JP2803320B2 - Dielectric porcelain composition - Google Patents

Dielectric porcelain composition

Info

Publication number
JP2803320B2
JP2803320B2 JP2112504A JP11250490A JP2803320B2 JP 2803320 B2 JP2803320 B2 JP 2803320B2 JP 2112504 A JP2112504 A JP 2112504A JP 11250490 A JP11250490 A JP 11250490A JP 2803320 B2 JP2803320 B2 JP 2803320B2
Authority
JP
Japan
Prior art keywords
composition
temperature
dielectric
lead
porcelain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2112504A
Other languages
Japanese (ja)
Other versions
JPH0412021A (en
Inventor
哲夫 ▲吉▼本
真治 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Soda Co Ltd
Original Assignee
Nippon Soda Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soda Co Ltd filed Critical Nippon Soda Co Ltd
Priority to JP2112504A priority Critical patent/JP2803320B2/en
Priority to PCT/JP1991/000092 priority patent/WO1991011408A1/en
Publication of JPH0412021A publication Critical patent/JPH0412021A/en
Application granted granted Critical
Publication of JP2803320B2 publication Critical patent/JP2803320B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、誘電体磁器組成物、特に1000℃以下の低温
で焼結でき、誘電率が高く、誘電率の温度変化率が小さ
く、室温および高温における絶縁抵抗が高く、機械的強
度が高く、電気的特性の焼結温度依存性が低く、焼結体
粒径が小さいセラミックコンデンサー用の誘電体磁器組
成物に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a dielectric porcelain composition, in particular, which can be sintered at a low temperature of 1000 ° C. or lower, has a high dielectric constant, a small temperature change rate of the dielectric constant, and a room temperature. The present invention also relates to a dielectric ceramic composition for a ceramic capacitor having a high insulation resistance at a high temperature, a high mechanical strength, a low dependence of electrical characteristics on a sintering temperature, and a small sintered particle size.

[従来の技術と発明が解決しようとする課題] 従来、セラミックコンデンサー用の誘電体磁器組成物
として、チタン酸バリウム(BaTiO3)を主成分とする磁
器が広く実用化されているが、チタン酸バリウムを主成
分とするものは、通常1300〜1400℃という高い焼結温度
であり、これを積層セラミックコンデンサーに利用する
場合は、内部電極としてこの焼結温度に耐えうる材料、
例えば白金、パラジウムなどの高価な貴金属を使用しな
ければならず、製造コストが高くなるという欠点があっ
た。積層セラミックコンデンサーを安く作るためには、
銀、ニッケルなどを主成分とする安価な金属が内部電極
に使用できるような、できるだけ低温、特に1000℃以下
で焼結できる磁器が必要である。
[Prior Art and Problems to be Solved by the Invention] Conventionally, as a dielectric ceramic composition for ceramic capacitors, porcelain mainly containing barium titanate (BaTiO 3 ) has been widely put into practical use. Those containing barium as a main component generally have a high sintering temperature of 1300 to 1400 ° C. When this is used for a multilayer ceramic capacitor, a material that can withstand this sintering temperature as an internal electrode,
For example, expensive precious metals such as platinum and palladium have to be used, and there is a disadvantage that the production cost is increased. To make multilayer ceramic capacitors cheap,
There is a need for a porcelain that can be sintered at as low a temperature as possible, in particular at 1000 ° C. or lower, so that an inexpensive metal mainly composed of silver, nickel or the like can be used for the internal electrodes.

また、誘電体磁器組成物の電気的特性として、誘電率
が高く誘電損失が小さく、絶縁抵抗が高いことが基本的
に要求される。
Further, the electrical characteristics of the dielectric ceramic composition are basically required to have a high dielectric constant, a small dielectric loss, and a high insulation resistance.

積層チップコンデンサーの場合は、チップコンデンサ
ーを基板に実装した時、基板とチップコンデンサーを構
成している磁器との熱膨張係数の違いにより、チップコ
ンデンサーに機械的な歪が加わり、チップコンデンサー
にクラックが発生したり、破損したりする場合がある。
この場合、コンデンサーを形成している磁器の機械的強
度が低いほどクラックが入りやすく、容易に破損し信頼
性が低くなるため、磁器の機械的強度をできるだけ増大
させることは実用上極めて重要なことである。
In the case of a multilayer chip capacitor, when the chip capacitor is mounted on a board, mechanical distortion is applied to the chip capacitor due to the difference in thermal expansion coefficient between the board and the porcelain that constitutes the chip capacitor, and the chip capacitor cracks. May occur or be damaged.
In this case, the lower the mechanical strength of the porcelain forming the capacitor, the more likely it is to crack, easily break and reduce reliability, so it is extremely important in practical use to increase the mechanical strength of the porcelain as much as possible. It is.

また誘電体層と絶縁体層などを積層した構造をもって
いる複合積層セラミック部品においては、絶縁体の焼結
温度が850〜1000℃であること、低コスト化のために
銀、ニッケルなどを主成分とする安価な金属を導体とし
て利用すること、焼結時の複合化によるストレスの発生
および絶縁体の収縮特性とのマッチングなどのために、
1000℃以下で焼結ができ、機械的強度の高い誘電体磁器
が必要である。
In the case of a composite laminated ceramic component having a structure in which a dielectric layer and an insulator layer are laminated, the sintering temperature of the insulator is 850 to 1000 ° C, and silver, nickel, etc. In order to use inexpensive metals as conductors, to generate stress due to compounding during sintering, and to match with the shrinkage characteristics of insulators,
A dielectric porcelain that can be sintered at 1000 ° C or less and has high mechanical strength is required.

積層セラミックコンデンサーに対しては最近では電子
部品の高温での使用や回路特性の安定化のために使用温
度に対する容量変化率が小さく、小型大容量のものが求
められてきている。容量変化率に関しては、例えばこれ
までに−30〜+85℃の温度範囲でEIA規格のY5T特性を満
足するものがいくつか知られているが、いづれも誘電率
が6000−8000程度と低い。そのため、積層コンデンサー
の小型大容量化および温度特性の改善のためには、誘電
率が高く測定温度に対する容量変化率が小さい誘電体磁
器組成を見いだすことが必要であるとともに、誘電体層
の膜厚をできるだけ薄くして積層数を増やすことにより
静電容量を大きくすることがが必要である。しかし、従
来のチタン酸バリウム系磁器では、誘電率を高くしよう
とすると焼結体の粒径が大きくなり、誘電体層の厚みの
薄い積層コンデンサーを製造しようとすると絶縁破壊電
圧が低下し信頼性も悪くなるという欠点があった。
In recent years, a multilayer ceramic capacitor has been required to have a small capacity change rate with respect to a use temperature and to have a small and large capacity in order to use electronic components at a high temperature and to stabilize circuit characteristics. Regarding the rate of change in capacitance, for example, there have been known some that satisfy the Y5T characteristic of the EIA standard in a temperature range of −30 to + 85 ° C., but all have a low dielectric constant of about 6000 to 8000. Therefore, in order to reduce the size and capacitance of the multilayer capacitor and improve the temperature characteristics, it is necessary to find a dielectric ceramic composition having a high dielectric constant and a small rate of change in capacitance with respect to the measurement temperature. It is necessary to increase the capacitance by increasing the number of layers by reducing the thickness as much as possible. However, in conventional barium titanate-based porcelain, increasing the dielectric constant increases the grain size of the sintered body, and decreasing the dielectric breakdown voltage decreases the reliability of manufacturing a multilayer capacitor with a thin dielectric layer. Also had the disadvantage that it became worse.

Pb(Mg1/21/2)O3−Pb(Mg1/3Nb2/3)O3−PbTiO3
については、特開昭55−116662号などで開示されてお
り、マグネシウム・タングステン酸鉛を多く含む誘電体
磁器組成物は、容量の温度変化が小さく優れた特徴を有
することが知られている。しかし、一方では電気的特性
の焼結温度依存性が高く、安定した電気的特性を有する
焼結体が得られにくいという問題点があることも知られ
ている。また、焼結体磁器の粒径が大きいため、一層の
膜厚の薄い積層チップコンデンサーの製造が困難であっ
た。これを改善するために、原料粉末の粉末合成方法が
種々検討されてきたが、いづれも製造コストが高くなる
という欠点があった。
The Pb (Mg 1/2 W 1/2 ) O 3 -Pb (Mg 1/3 Nb 2/3 ) O 3 -PbTiO 3 system is disclosed in JP-A-55-116662 and the like. It is known that a dielectric porcelain composition containing a large amount of lead tungstate has excellent characteristics in which the temperature change of capacitance is small. However, on the other hand, it is also known that there is a problem that the electrical characteristics are highly dependent on the sintering temperature and it is difficult to obtain a sintered body having stable electrical characteristics. In addition, since the particle size of the sintered ceramic is large, it is difficult to manufacture a multilayer chip capacitor having a thinner film thickness. In order to improve this, various methods for synthesizing the raw material powder have been studied, but all have the drawback of increasing the production cost.

本発明は以上述べたような課題を解決するとともに、
1000℃以下の低温領域で焼結でき、誘電率が高く誘電率
の温度変化率が小さく、室温および高温における絶縁抵
抗が高く、機械的強度が高く、電気的特性の焼結温度依
存性が低く焼結体粒径が小さい誘電体磁器組成物を提供
することを目的とする。
The present invention solves the problems described above,
Can be sintered in a low temperature range of 1000 ° C or less, has a high dielectric constant, a small rate of change in dielectric constant with temperature, has a high insulation resistance at room temperature and high temperature, has a high mechanical strength, and has low sintering temperature dependence of electrical characteristics. An object of the present invention is to provide a dielectric ceramic composition having a small sintered body particle size.

[課題を解決するための手段] 本発明は、マグネシウム・タングステン酸鉛[Pb(Mg
1/21/2)O3],マグネシウム・ニオブ酸鉛[Pb(Mg
1/3Nb2/3)O3],チタン酸鉛[PbTiO3]およびジルコニ
ウム酸鉛[PbZrO3]からなる4成分系固溶体磁器組成物
を [Pb(Mg1/21/2)O3−[Pb(Mg1/3Nb2/3)O3 −[PbTiO3−[PbZrO3 (ただし、X、Y、Z及びUはモル分率を示し、X+Y
+Z+U=1である) と表現した時、X,Y,Z,Uがそれぞれ 0.05≦X≦0.3 0.3≦Y≦0.85 0.05≦Z≦0.3 0.05≦U≦0.3 で表される主成分組成物に、添加物としてマンガンを含
む複合酸化物を、主成分組成物に対して0〜4mol%添加
含有せしめてなることを特徴とする誘電体磁器組成物で
ある。
[Means for Solving the Problems] The present invention relates to a magnesium / lead tungstate [Pb (Mg
1/2 W 1/2 ) O 3 ], lead magnesium niobate [Pb (Mg
1/3 Nb 2/3 ) O 3 ], lead titanate [PbTiO 3 ] and lead zirconate [PbZrO 3 ] quaternary solid solution porcelain composition [Pb (Mg 1/2 W 1/2 ) O 3] X - [Pb (Mg 1/3 Nb 2/3) O 3] Y - [PbTiO 3] Z - [PbZrO 3] U ( However, X, Y, Z and U represents a molar fraction, X + Y
+ Z + U = 1) When X, Y, Z, U are respectively represented by 0.05 ≦ X ≦ 0.3 0.3 ≦ Y ≦ 0.85 0.05 ≦ Z ≦ 0.3 0.05 ≦ U ≦ 0.3 A dielectric ceramic composition characterized in that a composite oxide containing manganese as an additive is added and contained in an amount of 0 to 4 mol% with respect to the main component composition.

本発明の誘電体磁器組成物は、出発原料として酸化
物、水酸化物、炭酸塩など600℃以上の温度で酸化物と
なる原料化合物を使用し、秤量した原料化合物をボール
ミルにより湿式混合した後、700〜900℃、好ましくは75
0〜850℃で仮焼を行い、磁器組成物用の原料粉末を得、
得られた原料粉末を使用して成形した後、大気中850〜1
100℃、好ましくは950〜1100℃で焼結することにより製
造することができる。
The dielectric porcelain composition of the present invention uses, as a starting material, an oxide, a hydroxide, and a raw material compound that becomes an oxide at a temperature of 600 ° C. or more, such as a carbonate, and wet-mixes the weighed raw material compounds using a ball mill. 700-900 ° C, preferably 75
Perform calcination at 0 to 850 ° C to obtain a raw material powder for the porcelain composition,
After molding using the obtained raw material powder, 850-1
It can be manufactured by sintering at 100 ° C, preferably 950 to 1100 ° C.

主成分のマグネシウム・タングステン酸鉛が本発明範
囲より多い組成物においては、誘電率が小さく電気的特
性の焼結温度依存性が高く、焼結後の磁器組成物の粒径
が大きくなり実用的ではない。一方、含有量が0.05より
少ない組成においては誘電率の温度変化が大きいという
欠点を有する。
In a composition in which the main component magnesium / lead tungstate is more than the range of the present invention, the dielectric constant is small, the electrical characteristics are highly dependent on the sintering temperature, and the particle size of the sintered porcelain composition is large, and the is not. On the other hand, a composition having a content of less than 0.05 has a disadvantage that the temperature change of the dielectric constant is large.

ジルコニウム酸鉛を含む4成分を主成分とする本発明
の磁器組成物においては、誘電率の温度変化を抑えて、
かつ電気的特性の焼結温度依存性を小さくし粒成長を抑
制しつつ焼結することが可能となる。しかし、ジルコニ
ウム酸鉛が本発明範囲より多い組成物においては、誘電
率が小さく室温における誘電損失が大きくなり実用的で
はない。一方、含有量が0.05より少ない組成においては
誘電率の温度変化が大きく、粒成長を抑制できず抗折強
度が低いという欠点を有する。
In the porcelain composition of the present invention containing four components including lead zirconate as a main component, the temperature change of the dielectric constant is suppressed,
Moreover, sintering can be performed while suppressing the grain growth by reducing the sintering temperature dependence of the electrical characteristics. However, in a composition containing more lead zirconate than the range of the present invention, the dielectric constant is small and the dielectric loss at room temperature is large, which is not practical. On the other hand, a composition having a content of less than 0.05 has a disadvantage that the temperature change of the dielectric constant is large, grain growth cannot be suppressed, and the transverse rupture strength is low.

マグネシウム・ニオブ酸鉛、チタン酸鉛の含有量が0.
05より少ない組成物においては、誘電率が小さくなり実
用的でない。一方、これらの成分の含有量が多い組成に
おいては誘電率の温度変化が大きいという欠点を有す
る。
The content of magnesium / lead niobate / lead titanate is 0.
When the composition is less than 05, the dielectric constant becomes small and is not practical. On the other hand, a composition having a large content of these components has a disadvantage that the temperature change of the dielectric constant is large.

また、添加物としてマンガンを含む複合酸化物を添加
した場合には、静電容量は低下するものの、容量変化の
温度特性は実施例に示したように大きく改善される。主
成分に含まれるマグネシウム・タングステン酸鉛、ジル
コニウム酸鉛の割合を増加させることによっても同様の
効果が得られるが、上記のように両者の含有量には制限
があるため、マンガンを含む複合酸化物を適当量添加す
ることにより所望の電気特性を得ることができる。
Further, when a composite oxide containing manganese is added as an additive, although the capacitance decreases, the temperature characteristic of the capacitance change is greatly improved as shown in the examples. A similar effect can be obtained by increasing the proportion of magnesium / lead tungstate or lead zirconate contained in the main component. However, since the contents of both are limited as described above, a composite oxide containing manganese is used. The desired electrical properties can be obtained by adding an appropriate amount of the substance.

マンガンを含む複合酸化物としてはPb(Mn1/3Nb2/3
O3,Pb(Mn1/2Nb1/2)O3,Pb(Mn1/3Ta2/3)O3,Pb(Mn1/2
1/2)O3,Pb(Mn1/3Sb2/3)O3等があげられ、いづれも
同様の効果が得られる。これらのマンガンを含む複合酸
化物の添加量は、種類によっても多少異なるが、主成分
に対して4mol%以下が適当であり、それよりも多く添加
した場合には誘電率が小さくなりすぎて好ましくない。
Pb (Mn 1/3 Nb 2/3 ) as a composite oxide containing manganese
O 3 , Pb (Mn 1/2 Nb 1/2 ) O 3 , Pb (Mn 1/3 Ta 2/3 ) O 3 , Pb (Mn 1/2
W 1/2 ) O 3 , Pb (Mn 1/3 Sb 2/3 ) O 3 and the like, and in each case, the same effect can be obtained. The addition amount of these manganese-containing composite oxides is slightly different depending on the kind, but is preferably 4 mol% or less with respect to the main component. Absent.

[実施例] 以下、本発明を実施例および比較例により更に詳細に
説明する。
[Examples] Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples.

実施例1 出発原料として純度99.9%以上の酸化鉛(PbO)、酸
化マグネシウム(MgO)、酸化タングステン(WO3)、酸
化ニオブ(Nb2O5)、酸化チタン(TiO2)、酸化ジルコ
ニウム(ZrO2)および炭酸マンガン(MnCO3)を使用
し、表1に示した配合比になるように各々秤量した。た
だし、表1において、主成分のマグネシウム・タングス
テン酸鉛をPMW、マグネシウム・ニオブ酸鉛をPMN、チタ
ン酸鉛をPT、ジルコニウム酸鉛をPZと表し、配合比X,Y,
Z,U(モル分率)は百分率にして各々X′,Y′,Z′,U′
(X′+Y′+Z′+U′=100とする)で表記した。
Example 1 Lead oxide (PbO), magnesium oxide (MgO), tungsten oxide (WO 3 ), niobium oxide (Nb 2 O 5 ), titanium oxide (TiO 2 ), zirconium oxide (ZrO) having a purity of 99.9% or more as starting materials 2 ) and manganese carbonate (MnCO 3 ) were used and weighed so that the mixing ratio shown in Table 1 was obtained. However, in Table 1, the main components magnesium / lead tungstate are represented by PMW, magnesium / niobate by PMN, lead titanate by PT, and lead zirconate by PZ.
Z and U (molar fractions) are expressed as percentages and X ', Y', Z ', U'
(X '+ Y' + Z '+ U' = 100).

次に秤量した各原料をボールミルによりアセトン中で
湿式混合した後、700−800℃でマグネシア坩堝中で仮焼
を行い、この粉末をボールミル粉砕した後、濾過乾燥し
て磁器組成物用の原料粉末とした。得られた原料粉末を
使用して直径10mm、厚さ3mmの円板を作成し、大気中100
0℃で1時間焼成した。焼結した円板の上下面に銀電極
を焼付け、超絶縁抵抗計で室温において直流50Vの電圧
を1分間印加して絶縁抵抗を測定し比抵抗を算出した。
次に、試料を恒温槽に設置してデジタルLCRメーターで
周波数1kHz電圧1Vrmsで25℃における静電容量と誘電損
失を測定し、誘電率を算出した。4個の試料の平均値を
とり代表値とした。さらに、−55〜+125℃の温度範囲
で静電容量と誘電損失を測定し、20℃における静電容量
を基準とした時の容量変化率を算出した。
Next, the weighed raw materials are wet-mixed in acetone using a ball mill, and then calcined in a magnesia crucible at 700 to 800 ° C. And Using the obtained raw material powder, a disk with a diameter of 10 mm and a thickness of 3 mm was created,
Baking was performed at 0 ° C. for 1 hour. Silver electrodes were baked on the upper and lower surfaces of the sintered disc, and a voltage of 50 V DC was applied for 1 minute at room temperature with a super insulation resistance meter to measure insulation resistance and calculate specific resistance.
Next, the sample was placed in a thermostat, and the capacitance and the dielectric loss at 25 ° C. were measured at a frequency of 1 kHz and a voltage of 1 Vrms using a digital LCR meter, and the dielectric constant was calculated. The average value of the four samples was taken as a representative value. Further, the capacitance and the dielectric loss were measured in the temperature range of -55 to + 125 ° C, and the capacitance change rate based on the capacitance at 20 ° C was calculated.

表1には各主成分の配合比、および添加物の種類と添
加量、25℃における誘電率と誘電損失、室温における比
抵抗、20℃を基準とした時の−30℃および85℃における
容量変化率の値を示した。
Table 1 shows the compounding ratio of each main component, the type and amount of additives, the dielectric constant and dielectric loss at 25 ° C, the specific resistance at room temperature, and the capacitance at -30 ° C and 85 ° C based on 20 ° C. The values of the rate of change are shown.

また、焼結体の破断面を走査型電子顕微鏡により観察
した結果、平均粒径は2μmと小さく均一な微構造であ
った。
Further, as a result of observing the fractured surface of the sintered body with a scanning electron microscope, it was found that the average particle size was 2 μm, which was a small and uniform microstructure.

実施例2〜11 実施例1と同様にして表1に示す配合の原料粉末を作
成し、焼結温度1000℃で焼結体を作成し電気特性を測定
した。測定した結果をまとめて表1に示した。また、実
施例11の焼結体について破断面を走査型電子顕微鏡によ
り観察し、第1図の写真に示すような結果を得た。第1
図からも分かるように平均粒径は2μmと小さく均一な
微構造であった。
Examples 2 to 11 Raw material powders having the composition shown in Table 1 were prepared in the same manner as in Example 1, and a sintered body was prepared at a sintering temperature of 1000 ° C., and the electrical characteristics were measured. Table 1 summarizes the measured results. Further, the fracture surface of the sintered body of Example 11 was observed with a scanning electron microscope, and the result as shown in the photograph of FIG. 1 was obtained. First
As can be seen from the figure, the average particle size was as small as 2 μm and the microstructure was uniform.

実施例12〜14 実施例1と同様にして表1に示す配合の原料粉末を作
成し、焼結温度を950,1000,1050℃と変えて焼結体を作
成し、電気特性を測定した。焼結温度が100℃変化して
も電気特性には殆ど変化が認められなかった。測定した
結果をまとめて表1に示した。
Examples 12 to 14 Raw material powders having the composition shown in Table 1 were prepared in the same manner as in Example 1, and sintered bodies were prepared by changing the sintering temperature to 950, 1000 and 1050 ° C., and the electrical characteristics were measured. Even if the sintering temperature changed by 100 ° C., almost no change was observed in the electrical characteristics. Table 1 summarizes the measured results.

実施例15〜28 実施例1と同様にして表1に示す配合の原料粉末を作
成し、焼結温度1000℃と1050℃で焼結体を作成し電気特
性を測定した。測定した結果をまとめて表1に示した。
Examples 15 to 28 In the same manner as in Example 1, raw material powders having the composition shown in Table 1 were prepared, sintered bodies were prepared at sintering temperatures of 1000 ° C. and 1050 ° C., and the electrical characteristics were measured. Table 1 summarizes the measured results.

比較例1,2 実施例1と同様にして表2に示す主成分配合比の粉末
を作成し、焼結温度1050℃で磁器組成物の焼結体を作成
し電気特性を測定し表2に示す結果を得た。
Comparative Examples 1 and 2 Powders having the main component mixing ratios shown in Table 2 were prepared in the same manner as in Example 1. A sintered body of the porcelain composition was prepared at a sintering temperature of 1050 ° C., and the electrical characteristics were measured. The results shown were obtained.

比較例3〜5 実施例1と同様にして表2に示す主成分配合比の原料
粉末を作成し、焼結温度を1000,1050,1100℃で焼結体を
作成し電気特性を測定した。測定した結果をまとめて表
2に示した。表2に示したように焼結温度が100℃変化
すると電気特性が大きく変化した。
Comparative Examples 3 to 5 In the same manner as in Example 1, raw material powders having the mixing ratios of main components shown in Table 2 were prepared, sintered bodies were prepared at sintering temperatures of 1000, 1050, and 1100 ° C., and electrical characteristics were measured. Table 2 summarizes the measured results. As shown in Table 2, when the sintering temperature changed by 100 ° C., the electrical characteristics changed significantly.

比較例6〜12 実施例1と同様にして表2に示す主成分配合比の原料
粉末を作成し、焼結温度を1050,1100℃で焼結体を作成
し電気特性を測定した。測定した結果をまとめて表2に
示した。また、比較例4の焼結体の破断面を走査型電子
顕微鏡により観察し、第2図に示すような写真を得た。
図からも分かるように平均粒径は5〜7μmと大きく粒
径分布も不均一であった。
Comparative Examples 6 to 12 In the same manner as in Example 1, raw material powders having the main component mixing ratios shown in Table 2 were prepared, and sintered bodies were prepared at sintering temperatures of 1050 and 1100 ° C., and electrical characteristics were measured. Table 2 summarizes the measured results. Further, the fracture surface of the sintered body of Comparative Example 4 was observed with a scanning electron microscope, and a photograph as shown in FIG. 2 was obtained.
As can be seen from the figure, the average particle size was as large as 5 to 7 μm, and the particle size distribution was not uniform.

(抗折強度の測定) 実施例1,2,4,5,25,26および比較例2,4,8の焼結体から
幅2mm、厚さ0.5mm、長さ12mmの短冊状の試料を10本切り
出し曲げ強度試験装置で抗折強度を測定した。測定した
10本の平均値をまとめて表3に示した。
(Measurement of bending strength) From the sintered bodies of Examples 1, 2, 4, 5, 25, and 26 and Comparative Examples 2, 4, and 8, strip-shaped samples having a width of 2 mm, a thickness of 0.5 mm, and a length of 12 mm were obtained. The bending strength was measured with a 10-piece bending strength tester. It was measured
Table 3 summarizes the average values of the ten tubes.

[発明の効果] 表1に示した結果から明かなように、Pb(Mg
1/21/2)O3−Pb(Mg1/3Nb2/3)O3−PbTiO3−PbZrO3
4成分組成物に添加物としてマンガンを含む複合酸化物
を0〜4mol%添加せしめた本発明の範囲内のものは、誘
電率が高く、誘電損失が3%以下と小さく、比抵抗が室
温において1×1012Ωcm以上と高く、さらに−30〜+85
℃の温度範囲で20℃における静電容量を基準とした時に
−33%〜+22%の容量変化率を示すものの中には、誘電
率が10000以上の値を示すものや、同じ温度範囲で−56
%〜+22%の容量変化率を示すものの中には誘電率が16
000近い値を示すものも得られており、容量変化率の小
さい小型大容量の積層セラミックコンデンサーに適した
磁器組成物となっていた。
[Effects of the Invention] As is clear from the results shown in Table 1, Pb (Mg
1/2 W 1/2) O 3 -Pb ( Mg 1/3 Nb 2/3) O 3 -PbTiO 3 composite oxide containing manganese as an additive to the four component composition of -PbZrO 3 0~4mol% Those added within the range of the present invention have a high dielectric constant, a small dielectric loss of 3% or less, a high specific resistance of 1 × 10 12 Ωcm or more at room temperature, and a temperature of −30 to +85.
Among those showing a capacitance change rate of -33% to + 22% based on the capacitance at 20 ° C in a temperature range of 20 ° C, those having a dielectric constant of 10,000 or more, 56
% To + 22%, the dielectric constant is 16
A ceramic composition having a value close to 000 was obtained, and the ceramic composition was suitable for a small and large-capacity multilayer ceramic capacitor having a small capacity change rate.

焼結体の破断面を観察した電子顕微鏡写真からも明か
なように、本発明の組成領域の磁器は極めて微細で均一
な微構造を有しているため一層の膜厚の薄い積層セラミ
ックコンデンサーの製造に適したものといえる。一方、
比較例に示したように本発明の組成領域外の磁器では粒
径も大きく粒径分布も不均一であるため、膜厚の薄い積
層セラミックコンデンサーを製造すると絶縁破壊電圧が
低下したり信頼性が低下してしまうため実用材料として
は不適当なものであった。
As is clear from an electron micrograph showing the fractured surface of the sintered body, the porcelain in the composition region of the present invention has an extremely fine and uniform microstructure, so that a multilayer ceramic capacitor having a thinner film thickness can be obtained. It can be said that it is suitable for manufacturing. on the other hand,
As shown in the comparative example, in the porcelain outside the composition range of the present invention, since the particle size is large and the particle size distribution is not uniform, when a multilayer ceramic capacitor having a small film thickness is manufactured, the dielectric breakdown voltage is lowered or the reliability is reduced. Because of its lowering, it was unsuitable as a practical material.

本発明の誘電体磁器組成物は、焼結温度が低温である
ため積層コンデンサーの内部電極を安価な卑金属にする
ことにより低価格化を実現できるとともに、得られる磁
器は電気的特性に優れ誘電体層の薄膜化に対応できるた
め、小型大容量の積層セラミックコンデンサーが製造可
能である。また、PbZrO3成分が含有されているため、製
造コストが高くなるような原料粉末の合成法を採用しな
くても優れた特性を有する磁器が得られ、焼結体粒径を
小さくすることも可能となったため、表3に示すように
機械的強度が向上し、絶縁破壊電圧も高くなって信頼性
の高いセラミックコンデンサーが製造できる。また、実
施例および比較例に示したように、本発明の組成領域内
の組成物を使用すれば、焼結温度が変化しても電気的特
性の安定した磁器が得られており、実用上極めて優れた
特性であるといえる。従って、本発明の産業上の意義は
極めて大きいといえる。
The dielectric porcelain composition of the present invention has a low sintering temperature, so that the price can be reduced by making the internal electrodes of the multilayer capacitor an inexpensive base metal, and the obtained porcelain has excellent electrical characteristics and is excellent in dielectric properties. Since it is possible to cope with the thinning of the layers, a multilayer ceramic capacitor having a small size and a large capacity can be manufactured. In addition, since the PbZrO 3 component is contained, a porcelain having excellent characteristics can be obtained without employing a method of synthesizing a raw material powder that increases the production cost, and the particle size of the sintered body can be reduced. As a result, as shown in Table 3, the mechanical strength is improved, the dielectric breakdown voltage is increased, and a highly reliable ceramic capacitor can be manufactured. Further, as shown in Examples and Comparative Examples, the use of the composition within the composition range of the present invention provides a porcelain with stable electrical characteristics even when the sintering temperature changes, and is practically usable. It can be said that the characteristics are extremely excellent. Therefore, it can be said that the industrial significance of the present invention is extremely large.

【図面の簡単な説明】 第1図は実施例11の焼結体の粒子構造の破断面電子顕微
鏡写真、第2図は比較例4の焼結体の粒子構造の破断面
電子顕微鏡写真である。ただし、図中白抜きバーは10μ
mを示す。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an electron micrograph of a grain structure of a sintered body of Example 11, and FIG. 2 is an electron micrograph of a grain structure of a sintered body of Comparative Example 4. . However, the white bar in the figure is 10μ
m.

フロントページの続き (58)調査した分野(Int.Cl.6,DB名) C04B 35/00 C04B 35/49 H01B 3/12 313Continuation of front page (58) Field surveyed (Int. Cl. 6 , DB name) C04B 35/00 C04B 35/49 H01B 3/12 313

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】マグネシウム・タングステン酸鉛[Pb(Mg
1/21/2)O3)],マグネシウム・ニオブ酸鉛[Pb(Mg
1/3Nb2/3)O3],チタン酸鉛[PbTiO3]およびジルコニ
ウム酸鉛[PbZrO3]からなる4成分系固溶体磁器組成物
を [Pb(Mg1/21/2)O3−[Pb(Mg1/3Nb2/3)O3 −[PbTiO3−[PbZrO3 (ただし、X、Y、Z及びUはモル分率を示し、X+Y
+Z+U=1である) と表現した時、X,Y,Z,Uがそれぞれ 0.05≦X≦0.3 0.3≦Y≦0.85 0.05≦Z≦0.3 0.05≦U≦0.3 で表される主成分組成物に、添加物としてマンガンを含
む複合酸化物を、主成分組成物に対して0〜4mol%添加
含有せしめてなることを特徴とする誘電体磁器組成物。
Claims: 1. Magnesium lead tungstate [Pb (Mg
1/2 W 1/2 ) O 3 )], lead magnesium niobate [Pb (Mg
1/3 Nb 2/3 ) O 3 ], lead titanate [PbTiO 3 ] and lead zirconate [PbZrO 3 ] quaternary solid solution porcelain composition [Pb (Mg 1/2 W 1/2 ) O 3] X - [Pb (Mg 1/3 Nb 2/3) O 3] Y - [PbTiO 3) Z - [PbZrO 3] U ( However, X, Y, Z and U represents a molar fraction, X + Y
+ Z + U = 1) When X, Y, Z, U are respectively represented by 0.05 ≦ X ≦ 0.3 0.3 ≦ Y ≦ 0.85 0.05 ≦ Z ≦ 0.3 0.05 ≦ U ≦ 0.3 A dielectric porcelain composition characterized in that a composite oxide containing manganese as an additive is added and contained in an amount of 0 to 4 mol% with respect to the main component composition.
JP2112504A 1990-01-30 1990-04-27 Dielectric porcelain composition Expired - Lifetime JP2803320B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2112504A JP2803320B2 (en) 1990-04-27 1990-04-27 Dielectric porcelain composition
PCT/JP1991/000092 WO1991011408A1 (en) 1990-01-30 1991-01-29 Dielectric ceramic composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2112504A JP2803320B2 (en) 1990-04-27 1990-04-27 Dielectric porcelain composition

Publications (2)

Publication Number Publication Date
JPH0412021A JPH0412021A (en) 1992-01-16
JP2803320B2 true JP2803320B2 (en) 1998-09-24

Family

ID=14588308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2112504A Expired - Lifetime JP2803320B2 (en) 1990-01-30 1990-04-27 Dielectric porcelain composition

Country Status (1)

Country Link
JP (1) JP2803320B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4846226B2 (en) * 2004-10-26 2011-12-28 株式会社日立ソリューションズ Information processing apparatus, information processing method, and program

Also Published As

Publication number Publication date
JPH0412021A (en) 1992-01-16

Similar Documents

Publication Publication Date Title
JPH09208312A (en) Dielectric ceramic composition
JP2803320B2 (en) Dielectric porcelain composition
JPS6227026B2 (en)
JP2926827B2 (en) Dielectric porcelain composition
JP3287980B2 (en) Multilayer capacitors
JPH04115409A (en) Non-reducing dielectric ceramic composite
JPS6042277A (en) Ceramic composition
JP3064518B2 (en) Dielectric porcelain composition
JPS6227028B2 (en)
JPS6230151B2 (en)
JPS6256605B2 (en)
JP3301814B2 (en) Dielectric porcelain composition
WO1992013810A1 (en) Dielectric ceramic composition
JP3064519B2 (en) Dielectric porcelain composition
JP3318951B2 (en) Dielectric ceramic composition and multilayer ceramic capacitor using the same
JPS6149269B2 (en)
JPS6033261A (en) Ceramic composition
JPH0566332B2 (en)
JPH0457631B2 (en)
JPS6046968A (en) Ceramic composition
JPS6224382B2 (en)
JPS6224389B2 (en)
JPS6149268B2 (en)
JPS62226858A (en) Ceramic composition
JPS6224381B2 (en)