possible, the dielectric loss as small as possible, the resistivity as large as possible, and the temperature change in the dielectric constant as small as possible.

しかしながら、実用上積層形コンデンサにおいては誘電
率ではなく、マず容量、次に容量の温度変化率、誘電損
失などの値が必要とされる。積層形コンデンサにおいて
、容量は磁器組成物の誘電率に比例するが、しかしその
厚みに反比例し、電極面積、積層数に比例するので、一
定の容量を得るためには磁器組成物の誘電率が大きいこ
とは必ずしも絶対的な要因でない。さらに容量の温度変
化率(誘電率の温度変化率)は用途によシ種々許容され
た範囲があり、磁器組成物の誘電率の温度変化率も積層
形コンデンサを作製するときの絶対的な要因でない。
However, for practical purposes, multilayer capacitors require values such as capacitance, rate of change of capacitance with temperature, and dielectric loss, rather than permittivity. In a multilayer capacitor, the capacitance is proportional to the dielectric constant of the porcelain composition, but it is inversely proportional to its thickness, and proportional to the electrode area and the number of laminated layers, so in order to obtain a constant capacitance, the dielectric constant of the porcelain composition must be adjusted. Size is not necessarily an absolute factor. Furthermore, the temperature change rate of capacitance (temperature change rate of dielectric constant) has various allowable ranges depending on the application, and the temperature change rate of dielectric constant of the ceramic composition is also an absolute factor when manufacturing multilayer capacitors. Not.

一方誘電損失は用途によシ一定の値以下でなければなら
ないという規定があり室温で最大50チ以下である。さ
らに比抵抗に関しては、例えばEIAJ規格〔日本電子
機械工業会の電子機器用積層磁器コンデンサ(チップ形
) RC−3698B)に述べられているごとく、積層
コンデンサの絶縁抵抗としてiooooMQ以上または
容量抵抗積で500μF・MΩ以上のいずれか小さい方
以上と規定されている。すなわち磁器組成物の誘電率と
比抵抗の積がある絶対値以上なければ、任意の容量、特
に太きな容量のコンデンサを実用的規格に合せることが
できず、その用途が非常に限定され、実用的な意味がな
くなる。この点を詳、シく説明すると次の様になる。積
層形コンデンサでは、n+1個の内部電極を構成して一
般にn個の同じ厚さの層からなる単一層コンデンサが積
層された構造になっている。この場合、単一層当シの容
量をC6,絶縁抵抗をRoとすれば、積層形コンデンサ
の容量CはC0のn倍になシ、絶縁抵抗几はR6の1 
/ nになる。ここで磁気組成物の誘電率をε、真空の
誘電率を6゜。
On the other hand, there is a regulation that the dielectric loss must be below a certain value depending on the application, and is at most 50 inches or less at room temperature. Furthermore, regarding specific resistance, as stated in the EIAJ standard [Japan Electronics Industries Association's Multilayer Ceramic Capacitors (Chip Type) RC-3698B], the insulation resistance of a multilayer capacitor must be ioooooMQ or more or the capacitance-resistance product. It is specified as 500μF・MΩ or more, whichever is smaller. In other words, unless the product of the dielectric constant and resistivity of the ceramic composition exceeds a certain absolute value, it is impossible to make a capacitor of any capacitance, especially a capacitor with a large capacitance, meet practical standards, and its uses are extremely limited. It has no practical meaning. This point will be explained in detail as follows. A multilayer capacitor has a structure in which single-layer capacitors are stacked, generally consisting of n layers of the same thickness and forming n+1 internal electrodes. In this case, if the capacitance of the single layer is C6 and the insulation resistance is Ro, then the capacitance C of the multilayer capacitor is n times C0, and the insulation resistance is 1 of R6.
/ becomes n. Here, the permittivity of the magnetic composition is ε, and the permittivity of vacuum is 6°.

磁器組成物の比抵抗をρ、単一層コンデンサの磁器の厚
さを62重なる電極面積を8とすれば、単一層コンデン
サの00は(ε。εS)/dとなJ) Reは(ρd)
/Sとなる。従ってn層からなる積層コンデンサの容量
(C)と絶縁抵抗(旬の積CXRは〔(ρd)/ (n
s) )’ X ((n層。εs)/ci)−ε0ερ
となる。
If the specific resistance of the ceramic composition is ρ, the thickness of the ceramic of the single-layer capacitor is 62, and the area of the overlapping electrodes is 8, then 00 of the single-layer capacitor is (ε.εS)/dJ) Re is (ρd)
/S. Therefore, the product of capacitance (C) and insulation resistance (CXR) of a multilayer capacitor consisting of n layers is [(ρd)/(n
s) )' X ((n layer.εs)/ci)−ε0ερ
becomes.

すなわちどのような容量の積層コンデンサもその容量・
抵抗積(CXR)は、磁器組成物のεとρの積に6゜を
乗じた一定値(ε。ερ)に規格化される。容量・抵抗
積CXRが500μF−MΩすなわち500F・Ω以上
ということは、ε。= 8B55 Xl0−14p/c
mよシ、CX R= g。ερ= 8.855X 1O
−14(F/cI+L)×ε×ρ≧500F−Ω、よっ
てερ≧5.65X10111Ω・aなる要求がある。
In other words, the capacitance of a multilayer capacitor of any capacity is
The resistance product (CXR) is normalized to a constant value (ε.ερ) obtained by multiplying the product of ε and ρ of the ceramic composition by 6°. If the capacitance/resistance product CXR is 500 μF-MΩ, that is, 500 F·Ω or more, ε. = 8B55 Xl0-14p/c
myosi, CX R= g. ερ= 8.855X 1O
-14(F/cI+L)×ε×ρ≧500F−Ω, therefore, there is a requirement that ερ≧5.65×10111Ω·a.

例えばε= 1ooo。For example, ε=1ooo.

ではρ= 5.65 X 10”Ω・い、ε= 300
0ではρ≧1、88 X 10”Ω・儂、ε;500で
はρ= 1.13 X 10”Ω・aが要求される。誘
電率に応じてこれらの値以上のρを持つ磁器組成物であ
ればどのような大きな容量の積層コンデンサも容量・抵
抗積は500μF−MΩを満足する。もしεが3000
でρが要求値よ多1桁低い1.88X 10”%’−f
iとすればε。す=50μF−MΩで500μF−MΩ
は満足せず、絶縁抵抗の規格値である1100OOΩす
なわち、1010Ω以上を満足するには容量Cとして0
.005μF以下に限定されなければならない。それは
この積層コンデンサの容量・抵抗積(CXR)は常に5
0μF・MΩを示しているので、几が1100OOΩの
とき、Cは0.005μFとなシ、Cがこれよシ大きれ
ばRは1000OOΩよシ小さくなシ、0.005μF
が規格を満たす最高の容量となるためである。従って磁
器組成物の比抵抗が低いとその材料の実用性2%に積層
形コンデンサの特長である小型大容量の特長を生かすこ
とはできないし、全く意味のないことにもなる。よって
磁器組成物の誘電率と比抵抗の積がある値以上を持つこ
とが実用上極めて重要なことである。
Then ρ = 5.65 x 10”Ω・ε = 300
For 0, ρ≧1, 88 x 10"Ω·a, ε; for 500, ρ=1.13 x 10"Ω·a is required. Any large capacitance multilayer capacitor made of a ceramic composition having ρ greater than these values depending on the dielectric constant will have a capacitance-resistance product of 500 μF-MΩ. If ε is 3000
ρ is one order of magnitude lower than the required value, 1.88X 10"%'-f
If i is ε. = 50μF-MΩ and 500μF-MΩ
is not satisfied, and in order to satisfy the standard value of insulation resistance of 1100OOΩ, that is, 1010Ω or more, the capacitance C must be 0.
.. Must be limited to 0.005 μF or less. The capacitance-resistance product (CXR) of this multilayer capacitor is always 5.
It shows 0μF・MΩ, so when the value is 1100OOΩ, C is 0.005μF, and if C is larger than this, R is smaller than 1000OOΩ, which is 0.005μF.
This is because this is the highest capacity that satisfies the standard. Therefore, if the specific resistance of the ceramic composition is low, the practicality of the material is 2%, and the advantages of small size and large capacity, which are the characteristics of multilayer capacitors, cannot be utilized, and it is completely meaningless. Therefore, it is extremely important in practice that the product of the dielectric constant and specific resistance of the ceramic composition has a certain value or more.

また、積層形チップコンデンサの場合は、チップコンデ
ンサを基板に実装したとき、基板とチップコンデンサを
構成している磁器組成物との熱膨張係数の違いにより、
チップコンデンサに機械的な歪が加りシ、チップコンデ
ンサにクラックが発生したシ、破損したシすることがあ
る。またエポキシ系樹脂等を外装したディップコンデン
サの場合も外装樹脂の応力でディップコンデンサにクラ
ックが発生する場合がある。いずれの場合もコンデンサ
を形成している磁器の機械的強度が低いはど、クラック
が入シやすく容易に破損するため、信頼性が低くなる。
In addition, in the case of multilayer chip capacitors, when the chip capacitor is mounted on a board, due to the difference in thermal expansion coefficient between the board and the ceramic composition that makes up the chip capacitor,
Mechanical strain is applied to the chip capacitor, which may cause cracks or damage to the chip capacitor. Furthermore, in the case of a dip capacitor coated with epoxy resin or the like, cracks may occur in the dip capacitor due to the stress of the coat resin. In either case, the mechanical strength of the porcelain forming the capacitor is low, making it susceptible to cracks and damage, resulting in low reliability.

したがって、磁器の機械的強度をできるだけ増大させる
ことは実用上極めて重要なことである。
Therefore, it is of practical importance to increase the mechanical strength of porcelain as much as possible.

ところでP b (Mgl/2W1/2 )03 pb
’rto3系磁器組成物については既にエヌ・エヌ・ク
ライニクとエイΦアイ・アグラノフスカヤ(N、N、K
rainikand A、 1.Agranovska
ya(Fi:ziko Tverdog。
By the way, P b (Mgl/2W1/2)03 pb
'rto3 porcelain compositions have already been developed by N.N.Krajnik and A.A.I.Agranovskaya (N, N, K.
rainikand A, 1. Agranovska
ya(Fi:ziko Tverdog.

Te1a、 To、 2. NOI、 pp70〜72
. Janvara 1960) )よシ提案があった
が、積層形コンデンサを作製する際に評価されるべき特
性の中で誘電率とその温度特性の記載しかなく、その実
用性は明らかでガかった。また( 8rxPbl−x’
rtos)a(PbMgo、 a %、aos)6(た
だし、x = O〜0.10 、aは0.35〜0.5
.bは0.5〜0.65であシ、そしてa + b =
1〕について、モノリシックコンデンザおよびその製造
方法として特開昭52−21662号公報に開示され、
また誘電体粉末組成物として特開昭52−21699号
公報に開示されている。ここにおいても組成物の特性と
して誘電率が約2000〜8000誘電損失が0.5%
〜5.0チという記載はあるが比抵抗あるいは容量抵抗
積については全く記載がなく実用性は明らかでなかった
。さらにPb(Mgl/2W□/2)03とP b T
 i O3を主とする組成物であって、P b(Mgl
/2W□/2)Osが20.0〜70.0モル%、Pb
TiO3が30.0〜80.0モルチの範囲の組成物に
対し、MgO量を計算値の30%以下添加含有したこと
を特徴とする高誘電率磁器組成物が特開昭55−144
609号公報として開示されている。しかしながらこの
特許においても誘電率が約2300〜7100で誘電損
失が0.3%〜2.1%という記載のtlかに誘電率の
温度特性の記載はあるが、比抵抗あるいは容量抵抗積に
関する記載はなくこの組成物についても実用性は明らか
でない。次に本発明者達は既に910℃〜950℃の温
度で焼結でき、Pb (Mg 1/2 Wl/2 )O
sとPbTiOs系二成分からなシ、これを(Pb (
Mg172Wl/2 )03 ) 、(pb’ri o
、 )t −8と表わしたときにXが0.65< x≦
1.00の範囲にある組成物を提案している。この組成
物は、誘電率と比抵抗の積が5.65XIO”Ω・1以
上の高い値を持ち、誘電損失の小い優れた電気的特性を
有している。しかしながら1七組成物は、いずれも機械
的強度が低いため、その用途は自ら狭い範囲に限定せざ
るを得なかった。
Te1a, To, 2. NOI, pp70-72
.. Janvara (1960))) was proposed, but among the characteristics to be evaluated when manufacturing a multilayer capacitor, only the dielectric constant and its temperature characteristics were described, and its practicality was unclear. Also (8rxPbl-x'
rtos) a(PbMgo, a%, aos)6 (where x = O ~ 0.10, a is 0.35 ~ 0.5
.. b is 0.5 to 0.65, and a + b =
1] is disclosed in Japanese Patent Application Laid-Open No. 52-21662 as a monolithic capacitor and a method for manufacturing the same,
A dielectric powder composition is also disclosed in JP-A-52-21699. Here again, the characteristics of the composition are that the dielectric constant is about 2000 to 8000 and the dielectric loss is 0.5%.
There is a description of ~5.0cm, but there is no description of specific resistance or capacitance-resistance product, so the practicality was unclear. Furthermore, Pb(Mgl/2W□/2)03 and P b T
i O3-based composition, P b (Mgl
/2W□/2) Os is 20.0 to 70.0 mol%, Pb
JP-A-55-144 discloses a high dielectric constant ceramic composition characterized in that a TiO3 content in the range of 30.0 to 80.0 mole is added with an amount of MgO of 30% or less of the calculated value.
It is disclosed as Publication No. 609. However, even in this patent, there is a description of the temperature characteristics of the dielectric constant in the tl, which states that the dielectric constant is about 2300 to 7100 and the dielectric loss is 0.3% to 2.1%, but there is a description of the specific resistance or the capacitance-resistance product. However, the practicality of this composition is not clear. Next, we have already shown that Pb (Mg 1/2 Wl/2)O can be sintered at temperatures between 910 and 950 °C.
s and PbTiOs system, this is (Pb (
Mg172Wl/2)03), (pb'rio
, )t −8, then X is 0.65< x≦
Compositions in the range of 1.00 are proposed. This composition has a high product of dielectric constant and resistivity of 5.65XIO"Ω・1 or more, and has excellent electrical properties with low dielectric loss. However, composition 17 has Since both have low mechanical strength, their applications have had to be limited to a narrow range.

本発明は以上の点にかんがみ900〜1ooo’cの低
温領域で焼結でき、かつ誘電率と比抵抗の積が5.65
 X 10!IlΩ・OR(すなわち容量抵抗積i15
00μF・Mg)以上の高い値を持ち、誘電損失が小さ
い優れた電気的特性を有し、更に機械的強度も大きい磁
器組成物を提供しようとするものであり、マグネシウム
・タングステン酸鉛(P b (Mg 1/2WL/2
)03〕とチタン酸鉛(PbTi0. )からなる二成
分組成物をP b(Mgl/2W□/2)Ox ) x
 (p bTto、 ) 1−x と表わしたときにX
が0.50≦X≦1.00の範囲内にある主成分組成物
に副成分として、マンガン・タングステン酸鉛Pb(M
n2/aW1/a)Ox を主成分に対して0,05〜
2mo1%添加含有せしめることを特徴とするものであ
る。
In view of the above points, the present invention can be sintered in a low temperature range of 900 to 1 ooo'c, and the product of dielectric constant and specific resistance is 5.65.
X 10! IlΩ・OR (i.e. capacitance-resistance product i15
The purpose is to provide a porcelain composition that has a high value of 00μF・Mg) or more, has excellent electrical properties with low dielectric loss, and also has high mechanical strength. (Mg 1/2WL/2
)03] and lead titanate (PbTi0. ) as P b (Mgl/2W□/2)Ox ) x
(p bTto, ) When expressed as 1-x,
Manganese lead tungstate Pb (M
n2/aW1/a) Ox from 0.05 to the main component
It is characterized by containing 2 mo1%.

以下本発明を実施例にょシ詳細に説明する。The present invention will be explained in detail below using examples.

出発原料として純度99.9%以上の酸化鉛(PbO)
Lead oxide (PbO) with a purity of 99.9% or more as a starting material
.

酸化マグネシウム(Mgo)、酸化タングステン(WO
3)?酸化チタン(Ti02) 、および炭酸マンガン
(MnCOa)を使用し、表に示した配合比となるよう
に各々秤量する。次に秤量した各材料をボールミル中で
湿式混合した後750〜800℃で予焼を行ない、この
粉末をボールミルで粉砕し、日別、乾燥後、有機バイン
ダーを入れ整粒後プレスし、直径16m!11゜厚さ約
2Mの円板4枚と、直径16m、厚さ約10誌の円柱を
作製した。次に空気中900〜1000℃の温度で1時
間焼結した。焼結した円板4枚の上下面に600℃で銀
電極を焼付け、デジタルLCRメーターで周波数1 )
G(z 、電圧I Vr *m+ s 、温度20℃で
容量と誘電損失を測定し、誘電率を算出した。次に超絶
縁抵抗計で50Vの電圧を1分間印加して絶縁抵抗を温
度20℃で測定し、比抵抗を算出した。機械的性質を抗
折強度で評価するため、焼結した円柱から厚さQ、5m
、幅2關、長さ約13mの矩形板を10枚切シ出した。
Magnesium oxide (Mgo), tungsten oxide (WO
3)? Titanium oxide (Ti02) and manganese carbonate (MnCOa) are used, and each is weighed so that the mixing ratio shown in the table is achieved. Next, the weighed materials were wet-mixed in a ball mill, pre-baked at 750-800°C, and the powder was ground in a ball mill. After drying, an organic binder was added and the particles were sized and pressed. The diameter was 16 m. ! Four disks each having a diameter of 11° and a thickness of approximately 2M and a cylinder having a diameter of 16m and a thickness of approximately 10 mm were prepared. Next, it was sintered in air at a temperature of 900 to 1000°C for 1 hour. Silver electrodes were baked on the top and bottom surfaces of four sintered disks at 600°C, and a digital LCR meter was used to measure the frequency of 1).
Capacitance and dielectric loss were measured at G(z, voltage I Vr *m+ s, temperature 20°C, and dielectric constant was calculated. Next, a voltage of 50 V was applied for 1 minute using a super insulation resistance tester to measure the insulation resistance at temperature 20°C. ℃, and the specific resistance was calculated.In order to evaluate the mechanical properties by bending strength, a sintered cylinder with a thickness of Q, 5 m was
, 10 rectangular plates with a width of 2 mm and a length of approximately 13 m were cut out.

支点間距離を9mによシ、三点法で破壊荷重Pm(Kp
)を測tは試料の厚み、Wは試料の幅である。電気的特
性は円板試料4点の平均値、抗折強度は矩形板試料10
点の平均値よりめた。このようにして得られた磁器の主
成分(Pb(Mg1/2W1/z)On ) x(Pb
TiOs :h−zの配合比Xおよび副成分添加量と抗
折強度、誘電率、誘電損失および容量抵抗積(表ではε
0ερと表示した)の関係を表に示す。
The distance between the supports is set to 9 m, and the breaking load Pm (Kp) is calculated using the three-point method.
) is measured, t is the thickness of the sample, and W is the width of the sample. The electrical properties are the average values of 4 disk samples, and the bending strength is the average value of 10 rectangular plate samples.
Calculated from the average value of the points. The main component of the porcelain obtained in this way (Pb(Mg1/2W1/z)On) x(Pb
TiOs:h-z compounding ratio
(expressed as 0ερ) is shown in the table.

表に示した結果、25≧らも明らかなように副成分とし
て、マンガン・タングステン酸鉛(Pb(Mn2/aW
’t/a)Or)を添加含有せしめることによシ、抗折
強度および容量抵抗積を共に高め、しかも低い誘電損失
の値を保った信頼性の高い実用性に富む優れた高誘電率
磁器組成物が得られることがわかる。
As shown in the table, it is clear that manganese lead tungstate (Pb(Mn2/aW)
By adding 't/a)Or), it is an excellent high-permittivity porcelain that increases both the bending strength and the capacitance-resistance product, and also maintains a low dielectric loss value, and is highly reliable and highly practical. It can be seen that a composition is obtained.

こうした優れた特性を示す本発明の磁器組成物は焼結温
度が1000℃以下の低温であるため積層コンデンサの
内部電極の低価格化を実現できると共に、省エネルギー
や炉材の節約にもなるという極めて優れた効果も生じる
The porcelain composition of the present invention, which exhibits these excellent properties, has a low sintering temperature of 1000°C or less, which makes it possible to reduce the cost of the internal electrodes of multilayer capacitors, and also to save energy and furnace materials. Excellent effects also occur.

なお主成分配合比Xが0.5未満では、容量抵抗積が規
格値よシ小さくなシ、誘電損失も5.0チを越えるため
実用的でない。また副成分である。
If the main component compounding ratio X is less than 0.5, the capacitance-resistance product will be smaller than the standard value and the dielectric loss will also exceed 5.0, which is not practical. It is also a subcomponent.

P b (Mn 2/3W1 /3 )Onの添加量が
0.05moJ*未満では抗折強度の改善効果が小さく
 、2 mo1%を超えると逆に抗折強度が小さくなり
実用的でない。
If the amount of Pb(Mn2/3W1/3)On added is less than 0.05 moJ*, the effect of improving the bending strength is small, and if it exceeds 2 mo1%, the bending strength becomes too small to be practical.

Claims (1)

【特許請求の範囲】[Claims] マグネシウム・タングステン酸鉛(pb(Mgl/2W
1/2)O3)とチタン酸鉛(PbTiO,)からなる
二成分組成物を(Pb(Mgl/2W1/2)03 )
 、(PbTiOs ) 1−xと表わしたときにXが
0.50≦X≦1.00の範囲内にある主成分組成物に
副成分としてマンガン・タングステン酸鉛(Pb(Mn
2/3W1/3)03 )を主成分に対して0.05〜
2m1%添加含有せしめることを特徴とする磁器組成物
Magnesium lead tungstate (pb (Mgl/2W
1/2) O3) and lead titanate (PbTiO,) (Pb(Mgl/2W1/2)03)
, (PbTiOs) 1-x, where X is within the range of 0.50≦X≦1.00, manganese lead tungstate (Pb(Mn
2/3W1/3)03) from 0.05 to the main component
A porcelain composition characterized in that it contains an additive content of 2ml/1%.
JP58137992A 1983-07-28 1983-07-28 Ceramic composition Pending JPS6033255A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58137992A JPS6033255A (en) 1983-07-28 1983-07-28 Ceramic composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58137992A JPS6033255A (en) 1983-07-28 1983-07-28 Ceramic composition

Publications (1)

Publication Number Publication Date
JPS6033255A true JPS6033255A (en) 1985-02-20

Family

ID=15211529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58137992A Pending JPS6033255A (en) 1983-07-28 1983-07-28 Ceramic composition

Country Status (1)

Country Link
JP (1) JPS6033255A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6021860A (en) * 1983-07-13 1985-02-04 日本電気株式会社 Ceramic composition

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6021860A (en) * 1983-07-13 1985-02-04 日本電気株式会社 Ceramic composition

Similar Documents

Publication Publication Date Title
JPH0449503B2 (en)
JPS6227026B2 (en)
JPS6234707B2 (en)
JPS6033255A (en) Ceramic composition
JPS6227029B2 (en)
JPS6227025B2 (en)
JPS6036371A (en) Ceramic composition
JPS6234708B2 (en)
JP2926827B2 (en) Dielectric porcelain composition
JPS6227024B2 (en)
JPS6235990B2 (en)
JP2803320B2 (en) Dielectric porcelain composition
JPS6033256A (en) Ceramic composition
JPS6230151B2 (en)
JPS6021859A (en) Ceramic composition
JPS6256605B2 (en)
JPH0566332B2 (en)
JPS6234706B2 (en)
JPS6149269B2 (en)
JPH0534302B2 (en)
JPH0360788B2 (en)
JPH0143405B2 (en)
JPS62226858A (en) Ceramic composition
JPS6046968A (en) Ceramic composition
JPH0457631B2 (en)