JPS6224381B2 - - Google Patents

Info

Publication number
JPS6224381B2
JPS6224381B2 JP57058564A JP5856482A JPS6224381B2 JP S6224381 B2 JPS6224381 B2 JP S6224381B2 JP 57058564 A JP57058564 A JP 57058564A JP 5856482 A JP5856482 A JP 5856482A JP S6224381 B2 JPS6224381 B2 JP S6224381B2
Authority
JP
Japan
Prior art keywords
composition
pbtio
temperature
lead
porcelain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57058564A
Other languages
Japanese (ja)
Other versions
JPS58176176A (en
Inventor
Haruhiko Myamoto
Masatomo Yonezawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP57058564A priority Critical patent/JPS58176176A/en
Priority to US06/475,538 priority patent/US4450240A/en
Publication of JPS58176176A publication Critical patent/JPS58176176A/en
Publication of JPS6224381B2 publication Critical patent/JPS6224381B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Capacitors (AREA)
  • Inorganic Insulating Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、磁器組成物、特に1050℃以下の低温
で焼結でき、誘電率が高く、室温および高温にお
ける絶縁抵抗が高く、しかも機械的強度の高い磁
器組成物に関するものである。 従来、誘電体磁器組成物として、チタン酸バリ
ウム(BaTiO3)を主成分とする磁器が広く実用化
されていることは周知のとおりである。しかしな
がら、チタン酸バリウム(BaTiO3)を主成分とす
るものは、焼結温度が通常1300〜1400℃の高温で
ある。このためこれを積層形コンデンサに利用す
る場合には内部電極としてこの焼結温度に耐え得
る材料、例えば白金、パラジウムなどの高価な貴
金属を使用しなければならず、製造コストが高く
つくという欠点がある。積層形コンデンサを安く
作るためには、銀、ニツケルなどを主成分とする
安価な金属が内部電極に使用できるような、でき
るだけ低温、特に1050℃以下で焼結できる磁器が
必要である。 また磁器組成物の電気的特性として、誘電率が
高く、誘電損失が小さく、絶縁抵抗が高いことが
基本的に要求される。さらに絶縁抵抗の値に関し
ては、高信頼性の部品を要求する米国防総省の規
格であるミリタリースペシフイケイシヨン
(Military Specification)のMIL―C―55618Bに
おいて、室温における値のみならず、125℃にお
ける値も定められているように、信頼性の高い磁
器コンデンサを得るためには、室温における値の
みならず、最高使用温度における絶縁抵抗も高い
値をとることが必要である。 また、積層形チツプコンデンサの場合は、チツ
プコンデンサを基板に実装したとき、基板とチツ
プコンデンサを構成している磁器との熱膨張係数
の違いにより、チツプコンデンサに機械的な歪が
加わり、チツプコンデンサにクラツクが発生した
り、破損したりすることがある。また、エポキシ
系樹脂等を外装したデイツプコンデンサの場合
も、外装樹脂の応力で、デイツプコンデンサにク
ラツクが発生する場合がある。いずれの場合も、
コンデンサを形成している磁器の機械的強度が低
いほど、クラツクが入りやすく、容易に破損する
ため、信頼性が低くなる。したがつて、磁器の機
械的強度をできるだけ増大させることは実用上極
めて重要なことである。 ところでPb(Mg1/2W1/2)O3―PbTiO3系磁
器組成物については既にエヌ.エヌ.クライニ
ク,エイ.アイ.マグラノフスカヤN.N.Krainik
and A.I.Agrarovskaya(Fiziko Tverdogo
Tela,Vo.2.No.1,pp70〜72.Janvara1960)より
提案があり、また(SrxPb1-xTiO3a
(PbMg0.5W0.5O3)b〔ただし、x=0〜0.10,
aは0.35〜0.5、bは0.5〜0.65であり、そしてa
+b=1〕についても、モノリシツクコンデンサ
およびその製造方法として特開昭52―21662号公
報に開示され、また誘電体粉末組成物として特開
昭52―21699号公報に開示されている。しかしな
がら、いずれも比抵抗に関する開示は全くされて
おらず、これらの磁器組成物の実用性は明らかで
なかつた。また、本発明者達は既に910〜950℃の
温度で焼結でき、Pb(Mg1/2W1/2)O3
PbTiO3二成分系からなり、これを、〔Pb
(Mg1/2W1/2)O3X〔PbTiO31-Xと表わしたと
きに、Xが0.65<X≦1.00の範囲にある組成物を
提案している。この組成物は、誘電率と比抵抗の
積が高く、誘電損失の小さい優れた電気的特性を
有している。しかしながら、上記組成物はいずれ
も機械的強度が低いため、その用途は自ら狭い範
囲に限定せざるを得なかつた。 また、Pb(Mg1/2W1/2)O3―PbTiO3系を含
む三成分系については、特開昭55―111011におい
てPb(Mg1/2W1/2)O3―PbTiO3―Pb
(Mg1/3Nb2/3)O3系が、特開昭55―117809にお
いてPb(Mg1/2W1/2)O3―PbTiO3―Pb
(Mg1/3Ta2/3)O3系が、それぞれ開示されてい
る。しかしながら、いずれも比抵抗や機械的強度
に関する開示は全くされておらず、これらの磁器
組成物の実用性は明らかでなかつた。 また、本発明者達は既にPd(Mg1/2W1/2
O3―PbTiO3―Pb(Ni1/3Nb2/3)O3三成分組成
物を既に提案している。この組成物は、900〜
1050℃の低温領域で焼結でき、誘電率が高く、誘
電損失が小さく、室温および高温における絶縁抵
抗の値が高い優れた特性を有している。しかしな
がら、この組成物は、機械的強度が低いため、そ
の用途は自ら狭い範囲に限定せざるを得なかつ
た。 本発明は、以上の点にかんがみ、900〜1050℃
の低温領域で焼結でき、誘電率が高く、誘電損失
が小さく、室温および高温における絶縁抵抗の値
が高い優れた電気的特性を有し、更に機械的強度
も大きい信頼性の高い磁器組成物を提供しようと
するものであり、マグネシウム・タングステン酸
鉛〔Pb(Mg1/2W1/2)O3〕、チタン酸鉛
〔PbTiO3〕およびニツケル・ニオブ酸鉛〔Pb
(Ni1/3Nb2/3)O3〕からなる3成分組成物を
〔Pb(Mg1/2W1/2)O3X〔PbTiO3y〔Pb
(Ni1/3Nb2/3)O3zと、表わしたときに(ただ
しx+y+z=1.00)この3成分組成図において
以下の組成点 (x=0.693,y=0.297,z=0.01) (x=0.495,y=0.495,z=0.01) (x=0.195,y=0.455,z=0.35) (x=0.10,y=0.40,z=0.50) (x=0.06,y=0.24,z=0.70) を結ぶ線上、およびこの5点に囲まれる組成範囲
にある主成分組成物に、副成分として、マンガ
ン・タンタル酸鉛〔Pb(Mn1/3Ta2/3)O3〕を
主成分に対して、0.05〜8mol%添加含有せしめて
なることを特徴とするものである。 以下本発明を実施例により詳細に説明する。 出発原料として純度99.9%以上の酸化鉛
(PbO)、酸化マグネシウム(MgO)、酸化タング
ステン(WO3)、酸化チタン(TiO2)、酸化ニツ
ケル(NiO)および酸化ニオブ(Nb2O5)、酸化
タンタル(Ta2O5)および炭酸マンガン
(MnCO3)を使用し、表に示した配合比となるよ
うに各々秤量する。次に秤量した各材料をボール
ミル中で湿式混合した後750〜800℃で予熱を行な
い、この粉末をボールミルで粉砕し、口別、乾燥
後、有機バインダーを入れ整粒後プレスし、直径
16mm、厚さ約2mmの円板4枚と、直径16mm、厚さ
約10mmの円柱を作成した。次に本発明の組成範囲
の試料は空気中900〜1050℃の温度で1時間焼結
した。焼結した円板4枚の上下面に600℃で銀電
極を焼付け、デジタルLCRメーターで周波数1K
Hz、電圧1Vr.n.s.温度20℃で容量と誘電損失を測
定し、誘電率を算出した。次に超絶縁抵抗計で
50Vの電圧を1分間印加して、絶縁抵抗を温度20
℃と125℃で測定し、比抵抗を算出した。 機械的性質を抗折強度で評価するため、焼結し
た円柱から厚さ0.5mm、幅2mm、長さ約13mmの矩
形板を10枚切り出した。支点間距離を9mmにと
り、二点法で破壊荷重Pm〔Kg〕を測定し、τ=
3/2Pml/Wt〔Kg/cm2〕なる式に従い、抗折強度
τ= 〔Kg/cm2〕を求めた。ただし、lは支点間距離、
tは試料の厚み、Wは試料の幅である。電気的特
性は円板試料4点の平均値、抗折強度は矩形板試
料10点の平均値より求めた。このようにして得ら
れた磁器の主成分〔Pb(Mg1/2W1/2)O3x
〔PbTiO3y〔Pb(Ni1/3Nb2/3)O3zの配合比
x,y,zおよび副成分添加量と誘電率、誘電損
失、20℃および125℃における比抵抗、および抗
折強度の関係を次表に示す。
The present invention relates to a porcelain composition, particularly a porcelain composition that can be sintered at a low temperature of 1050° C. or lower, has a high dielectric constant, has a high insulation resistance at room temperature and high temperature, and has high mechanical strength. It is well known that ceramics containing barium titanate (BaTiO 3 ) as a main component have been widely put into practical use as dielectric ceramic compositions. However, those whose main component is barium titanate (BaTiO 3 ) have a sintering temperature of usually 1300 to 1400°C. Therefore, when using this material in a multilayer capacitor, a material that can withstand this sintering temperature must be used for the internal electrodes, such as an expensive noble metal such as platinum or palladium, which has the disadvantage of high manufacturing costs. be. In order to make multilayer capacitors cheaply, it is necessary to use porcelain that can be sintered at as low a temperature as possible, especially below 1050°C, so that inexpensive metals such as silver and nickel can be used for the internal electrodes. Furthermore, the electrical properties of the ceramic composition are basically required to have a high dielectric constant, low dielectric loss, and high insulation resistance. Furthermore, regarding the value of insulation resistance, MIL-C-55618B of the Military Specification, a US Department of Defense standard that requires highly reliable components, specifies not only the value at room temperature but also the value at 125°C. As stated above, in order to obtain a highly reliable ceramic capacitor, it is necessary to have a high insulation resistance value not only at room temperature but also at the maximum operating temperature. In addition, in the case of multilayer chip capacitors, when the chip capacitor is mounted on a board, mechanical strain is applied to the chip capacitor due to the difference in thermal expansion coefficient between the board and the porcelain that makes up the chip capacitor. This may cause cracks or damage. Furthermore, even in the case of dip capacitors coated with epoxy resin or the like, cracks may occur in the dip capacitor due to the stress of the coating resin. In either case,
The lower the mechanical strength of the porcelain forming the capacitor, the easier it is to crack and break, resulting in lower reliability. Therefore, it is of practical importance to increase the mechanical strength of porcelain as much as possible. By the way, Pb(Mg 1/2 W 1/2 ) O 3 -PbTiO 3 based ceramic composition has already been published in N. N. Krajnik, A. Ai. Maglanovskaya NNKrainik
and AIAgrarovskaya (Fiziko Tverdogo
Tela, Vo.2.No.1, pp70-72.Janvara1960), and (SrxPb 1-x TiO 3 ) a
(PbMg 0.5 W 0.5 O 3 ) b [However, x=0 to 0.10,
a is 0.35-0.5, b is 0.5-0.65, and a
+b=1] is also disclosed in JP-A-52-21662 as a monolithic capacitor and its manufacturing method, and also as a dielectric powder composition in JP-A-52-21699. However, none of them disclose any specific resistance, and the practicality of these ceramic compositions was not clear. In addition, the inventors have already found that Pb (Mg 1/2 W 1/2 ) O 3 can be sintered at temperatures of 910-950 °C.
It consists of a two-component system of PbTiO3 , which is
We propose a composition in which, when expressed as (Mg 1/2 W 1/2 )O 3 ] X [PbTiO 3 ] 1-X , X is in the range of 0.65<X≦1.00. This composition has a high product of dielectric constant and specific resistance, and has excellent electrical properties with low dielectric loss. However, since all of the above compositions have low mechanical strength, their applications have had to be limited to a narrow range. Regarding the ternary system including the Pb(Mg 1/2 W 1/2 )O 3 -PbTiO 3 system, Japanese Patent Application Laid-open No. 111011/1983 describes the Pb(Mg 1/2 W 1/2 )O 3 -PbTiO 3 system. -Pb
(Mg 1/3 Nb 2/3 ) O 3 system was changed to Pb (Mg 1/2 W 1/2 ) O 3 ―PbTiO 3 ―Pb in JP-A-55-117809.
(Mg 1/3 Ta 2/3 )O 3 systems are disclosed respectively. However, none of them discloses specific resistance or mechanical strength, and the practicality of these ceramic compositions was not clear. In addition, the present inventors have already discovered that Pd (Mg 1/2 W 1/2 )
A ternary composition of O3 - PbTiO3 - Pb(Ni1 / 3Nb2 /3 ) O3 has already been proposed. This composition contains 900~
It can be sintered at a low temperature of 1050°C, and has excellent properties such as high dielectric constant, low dielectric loss, and high insulation resistance at room temperature and high temperature. However, since this composition has low mechanical strength, its use has had to be limited to a narrow range. In view of the above points, the present invention provides temperature control of 900 to 1050℃.
A highly reliable porcelain composition that can be sintered in the low-temperature region of Magnesium lead tungstate [Pb (Mg 1/2 W 1/2 ) O 3 ], lead titanate [PbTiO 3 ] and lead nickel niobate [Pb
A three-component composition consisting of (Ni 1/3 Nb 2/3 ) O 3 ] [Pb (Mg 1/2 W 1/2 ) O 3 ] X [PbTiO 3 ] y [Pb
(Ni 1/3 Nb 2/3 )O 3 ] z (where x+y+z=1.00) In this three-component composition diagram, the following composition point (x=0.693, y=0.297, z=0.01) ( x=0.495, y=0.495, z=0.01) (x=0.195, y=0.455, z=0.35) (x=0.10, y=0.40, z=0.50) (x=0.06, y=0.24, z=0.70 ) and in the composition range surrounded by these five points, add manganese lead tantalate [Pb (Mn 1/3 Ta 2/3 ) O 3 ] as a main component as a subcomponent. On the other hand, it is characterized by containing 0.05 to 8 mol%. The present invention will be explained in detail below with reference to Examples. Lead oxide (PbO), magnesium oxide (MgO), tungsten oxide (WO 3 ), titanium oxide (TiO 2 ), nickel oxide (NiO) and niobium oxide (Nb 2 O 5 ), oxidized as starting materials with a purity of 99.9% or higher. Tantalum (Ta 2 O 5 ) and manganese carbonate (MnCO 3 ) are used, and each is weighed so as to achieve the mixing ratio shown in the table. Next, the weighed materials were wet-mixed in a ball mill, preheated at 750-800°C, and this powder was ground in a ball mill, divided into pieces, dried, and an organic binder was added to the powder, which was sized and pressed.
We created four disks with a diameter of 16 mm and a thickness of approximately 2 mm, and a cylinder with a diameter of 16 mm and a thickness of approximately 10 mm. Samples having the composition range of the present invention were then sintered in air at a temperature of 900-1050°C for 1 hour. Silver electrodes were baked on the top and bottom surfaces of four sintered disks at 600℃, and the frequency was 1K using a digital LCR meter.
The capacitance and dielectric loss were measured at Hz, voltage 1V r.n.s and temperature 20°C, and the dielectric constant was calculated. Next, use a super insulation resistance meter
Apply a voltage of 50V for 1 minute to measure the insulation resistance at a temperature of 20
℃ and 125℃, and the specific resistance was calculated. In order to evaluate the mechanical properties in terms of bending strength, 10 rectangular plates with a thickness of 0.5 mm, a width of 2 mm, and a length of about 13 mm were cut out from the sintered cylinder. The distance between the fulcrums was set to 9 mm, and the breaking load Pm [Kg] was measured using the two-point method, and τ =
The bending strength τ=[Kg/cm 2 ] was determined according to the formula 3/2Pml/Wt 2 [Kg/cm 2 ]. However, l is the distance between the fulcrums,
t is the thickness of the sample, and W is the width of the sample. The electrical properties were determined from the average value of 4 disk samples, and the bending strength was determined from the average value of 10 rectangular plate samples. The main component of the porcelain obtained in this way [Pb (Mg 1/2 W 1/2 ) O 3 ] x
[PbTiO 3 ] y [Pb(Ni 1/3 Nb 2/3 ) O 3 ] z compounding ratio x, y, z and amount of subcomponents added, dielectric constant, dielectric loss, resistivity at 20℃ and 125℃, The relationship between flexural strength and bending strength is shown in the table below.

【表】【table】

【表】 表に示した結果から明らかなように、Pb
(Mg1/2W1/2)O3−PbTiO3―Pb
(Ni1/3Nb2/3)O3三成分組成物に副成分とし
て、Pb(Mn1/3Ta2/3)O3を添加含有せしめた
本発明の範囲内のものは、誘電率が3090〜13510
と高く、誘電損失が0.3〜3.1%と小さく、比抵抗
が20℃において3.5×1012〜2.1×1013Ω・cmと高
く、しかも125℃においても7.5×1010〜3.8×1012
Ω・cmという高い値を示し、さらに抗折強度も
980〜1410Kg/cm2と実用上十分高い値を示す信頼
性の高い実用性の極めて高い磁器組成物であるこ
とがわかる。こうした優れた特性を示す本発明の
磁器は焼結温度が1050℃以下の低温であるため、
積層コンデンサの内部電極の低価格化を実現でき
ると共に、省エネルギーや炉材の節約にもなると
いう極めて優れた効果も生じる。 なお、本発明の主成分組成物を〔Pb
(Mg1/2W1/2)O3x〔PbTiO3y〔Pb
(Ni1/3Nb2/3)O3zと表わしたときに(ただし
x+y+z=1.00)、その組成は3成分組成図に
おける点 (x=0.693,y=0.297,z=0.01) (x=0.495,y=0.495,z=0.01) (x=0.195,y=0.455,z=0.35) (x=0.10,y=0.40,z=0.50) (x=0.06,y=0.24,z=0.70) を結ぶ線上、およびこの5点に囲まれる組成範囲
に限定され、副成分の添加含有量は主成分に対し
て0.05〜8mol%に限定される。主成分組成範囲を
表わす3成分組成図において、組成点2,6およ
び組成点17,19を結ぶ線の外側では、高温におけ
る比抵抗が小さくなり、実用的でない。組成点
6,13,17を結ぶ線の外側では、キユリー点が実
用範囲より高温側に大きくずれるため、誘電率が
小さくなり、組成点19,2を結ぶ線の外側では、
キユリー点が実用範囲より低温側に大きくずれる
ため、誘電率が小さくなり、実用的でない。 また副成分であるPb(Mn1/3Ta2/3)O3の添
加量が0.05mol%未満では抗折強度の改善効果が
小さく、8mol%を超えると逆に抗折強度が小さ
くなるため実用的でない。 なお、図に本発明の主成分組成範囲を示す。図
に示した番号は、表に示した主成分配合比の番号
に対応する。
[Table] As is clear from the results shown in the table, Pb
(Mg 1/2 W 1/2 )O 3 −PbTiO 3 −Pb
A composition within the scope of the present invention in which Pb(Mn 1/3 Ta 2/3 ) O 3 is added as an accessory component to a (Ni 1/3 Nb 2/3 ) O 3 ternary composition has a dielectric constant. is 3090~13510
It has a high dielectric loss of 0.3 to 3.1%, and a high specific resistance of 3.5×10 12 to 2.1×10 13 Ω・cm at 20°C, and 7.5×10 10 to 3.8×10 12 even at 125°C.
It shows a high value of Ω・cm, and also has a high bending strength.
It can be seen that it is a highly reliable and extremely practical porcelain composition that exhibits a value of 980 to 1410 Kg/cm 2 , which is sufficiently high for practical use. The porcelain of the present invention, which exhibits these excellent properties, has a sintering temperature of 1050°C or lower, so
In addition to being able to reduce the cost of the internal electrodes of multilayer capacitors, this also has the extremely excellent effect of saving energy and furnace materials. Note that the main component composition of the present invention is [Pb
(Mg 1/2 W 1/2 )O 3x 〔PbTiO 3y 〔Pb
(Ni 1/3 Nb 2/3 )O 3 ] When expressed as z (where x+y+z=1.00), its composition is the point (x=0.693, y=0.297, z=0.01) in the three-component composition diagram (x =0.495, y=0.495, z=0.01) (x=0.195, y=0.455, z=0.35) (x=0.10, y=0.40, z=0.50) (x=0.06, y=0.24, z=0.70) The content of the subcomponent added is limited to 0.05 to 8 mol% relative to the main component. In the three-component composition diagram showing the main component composition range, the resistivity at high temperatures becomes small outside the line connecting composition points 2 and 6 and composition points 17 and 19, making it impractical. Outside the line connecting composition points 6, 13, and 17, the Curie point deviates significantly toward higher temperatures than the practical range, so the dielectric constant decreases; outside the line connecting composition points 19 and 2,
Since the Kyrie point is significantly shifted to the lower temperature side than the practical range, the dielectric constant becomes small, making it impractical. Furthermore, if the amount of Pb (Mn 1/3 Ta 2/3 ) O 3 added, which is a subcomponent, is less than 0.05 mol%, the effect of improving the bending strength will be small, and if it exceeds 8 mol%, the bending strength will decrease. Not practical. The figure shows the composition range of the main components of the present invention. The numbers shown in the figure correspond to the numbers of the main component blending ratios shown in the table.

【図面の簡単な説明】[Brief explanation of the drawing]

図は、本発明の主成分組成範囲と実施例に示し
た組成点を示す図である。
The figure is a diagram showing the main component composition range of the present invention and the composition points shown in Examples.

Claims (1)

【特許請求の範囲】 1 マグネシウム・タングステン酸鉛〔Pb
(Mg1/2W1/2)O3〕、チタン酸鉛〔PbTiO3〕およ
びニツケル・ニオブ酸鉛〔Pb(Ni1/3Nb2/3
O3〕からなる3成分組成物を〔Pb
(Mg1/2W1/2)O3x〔PbTiO3y〔Pb
(Ni1/3Nb2/3)O3zと表わしたときに、(ただし
x+y+z=1.00)この3成分組成図において、
以下の組成点 (x=0.693,y=0.297,z=0.01) (x=0.495,y=0.495,z=0.01) (x=0.195,y=0.455,z=0.35) (x=0.10,y=0.40,z=0.50) (x=0.06,y=0.24,z=0.70) を結ぶ線上、およびこの5点に囲まれる組成範囲
にある主成分組成物に副成分としてマンガン・タ
ンタル酸鉛〔Pb(Mn1/3Ta2/3)O3〕を主成分
に対して0.05〜8mol%添加含有せしめてなること
を特徴とする磁器組成物。
[Claims] 1. Magnesium lead tungstate [Pb
(Mg 1/2 W 1/2 )O 3 ], lead titanate [PbTiO 3 ] and lead nickel niobate [Pb(Ni 1/3 Nb 2/3 )
A three -component composition consisting of [Pb
(Mg 1/2 W 1/2 )O 3x 〔PbTiO 3y 〔Pb
(Ni 1/3 Nb 2/3 ) O 3 ] When expressed as z (however, x+y+z=1.00), in this three-component composition diagram,
The following composition points (x=0.693, y=0.297, z=0.01) (x=0.495, y=0.495, z=0.01) (x=0.195, y=0.455, z=0.35) (x=0.10, y= 0.40, z = 0.50) (x = 0.06, y = 0.24, z = 0.70) and in the composition range surrounded by these five points, manganese lead tantalate [Pb ( A porcelain composition characterized in that it contains Mn 1/3 Ta 2/3 ) O 3 in an amount of 0.05 to 8 mol % based on the main component.
JP57058564A 1982-03-17 1982-04-08 Ceramic composition Granted JPS58176176A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP57058564A JPS58176176A (en) 1982-04-08 1982-04-08 Ceramic composition
US06/475,538 US4450240A (en) 1982-03-17 1983-03-15 Ceramic compositions having high dielectric constant and high specific resistivity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57058564A JPS58176176A (en) 1982-04-08 1982-04-08 Ceramic composition

Publications (2)

Publication Number Publication Date
JPS58176176A JPS58176176A (en) 1983-10-15
JPS6224381B2 true JPS6224381B2 (en) 1987-05-28

Family

ID=13087941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57058564A Granted JPS58176176A (en) 1982-03-17 1982-04-08 Ceramic composition

Country Status (1)

Country Link
JP (1) JPS58176176A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6046966A (en) * 1983-08-22 1985-03-14 日本電気株式会社 Ceramic composition

Also Published As

Publication number Publication date
JPS58176176A (en) 1983-10-15

Similar Documents

Publication Publication Date Title
JPS6227026B2 (en)
JPH0449503B2 (en)
JPS6227029B2 (en)
JPS6227028B2 (en)
JPS6230151B2 (en)
JPS6256605B2 (en)
JPS6224381B2 (en)
JPS6121183B2 (en)
JPS6224382B2 (en)
JPH0457631B2 (en)
JPS6234707B2 (en)
JPS6227027B2 (en)
JPH0457630B2 (en)
JPS6224383B2 (en)
JPH0419646B2 (en)
JPS6149268B2 (en)
JPH0534302B2 (en)
JP2803320B2 (en) Dielectric porcelain composition
JPS6149269B2 (en)
JPS6227025B2 (en)
JPH0419647B2 (en)
JPH0457629B2 (en)
JPS6236326B2 (en)
JPH0566332B2 (en)
JPH0534301B2 (en)