JPH021301B2 - - Google Patents

Info

Publication number
JPH021301B2
JPH021301B2 JP9881583A JP9881583A JPH021301B2 JP H021301 B2 JPH021301 B2 JP H021301B2 JP 9881583 A JP9881583 A JP 9881583A JP 9881583 A JP9881583 A JP 9881583A JP H021301 B2 JPH021301 B2 JP H021301B2
Authority
JP
Japan
Prior art keywords
amorphous silicon
charging
photoreceptor
intermediate layer
photoconductive layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9881583A
Other languages
Japanese (ja)
Other versions
JPS59223439A (en
Inventor
Kenichi Karakida
Yasuo Ro
Yuzuru Fukuda
Shigeru Yagi
Yasunari Okugawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP9881583A priority Critical patent/JPS59223439A/en
Publication of JPS59223439A publication Critical patent/JPS59223439A/en
Publication of JPH021301B2 publication Critical patent/JPH021301B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/14Inert intermediate or cover layers for charge-receiving layers

Description

【発明の詳細な説明】 産業上の利用分野 本発明は電子写真用感光体、詳しく言えば導電
性基板上に中間層及び光導電層が順次積層された
多層構造を有しかつ前記光導電層が非晶質珪素を
主体とする電子写真用非晶質珪素感光体に関す
る。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an electrophotographic photoreceptor, more specifically, a photoreceptor having a multilayer structure in which an intermediate layer and a photoconductive layer are sequentially laminated on a conductive substrate, and the photoconductive layer The present invention relates to an amorphous silicon photoreceptor for electrophotography, which is mainly composed of amorphous silicon.

従来技術 従来複写機あるいはレーザープリンターなどに
使用される電子写真用感光体として、例えば、セ
レン(Se)、硫化カドミウム(CdS)、酸化亜鉛
(ZnO)等の無機系光導電材料を用いた感光体や
ポリ−N−ビニルカルバゾール(PVK)、トリニ
トロフルオレノン(TNF)等の有機系光導電材
料を用いた感光体が一般的に使用されている。セ
レン系感光体は高感度、また高寿命であり合金化
によつて増感性あるいは耐久性を容易に改善でき
るという利点を有す。しかし機械的強度あるいは
耐熱性といつた点に問題を残している。酸化亜鉛
を用いた感光体は一般的に低感度で寿命も短いと
いう欠点を有す。硫化カドミウムを用いた感光体
は、通常その最上表面に比較的厚い透明絶縁層が
設けられており、その使用に際しては、一次帯電
→逆極性二次帯電→像露光又は一次帯電→逆極性
二次帯電同時像露光→一様露光といつたいわゆる
NP方式と呼ばれる複雑な潜像形成工程を必要と
する。さらに有機光導電性材料を用いた感光体
は、一般的に寿命が短かく、また有機半導体自体
の感度が比較的低いという欠点を有している。以
上述べたように従来使用されている電子写真用感
光体はそれぞれ解決されるべき問題点を有してお
り、いまだ高耐久性、高耐熱性、高光感度などの
特性を十分に兼ね備えた感光体は得られていない
のが実状である。
Prior Art Photoconductors using inorganic photoconductive materials such as selenium (Se), cadmium sulfide (CdS), and zinc oxide (ZnO) are conventionally used as electrophotographic photoconductors used in copiers or laser printers. Photoreceptors using organic photoconductive materials such as PVK, poly-N-vinylcarbazole (PVK), and trinitrofluorenone (TNF) are commonly used. Selenium-based photoreceptors have the advantage of high sensitivity and long life, and that sensitization or durability can be easily improved by alloying. However, problems remain in terms of mechanical strength and heat resistance. Photoreceptors using zinc oxide generally have the disadvantages of low sensitivity and short life. A photoreceptor using cadmium sulfide usually has a relatively thick transparent insulating layer on its top surface, and when used, it undergoes primary charging → reverse polarity secondary charging → image exposure or primary charging → reverse polarity secondary charging. Simultaneous charge image exposure → uniform exposure
It requires a complicated latent image formation process called the NP method. Furthermore, photoreceptors using organic photoconductive materials generally have a short lifespan and have the drawbacks that the sensitivity of the organic semiconductor itself is relatively low. As mentioned above, each of the electrophotographic photoreceptors used conventionally has problems that need to be solved, and there are still photoreceptors that have sufficient characteristics such as high durability, high heat resistance, and high light sensitivity. The reality is that this has not been achieved.

このような観点から、最近、上記のような欠点
を有しない感光体、すなわち表面硬度、耐摩耗性
等の機械的強度に優れ、高耐熱性、長寿命性、高
光感度を兼ね備え、かつ汎色性に優れた新規の感
光体として、光導電材料として非晶質珪素(別
名、アモルフアス・シリコンあるいは
Amorphous Silicon)を主体として用いた非晶
質珪素感光体が注目されている。この感光体に使
用される非晶質珪素膜は例えばプラズマCVD法
(Plasma−Chemical Vaper Deposition法)に
よりシラン(SiH4)ガスのグロー放電分解によ
つて形成される。この場合非晶質珪素膜中には、
原料のシランガスの分解により発生した水素原子
が自動的に取り込まれており、このようにして得
られた水素含有非晶質珪素膜は、水素を含有しな
いものに比べ高い暗抵抗を有し、同時に高い光導
電性を有す。また分光感度域が広く、約380nm〜
700nmまで汎色性を有し、高光感度であり、かつ
それ以上の長波長の赤外域においても良好な光感
度を付与することができる。
From this point of view, recently, photoreceptors that do not have the above-mentioned drawbacks, that is, have excellent mechanical strength such as surface hardness and abrasion resistance, have high heat resistance, long life, and high light sensitivity, and have a wide range of colors. As a new photoreceptor with excellent properties, amorphous silicon (also known as amorphous silicon) is used as a photoconductive material.
Amorphous silicon photoreceptors using amorphous silicon as the main material are attracting attention. The amorphous silicon film used in this photoreceptor is formed, for example, by glow discharge decomposition of silane (SiH 4 ) gas using a plasma CVD method (Plasma-Chemical Vaper Deposition method). In this case, in the amorphous silicon film,
Hydrogen atoms generated by the decomposition of the raw material silane gas are automatically incorporated, and the hydrogen-containing amorphous silicon film obtained in this way has a higher dark resistance than one that does not contain hydrogen, and at the same time Has high photoconductivity. In addition, the spectral sensitivity range is wide, from about 380 nm to
It has panchromaticity up to 700 nm, has high photosensitivity, and can provide good photosensitivity even in the infrared region with longer wavelengths.

また表面硬度、耐摩耗性等の機械的強度に優れ
ているため、使用に際しその表面に表面層を設け
る場合には比較的薄いものでよく、したがつて帯
電→露光のようなカールソン方式を用いることが
できる。
In addition, it has excellent mechanical strength such as surface hardness and abrasion resistance, so if a surface layer is to be provided on the surface during use, it can be relatively thin, and therefore a Carlson method such as charging → exposure is used. be able to.

以上の理由により、非晶質珪素感光体は、機械
的強度、耐久性、光感度、汎色性、長波長感度な
どに優れた、理想的な特性を有する電子写真用感
光体であるといえる。
For the above reasons, it can be said that amorphous silicon photoreceptors are ideal electrophotographic photoreceptors with excellent mechanical strength, durability, photosensitivity, panchromaticity, long wavelength sensitivity, etc. .

しかしながら上記の非晶質珪素感光体は、実用
上次の欠点を有する。すなわち非晶質珪素を主体
とする光導電層は高い暗抵抗を有するとはいうも
のの、静電潜像を維持するためには十分とはいえ
ず、単に導電性基板上に非晶質珪素を主体とする
光導電層を有する感光体の場合、静電潜像形成の
ために感光体表面にかなりの量の帯電電荷を与え
たとしても暗減衰が速く、このため、場合によつ
ては次の現像過程に至るまでの間、この帯電電荷
を十分に保持し得ないことがある。
However, the amorphous silicon photoreceptor described above has the following practical drawbacks. In other words, although a photoconductive layer mainly composed of amorphous silicon has a high dark resistance, it is not sufficient to maintain an electrostatic latent image. In the case of a photoconductor having a photoconductive layer as a main component, dark decay is fast even if a considerable amount of charge is applied to the surface of the photoconductor to form an electrostatic latent image. This charge may not be sufficiently retained until the developing process.

また、帯電特性の外部環境の雰囲気依存性すな
わち湿度依存性および温度依存性が大きく、外部
環境の雰囲気の変化により、その帯電特性が大き
く変動し、特に高温多湿雰囲気中では帯電特性が
著しく低下する。また、帯電特性が安定しにくい
ため常時安定した高品質画像を得ることができな
い。あるいは感光体の繰返し使用時において、繰
返し数の増加と共に、帯電電位の低下、画像品質
の低下を招きやすい。
In addition, the charging characteristics have a large dependence on the atmosphere of the external environment, that is, humidity and temperature dependence, and changes in the external environment can cause the charging characteristics to fluctuate greatly, and in particular, the charging characteristics deteriorate significantly in a high temperature and humid atmosphere. . Furthermore, since the charging characteristics are difficult to stabilize, stable high-quality images cannot be obtained at all times. Alternatively, when the photoreceptor is used repeatedly, as the number of repetitions increases, the charging potential tends to decrease and the image quality tends to deteriorate.

したがつて、非晶質珪素感光体の場合には、上
述の欠点を改良すべく中間層を用いることが好ま
しい。ところが従来のポリマー物質による中間層
では非晶質珪素を主体とする光導電層の長所を生
かしきれず、ゆえに非晶質珪素光導電層との接着
性が高く、機械的強度が大であり、しかも電荷保
持力の大きな中間層を設けることが要望されてい
る。
Therefore, in the case of an amorphous silicon photoreceptor, it is preferable to use an intermediate layer in order to improve the above-mentioned drawbacks. However, the conventional intermediate layer made of a polymer material cannot take full advantage of the advantages of a photoconductive layer mainly made of amorphous silicon, and therefore has high adhesion and mechanical strength with the amorphous silicon photoconductive layer. Moreover, it is desired to provide an intermediate layer having a large charge retention ability.

発明の目的 本発明の目的は、非晶質珪素を主体とした光導
電層に適合する中間層を設けることにより非晶質
珪素感光体における上述の欠点を確実に解消した
電子写真用感光体を提供することにある。
OBJECTS OF THE INVENTION An object of the present invention is to provide an electrophotographic photoreceptor that reliably eliminates the above-mentioned drawbacks of amorphous silicon photoreceptors by providing an intermediate layer compatible with a photoconductive layer mainly composed of amorphous silicon. It is about providing.

本発明の目的は、帯電過程での電荷保持性に優
れた電子写真用感光体を提供することにある。
An object of the present invention is to provide an electrophotographic photoreceptor that has excellent charge retention during the charging process.

本発明の他の目的は、帯電特性が外部環境の雰
囲気の変化によつて影響を受けない全環境型の電
子写真用感光体を提供することにある。
Another object of the present invention is to provide an all-environment electrophotographic photoreceptor whose charging characteristics are not affected by changes in the external atmosphere.

また本発明の他の目的は、繰返し特性に優れた
電子写真用感光体を提供することにある。
Another object of the present invention is to provide an electrophotographic photoreceptor with excellent repeatability.

さらに本発明の他の目的は、機械的強度、耐久
性、寿命、耐熱性、光感度などの電子写真特性に
優れた電子写真用感光体を提供することにある。
Still another object of the present invention is to provide an electrophotographic photoreceptor having excellent electrophotographic properties such as mechanical strength, durability, lifespan, heat resistance, and photosensitivity.

発明の構成 本発明の電子写真用感光体は、導電性基板上に
中間層及び光導電層が順次積層された多層構造を
有しかつ前記光導電層が非晶質珪素を主体とする
電子写真用感光体において、前記中間層がジルコ
ニウム錯体を少なくとも一種類含む溶液を乾燥硬
化させた物質から成ることを特徴とするものであ
る。
Structure of the Invention The electrophotographic photoreceptor of the present invention has a multilayer structure in which an intermediate layer and a photoconductive layer are sequentially laminated on a conductive substrate, and the photoconductive layer is mainly made of amorphous silicon. In the photoreceptor, the intermediate layer is made of a material obtained by drying and curing a solution containing at least one type of zirconium complex.

本発明の電子写真用感光体の構造は図に示す通
りであり、図中、1は非晶質珪素を主体とした光
導電層、2はジルコニウム錯体を含む溶液の乾燥
硬化物から成る中間層、3は導電性基板である。
The structure of the electrophotographic photoreceptor of the present invention is as shown in the figure, in which 1 is a photoconductive layer mainly composed of amorphous silicon, and 2 is an intermediate layer consisting of a dried and cured product of a solution containing a zirconium complex. , 3 is a conductive substrate.

2の中間層は帯電処理の際の導電性基板側から
光導電層中への電荷の注入を阻止する電荷ブロツ
キング層としての役割の他に導電性基板と光導電
層との接着層としての機能を持たせることができ
る。またさらには、本中間層は導電性基板と光導
電層の熱膨張係数(あるいは熱収縮係数)の違い
により発生する熱に起因する内部応力の吸収緩和
層としての機能を持たせることができる。これに
より、熱に起因する内部応力による光導電層の基
板からの剥離あるいは光導電層中でのクラツク
(亀裂、ひび割れ)の発生を防止することができ
る。
The intermediate layer 2 functions as a charge blocking layer that prevents charge from being injected from the conductive substrate side into the photoconductive layer during charging treatment, and also functions as an adhesive layer between the conductive substrate and the photoconductive layer. can have. Furthermore, the intermediate layer can function as a layer for absorbing and relaxing internal stress caused by heat generated due to the difference in thermal expansion coefficient (or thermal contraction coefficient) between the conductive substrate and the photoconductive layer. This can prevent the photoconductive layer from peeling off from the substrate or cracking in the photoconductive layer due to internal stress caused by heat.

中間層2は、ジルコニウム錯体を少なくとも1
種類含む溶液の乾燥硬化物によつて形成される。
中間層に適したジルコニウム錯体としては、ジル
コニウムテトラキスアセチルアセトネート、ジル
コニウムジブトキシビスアセチルアセトネート、
ジルコニウムトリブトキシアセチルアセトネー
ト、ジルコニウムテトラキスエチルアセトアセテ
ート、ジルコニウムブトキシトリスエチルアセト
アセテート、ジルコニウムジブトキシビスエチル
アセトアセテート、ジルコニウムトリブトキシモ
ノエチルアセトアセテート、ジルコニウムテトラ
キスエチルラクテート、ジルコニウムジブトキシ
ビスエチルラクテート、ビスアセチルアセトネー
トビスエチルアセトアセテートジルコニウム、モ
ノアセチルアセトネートトリスエチルアセトアセ
テートジルコニウム、ビスアセチルアセトネート
ビスエチルラクテートジルコニウム、ジルコニウ
ムトリフロロアセチルアセトンなどがある。
The intermediate layer 2 contains at least one zirconium complex.
It is formed by drying and curing a solution containing various types.
Zirconium complexes suitable for the intermediate layer include zirconium tetrakisacetylacetonate, zirconium dibutoxybisacetylacetonate,
Zirconium tributoxy acetylacetonate, zirconium tetrakis ethyl acetoacetate, zirconium butoxy tris ethyl acetoacetate, zirconium dibutoxy bis ethyl acetoacetate, zirconium tributoxy monoethylacetoacetate, zirconium tetrakis ethyl lactate, zirconium dibutoxy bis ethyl lactate, bisacetyl Examples include zirconium acetonate bisethylacetoacetate, zirconium monoacetylacetonate trisethylacetoacetate, zirconium bisacetylacetonate bisethyl lactate, and zirconium trifluoroacetylacetone.

これらは2種以上の混合溶液として用いても良
い。またこれらのジルコニウム錯体と有機ケイ素
化合物を混合した溶液を用いても良い。有機ケイ
素化合物としては、一般にシランカツプリング剤
と呼ばれている化合物が好適で例えば以下のもの
があげられる。ビニルトリクロルシラン、ビニル
トリエトキシシラン、ビニルトリス(β−メトキ
シエトキシ)シラン、γ−グリシドキシプロピル
トリメトキシシラン、γ−メタアクリロキシプロ
ピルトリメトキシシラン、N−β(アミノエチル)
γ−アミノプロピルトリメトキシシラン、N−β
(アミノエチル)γ−アミノプロピルメチルジメ
トキシシラン、γ−クロロプロピルトリメトキシ
シラン、γ−メルカプトプロピルトリメトキシシ
ラン、γ−アミノプロピルトリエトキシシラン、
メチルトリメトキシシラン、ジメチルジメトキシ
シラン、トリメチルモノメトキシシラン、ジフエ
ニルジメトキシシラン、ジフエニルジエトキシシ
ラン、モノフエニルトリメトキシシラン。
These may be used as a mixed solution of two or more types. Alternatively, a solution containing a mixture of these zirconium complexes and an organosilicon compound may be used. As the organosilicon compound, compounds generally called silane coupling agents are suitable, and examples thereof include the following. Vinyltrichlorosilane, vinyltriethoxysilane, vinyltris(β-methoxyethoxy)silane, γ-glycidoxypropyltrimethoxysilane, γ-methacryloxypropyltrimethoxysilane, N-β(aminoethyl)
γ-aminopropyltrimethoxysilane, N-β
(aminoethyl) γ-aminopropylmethyldimethoxysilane, γ-chloropropyltrimethoxysilane, γ-mercaptopropyltrimethoxysilane, γ-aminopropyltriethoxysilane,
Methyltrimethoxysilane, dimethyldimethoxysilane, trimethylmonomethoxysilane, diphenyldimethoxysilane, diphenyldiethoxysilane, monophenyltrimethoxysilane.

中間層の膜厚は任意に設定されるが、10μm以
下特に1μm以下が好適である。この中間層の形成
は、スプレー塗布、浸漬塗布、ナイフ塗布、ロー
ル塗布等の適宜の方法で塗布することによつて行
うことができる。
The thickness of the intermediate layer can be set arbitrarily, but it is preferably 10 μm or less, particularly 1 μm or less. This intermediate layer can be formed by coating by an appropriate method such as spray coating, dip coating, knife coating, roll coating, or the like.

また中間層の乾燥硬化温度は室温から400℃の
間の任意の温度において設定が可能である。
Further, the drying and curing temperature of the intermediate layer can be set at any temperature between room temperature and 400°C.

1の非晶質珪素を主体とする光導電層は、グロ
ー放電法、スパツタリング法、イオンプレーテイ
ング法、真空蒸着法などの方法によつて基板上に
形成することができる。中でもプラズマCVD法
によりシラン(SiH4)ガスをグロー放電分解す
る方法(グロー放電法)によれば、膜中に自動的
に適量の水素を含有した高暗抵抗かつ高光感度等
の電子写真感光体用して最適な特性を有する光導
電層を得ることができる。またこの場合水素の含
有を一層効率良く行なうために、プラズマCVD
装置内にシランガスと同時に水素(H2)ガスを
導入してもよい。また非晶質珪素光導電層膜の暗
抵抗の制御あるいは帯電極性の制御を目的とし
て、さらに上記のガス中にジボラン(B2H6)ガ
ス、ホスフイン(PH3)ガスなどのドーパント・
ガスを混入させ、光導電層膜中へのホウ素(B)
あるいはリン(P)などの不純物元素の添加(ド
ーピング)を行なうこともできる。またさらに
は、膜の暗抵抗の増加、光感度の増加あるいは帯
電能(単位膜厚あたりの帯電能力あるいは帯電電
位)の増加を目的として、非晶質珪素膜中にハロ
ゲン原子、炭素原子、酸素原子、窒素原子などを
含有させてもよい。またさらには、長波長域感度
の増感を目的として光導電層膜中にゲルマニウム
(Ge)などの元素を添加することも可能である。
上記の水素以外の元素を非晶質珪素光導電層中に
添加含有させるためにはプラズマCVD装置内に、
主原料であるシランガスと共にそれらの元素のガ
ス化物を導入してグロー放電分解を行なえばよ
い。
The photoconductive layer mainly composed of amorphous silicon (No. 1) can be formed on a substrate by a method such as a glow discharge method, a sputtering method, an ion plating method, or a vacuum evaporation method. Among them, according to a method (glow discharge method) in which silane (SiH 4 ) gas is decomposed by glow discharge using plasma CVD method, electrophotographic photoreceptors with high dark resistance and high light sensitivity, etc. that automatically contain an appropriate amount of hydrogen in the film can be produced. A photoconductive layer with optimum properties can be obtained using the following methods. In this case, in order to more efficiently contain hydrogen, plasma CVD
Hydrogen (H 2 ) gas may be introduced into the apparatus simultaneously with the silane gas. In addition, for the purpose of controlling the dark resistance or charging polarity of the amorphous silicon photoconductive layer film, dopants such as diborane (B 2 H 6 ) gas and phosphine (PH 3 ) gas are added to the above gas.
Boron (B) is mixed into the photoconductive layer by mixing gas.
Alternatively, it is also possible to add (dope) an impurity element such as phosphorus (P). Furthermore, halogen atoms, carbon atoms, oxygen atoms, Atom, nitrogen atom, etc. may be contained. Furthermore, it is also possible to add elements such as germanium (Ge) to the photoconductive layer film for the purpose of increasing the sensitivity in the long wavelength range.
In order to add and contain elements other than the above-mentioned hydrogen into the amorphous silicon photoconductive layer, in the plasma CVD apparatus,
Glow discharge decomposition may be performed by introducing gasified products of these elements together with silane gas, which is the main raw material.

以上のプラズマCVD法によりシラン(SiH4
ガスをグロー放電分解する非晶質珪素光導電層膜
形成法において有効な放電条件すなわち有効な非
晶質珪素膜の生成条件は、例えば交流放電の場合
を例とすると、次の通りである。周波数は通常
0.1〜30MHz、好適には5〜20MHz、放電時の真
空度は0.1〜5Torr、基板加熱温度は100〜400℃
である。
Silane (SiH 4 ) is produced by the above plasma CVD method.
In the method of forming an amorphous silicon photoconductive layer in which gas is decomposed by glow discharge, effective discharge conditions, that is, effective conditions for forming an amorphous silicon film are as follows, taking the case of AC discharge as an example. Frequency is usually
0.1~30MHz, preferably 5~20MHz, degree of vacuum during discharge 0.1~5Torr, substrate heating temperature 100~400℃
It is.

非晶質珪素を主体とする光導電層の膜厚は任意
に設定されるが、1μm〜200μm、特に10μm〜
100μmが好適である。
The thickness of the photoconductive layer mainly composed of amorphous silicon can be set arbitrarily, but it is 1 μm to 200 μm, especially 10 μm to
100 μm is suitable.

添付図面中3の導電性基板としてはAl、Ni、
Cr、Fe、ステンレス鋼、黄銅などの金属からな
る基板、あるいはIn2、SnO2、Cul、CrO2などの
金属間化合物からなる基板などを用いることがで
きる。また基板の形状は円筒状、平板状、エンド
レスベルト状等任意の形状として得ることが可能
である。
The conductive substrate 3 in the attached drawings includes Al, Ni,
A substrate made of a metal such as Cr, Fe, stainless steel, or brass, or a substrate made of an intermetallic compound such as In 2 , SnO 2 , Cul, or CrO 2 can be used. Further, the shape of the substrate can be any shape such as a cylinder, a flat plate, or an endless belt.

実施例 次に比較例と実施例をあげて本発明の電子写真
用感光体を説明する。
Examples Next, the electrophotographic photoreceptor of the present invention will be explained with reference to comparative examples and examples.

(i) 比較例 円筒状基板上へのアモルフアス・シリコン膜の
生成が可能な容量結合型プラズマCVD装置を用
いて、シラン(SiH4)ガスのグロー放電分解法
により、円筒型Al基板上に水素を含む非晶質珪
素膜を生成した。この時の非晶質珪素膜の生成条
件は次のようであつた。
(i) Comparative example Hydrogen was deposited on a cylindrical Al substrate by glow discharge decomposition of silane (SiH 4 ) gas using a capacitively coupled plasma CVD device capable of forming an amorphous silicon film on a cylindrical substrate. An amorphous silicon film containing . The conditions for forming the amorphous silicon film at this time were as follows.

プラズマCVD装置の反応室内の所定の位置に
円筒状Al基板を設置し、基板温度を所定の温度
である250℃に維持し、反応室内に100%シラン
(SiH4)ガスを毎分120c.c.、水素希釈の100ppmジ
ボラン(B2H6)ガスを毎分20c.c.、さらに100%水
素(H2)ガスを毎分90c.c.の範囲で流入させ、反
応槽内を0.5Torrの内厚に維持した後、13.56MHz
の交周波電源を投入して、グロー放電を生じせし
め、交周波電源の出力を85Wに維持した。このよ
うにして円筒状のAl基板上に厚さ25μmの非晶質
珪素を主体とする光導電層を有する感光体を得
た。このようにして得られた感光体は、表面硬度
が硬く、耐摩耗性、耐熱性に優れ、高暗抵抗かつ
高光感度を有し、電子写真用感光体特性の優れた
ものであつた。また正帯電、負帯電いずれの帯電
も可能であり両極性帯電性を有していた。
A cylindrical Al substrate is installed at a predetermined position in the reaction chamber of a plasma CVD device, the substrate temperature is maintained at a predetermined temperature of 250°C, and 100% silane (SiH 4 ) gas is supplied into the reaction chamber at a rate of 120 c.c./min. , 100 ppm diborane (B 2 H 6 ) gas diluted with hydrogen was introduced at 20 c.c. per minute, and 100% hydrogen (H 2 ) gas was introduced at a rate of 90 c.c. per minute, and the inside of the reaction vessel was heated to 0.5 Torr. After maintaining the inner thickness of 13.56MHz
An alternating frequency power source was turned on to generate a glow discharge, and the output of the alternating frequency power source was maintained at 85W. In this way, a photoreceptor was obtained having a photoconductive layer mainly made of amorphous silicon with a thickness of 25 μm on a cylindrical Al substrate. The photoreceptor thus obtained had a hard surface, excellent wear resistance and heat resistance, high dark resistance and high light sensitivity, and had excellent electrophotographic photoreceptor characteristics. Furthermore, it was possible to charge either positively or negatively, and had bipolar charging properties.

この感光体を正帯電させ初期電位を550Vにし
た。これを650nmの波長の光で露光する操作を毎
分40回の速度で繰返した。この時の残留電位は
0Vで安定していたが、帯電電位は繰返し数の増
加とともに減少する傾向が見られ、1000回の繰返
し操作においてその帯電電位は初期帯電電位の75
%の値まで減少していた。
This photoreceptor was positively charged to an initial potential of 550V. This operation of exposing to light with a wavelength of 650 nm was repeated at a rate of 40 times per minute. The residual potential at this time is
Although it was stable at 0V, the charging potential tended to decrease as the number of repetitions increased, and after 1000 repetitions, the charging potential decreased to 75% of the initial charging potential.
It had decreased to a value of %.

またこの感光体を負帯電させ、同様の操作を行
なつたところ、正帯電の場合と同様の現象が見ら
れた。但し正帯電の場合に比べ1.5倍の電流が必
要であつた。
Further, when this photoreceptor was negatively charged and the same operation was performed, the same phenomenon as in the case of positively charging was observed. However, 1.5 times more current was required than in the case of positive charging.

(ii) 実施例 1 比較例と同じ形状のAlパイプ上にジルコニウ
ムテトラキスアセチルアセトネート2重量部、γ
−メタアクリロキシプロピルトリメトキシシラン
1重量部、n−ブタノール50重量部からなる溶液
をスプレー塗布し、250℃にて2時間乾燥して、
0.6μm厚の中間層を設けた。次にこの中間層上に
比較例と同じ方法により、比較例と同じ内容の非
晶質珪素を主体とする光導電層を、比較例とほぼ
同じ膜厚で設けた。このようにして得られた感光
体は、表面硬度が硬く、耐摩耗性・耐熱性に優
れ、かつ高光感度を有し、電子写真用感光体特性
の優れたものであつた。また正帯電、負帯電いず
れの帯電も可能であり両極性帯電性を有してい
た。
(ii) Example 1 2 parts by weight of zirconium tetrakis acetylacetonate and γ were placed on an Al pipe having the same shape as the comparative example.
- Spray coating a solution consisting of 1 part by weight of methacryloxypropyltrimethoxysilane and 50 parts by weight of n-butanol, drying at 250°C for 2 hours,
An intermediate layer with a thickness of 0.6 μm was provided. Next, on this intermediate layer, a photoconductive layer mainly composed of amorphous silicon having the same content as that of the comparative example was provided with approximately the same thickness as that of the comparative example, by the same method as that of the comparative example. The thus obtained photoreceptor had a hard surface, excellent wear resistance and heat resistance, and high photosensitivity, and had excellent electrophotographic photoreceptor properties. Furthermore, it was possible to charge either positively or negatively, and had bipolar charging properties.

従つて本感光体の上記の特性は、比較例で得た
感光体の特性とは何んら変わることのない優れた
ものであつた。また中間層を導入したことによる
残留電位の増加はほとんど認められなく、実用上
全く問題のないものであつた。
Therefore, the above-mentioned characteristics of the present photoreceptor were excellent and were no different from those of the photoreceptor obtained in the comparative example. Further, almost no increase in residual potential due to the introduction of the intermediate layer was observed, and there was no problem at all in practical use.

この感光体を正帯電させ初期電位を比較例と同
じ550Vとし、比較例と同じ条件で露光操作を繰
返したところ、この時の残留電位は2Vと実用上
問題とならない値で安定し、かつ繰返し数増加に
伴なう帯電電位の減少は認められず、帯電電位は
常に安定していた。
When this photoconductor was positively charged and the initial potential was set to 550V, the same as in the comparative example, and the exposure operation was repeated under the same conditions as the comparative example, the residual potential at this time was stable at 2V, a value that does not pose a practical problem, and it was repeatedly No decrease in charging potential was observed as the number increased, and the charging potential was always stable.

またこの感光体を負帯電させ、同様の操作を行
なつたところ、正帯電の場合と同様、良好な帯電
電位の安定性を示した。また、550Vの帯電電位
(絶対値)を得るために必要な電流は正、負帯電
共に等しかつた。
Further, when this photoreceptor was negatively charged and the same operation was performed, it showed good stability of the charging potential as in the case of positively charging. Furthermore, the current required to obtain a charging potential (absolute value) of 550V was equal for both positive and negative charging.

(iii) 実施例 2 比較例と同じ形状のAlパイプ上に、ジルコニ
ウムテトラキスアセチルアセトネート1重量部、
メチルアルコール30重量部からなる溶液を浸漬
法にて塗布し、250℃で1時間乾燥硬化させ、
0.3μm厚の中間層を設けた。
(iii) Example 2 1 part by weight of zirconium tetrakis acetylacetonate was placed on an Al pipe having the same shape as the comparative example.
A solution consisting of 30 parts by weight of methyl alcohol was applied by dipping, dried and cured at 250°C for 1 hour,
An intermediate layer with a thickness of 0.3 μm was provided.

次にこの中間層上に比較例と同じ方法により比
較例と同じ内容の非晶質珪素を主体とする光導電
層を比較例の場合とほぼ同じ膜厚で設けた。
Next, on this intermediate layer, a photoconductive layer mainly composed of amorphous silicon having the same content as that of the comparative example was provided by the same method as that of the comparative example and having almost the same thickness as that of the comparative example.

このようにして得られた感光体を正帯電、露光
と負帯電、露光の過程をそれぞれ1000回づつ繰り
返したところ、帯電電位の減少は正、負帯電いず
れの場合にも観察されず、安定であり、残留電位
もほとんど0Vであつた。
When the photoreceptor thus obtained was subjected to the process of positively charging, exposing, negatively charging, and exposing 1000 times each, no decrease in the charging potential was observed in either case of positive or negative charging, indicating that it was stable. The residual potential was almost 0V.

また±550Vの帯電電位に必要なコロナ電流は
正、負帯電で同じであつた。
Furthermore, the corona current required for a charging potential of ±550V was the same for positive and negative charging.

このように、中間層を有しない非晶質珪素感光
体では、帯電電位が繰返し数の増加とともに著し
く低下するのに比べ、本発明による中間層を設け
た非晶質珪素感光体では、帯電電位は繰返し数の
増加の条件下においてもほぼ一定であつた。
As described above, in an amorphous silicon photoreceptor without an intermediate layer, the charging potential decreases significantly as the number of repetitions increases, whereas in an amorphous silicon photoreceptor provided with an intermediate layer according to the present invention, the charging potential decreases significantly as the number of repetitions increases. remained almost constant even under the condition of increasing the number of repetitions.

発明の効果 本発明の電子写真用感光体によれば、中間層が
非晶質珪素を主体とする光導電層との接着性が高
く、機械的強度が大きいので比較的薄いものを用
いることができ、そのため残留電位もそれほど大
きくならない。したがつてカールソン方式のよう
な簡単な複写工程を用いて潜像を形成することが
できる。さらに本発明の電子写真用感光体は、電
荷保持力が高いため、その帯電特性が外部環境又
は使用回数の影響を受けず、かつ優れた機械的強
度を有し、さらに耐久性、寿命、耐熱性、光感度
などの電子写真特性に優れている。
Effects of the Invention According to the electrophotographic photoreceptor of the present invention, the intermediate layer has high adhesion with the photoconductive layer mainly composed of amorphous silicon and has high mechanical strength, so it is possible to use a relatively thin intermediate layer. Therefore, the residual potential does not become so large. Therefore, a simple copying process such as the Carlson method can be used to form the latent image. Furthermore, since the electrophotographic photoreceptor of the present invention has a high charge retention ability, its charging characteristics are not affected by the external environment or the number of times it is used, and it has excellent mechanical strength, as well as durability, longevity, and heat resistance. It has excellent electrophotographic properties such as light sensitivity and photosensitivity.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の電子写真用感光体の構造を示す
断面図である。 1……光導電層、2……中間層、3……導電性
基板。
The drawing is a sectional view showing the structure of the electrophotographic photoreceptor of the present invention. 1... Photoconductive layer, 2... Intermediate layer, 3... Conductive substrate.

Claims (1)

【特許請求の範囲】[Claims] 1 導電性基板上に中間層及び光導電層が順次積
層された多層構造を有しかつ前記光導電層が非晶
質珪素を主体とする電子写真用感光体において、
前記中間層がジルコニウム錯体を少なくとも一種
類含む溶液を乾燥硬化させた物質から成ることを
特徴とする電子写真用感光体。
1. An electrophotographic photoreceptor having a multilayer structure in which an intermediate layer and a photoconductive layer are sequentially laminated on a conductive substrate, and the photoconductive layer is mainly made of amorphous silicon,
An electrophotographic photoreceptor, wherein the intermediate layer is made of a material obtained by drying and curing a solution containing at least one type of zirconium complex.
JP9881583A 1983-06-03 1983-06-03 Electrophotographic sensitive body Granted JPS59223439A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9881583A JPS59223439A (en) 1983-06-03 1983-06-03 Electrophotographic sensitive body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9881583A JPS59223439A (en) 1983-06-03 1983-06-03 Electrophotographic sensitive body

Publications (2)

Publication Number Publication Date
JPS59223439A JPS59223439A (en) 1984-12-15
JPH021301B2 true JPH021301B2 (en) 1990-01-11

Family

ID=14229816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9881583A Granted JPS59223439A (en) 1983-06-03 1983-06-03 Electrophotographic sensitive body

Country Status (1)

Country Link
JP (1) JPS59223439A (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0711707B2 (en) * 1985-12-19 1995-02-08 富士ゼロックス株式会社 Electrophotographic photoconductor
JPH0711709B2 (en) * 1985-12-19 1995-02-08 富士ゼロックス株式会社 Electrophotographic photoconductor
JPH0711712B2 (en) * 1985-12-19 1995-02-08 富士ゼロックス株式会社 Electrophotographic photoconductor
JPH0711710B2 (en) * 1985-12-19 1995-02-08 富士ゼロックス株式会社 Electrophotographic photoconductor
JPH0711708B2 (en) * 1985-12-19 1995-02-08 富士ゼロックス株式会社 Electrophotographic photoconductor
JPH0711711B2 (en) * 1985-12-19 1995-02-08 富士ゼロックス株式会社 Electrophotographic photoconductor
JPH0711713B2 (en) * 1985-12-19 1995-02-08 富士ゼロックス株式会社 Electrophotographic photoconductor
JPH0711714B2 (en) * 1985-12-19 1995-02-08 富士ゼロックス株式会社 Electrophotographic photoconductor
JPS62273559A (en) * 1986-05-22 1987-11-27 Fuji Xerox Co Ltd Electrophotographic sensitive body
JPS62273549A (en) * 1986-05-22 1987-11-27 Fuji Xerox Co Ltd Electrophotographic sensitive body
JPS62273568A (en) * 1986-05-22 1987-11-27 Fuji Xerox Co Ltd Electrophotographic sensitive body
JPS62273553A (en) * 1986-05-22 1987-11-27 Fuji Xerox Co Ltd Electrophotographic sensitive body
JPH06103401B2 (en) * 1989-08-16 1994-12-14 富士ゼロックス株式会社 Electrophotographic photoreceptor
US5252422A (en) * 1990-10-08 1993-10-12 Fuji Xerox Co., Ltd. Method for preparing an electrophotographic photoreceptor
JP3146594B2 (en) * 1992-01-31 2001-03-19 富士ゼロックス株式会社 Electrophotographic photoreceptor
JPH07261411A (en) * 1994-03-22 1995-10-13 Fuji Xerox Co Ltd Production of electrophotographic photoreceptor

Also Published As

Publication number Publication date
JPS59223439A (en) 1984-12-15

Similar Documents

Publication Publication Date Title
JPH021301B2 (en)
JPH021303B2 (en)
JPH021305B2 (en)
JPH021304B2 (en)
JPH021302B2 (en)
JPH0721647B2 (en) Electrophotographic photoconductor
JPH0727255B2 (en) Electrophotographic photoconductor
JPS62273549A (en) Electrophotographic sensitive body
JPS62273553A (en) Electrophotographic sensitive body
JPH0727252B2 (en) Electrophotographic photoconductor
JPH0727254B2 (en) Electrophotographic photoconductor
JPS62144173A (en) Electrophotographic sensitive body
JPH0727253B2 (en) Electrophotographic photoconductor
JPH0711712B2 (en) Electrophotographic photoconductor
JPS62145249A (en) Electrophotographic sensitive body
JPH0721649B2 (en) Electrophotographic photoconductor
JPH0723964B2 (en) Electrophotographic photoconductor
JPS62273559A (en) Electrophotographic sensitive body
JPH0721648B2 (en) Electrophotographic photoconductor
JPS62273561A (en) Electrophotographic sensitive body
JPS62145252A (en) Electrophotographic sensitive body
JPH0727251B2 (en) Electrophotographic photoconductor
JPH0727258B2 (en) Electrophotographic photoconductor
JPH0727256B2 (en) Electrophotographic photoconductor
JPH0727250B2 (en) Electrophotographic photoconductor