JPH02116675A - Production of sintered sic body - Google Patents

Production of sintered sic body

Info

Publication number
JPH02116675A
JPH02116675A JP63269669A JP26966988A JPH02116675A JP H02116675 A JPH02116675 A JP H02116675A JP 63269669 A JP63269669 A JP 63269669A JP 26966988 A JP26966988 A JP 26966988A JP H02116675 A JPH02116675 A JP H02116675A
Authority
JP
Japan
Prior art keywords
sic
hip treatment
sintered
powder
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63269669A
Other languages
Japanese (ja)
Inventor
Fumio Hatakeyama
文夫 畠山
Toshikazu Moriguchi
敏和 森口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP63269669A priority Critical patent/JPH02116675A/en
Publication of JPH02116675A publication Critical patent/JPH02116675A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • C04B35/575Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained by pressure sintering

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

PURPOSE:To easily obtain a sintered SiC body which is excellent in wear resistance and suitable for a mechanical seal and has high density by blending a P-Al-C-based sintering auxiliary with SiC powder, molding this mixture and sintering the molded body at ordinary pressure and thereafter furthermore performing HIP treatment. CONSTITUTION:A sintering auxiliary consisting of B-contg. compd. (e.g., boron powder), C-contg. compd. (e.g., phenol resin and carbon black) and Al-contg. compd. (e.g., aluminum powder) is blended with SiC powder. As loadings thereof, about 0.03-5wt.% B, about 0.1-5wt.% Al and about 0.3-5wt.% are properly used. Then a primary binder such as PVA is added and the mixture is molded and this molded body is sintered at about 1800-2300 deg.C at ordinary pressure in the nonoxidative atmosphere. Then a sintered SiC body is obtained by furthermore performing HIP treatment at 1600-2200 deg.C.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、高密度SiC焼結体の製造方法に係り、特に
メカニカルシール等に好適な耐摩耗性SiCの製造方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION "Field of Industrial Application" The present invention relates to a method for manufacturing a high-density SiC sintered body, and particularly to a method for manufacturing wear-resistant SiC suitable for mechanical seals and the like.

「従来の技術」 SiCは共有結合性が強く、難焼結性の物質で、焼結さ
せるためには、焼結助剤の添加が必要である。
"Prior Art" SiC has a strong covalent bond and is a material that is difficult to sinter, and in order to sinter it, it is necessary to add a sintering aid.

上記焼結助剤としては、加圧、常圧焼結を含めテB5C
5Al! 、At!201、Y、03、BN、、Aff
N。
The above sintering aids include TeB5C, including pressure and pressureless sintering.
5Al! , At! 201,Y,03,BN,,Aff
N.

BaO等が公知であり、特に、常圧焼結助剤としては、
B−C系、+3−A(!−C系、l!−C系、A(t○
3− Y 、O、系等が知られている。
BaO etc. are well known, and in particular, as pressureless sintering aids,
B-C system, +3-A(!-C system, l!-C system, A(t○
3-Y, O, systems, etc. are known.

しかし、いずれの助剤を用いても、通常2〜3%のボア
(気孔)が焼結体内に残留する。焼結体内にボアが存在
すると、材料としての信頼性を低下させ、摺動摩耗特性
に悪い影響をおよぼす。
However, no matter which aid is used, typically 2-3% of pores remain in the sintered body. The presence of a bore within the sintered body reduces the reliability of the material and adversely affects the sliding wear characteristics.

ボアの少ない焼結体を得るためには、加圧焼結法が有効
で、ホットプレス焼結法、或いはHI P処理等の方法
が用いられている。
In order to obtain a sintered body with a small bore, a pressure sintering method is effective, and methods such as a hot press sintering method or a HIP treatment are used.

[発明が解決しようとする課題] ところで、ホットプレス法では、焼結体の形状、大きさ
に制限があり、HIP法はホットプレス法に比して高い
生産性を有しているが、B−C系助剤を用いてSiC粉
末を焼結する場合のように、耐クリープ特性の大きなも
のに対しては、焼結体の緻密化効果が認められない。こ
れは耐クリープ特性が大であるため2000℃を越える
温度においても粒界すベリ、あるいは拡散クリープが進
行しにく(高圧ガスにより予備焼結体に静水圧を加えて
もボアの消滅が進行しないためである。
[Problem to be solved by the invention] By the way, in the hot press method, there are restrictions on the shape and size of the sintered body, and the HIP method has higher productivity than the hot press method. As in the case of sintering SiC powder using a -C-based auxiliary agent, no effect on densification of the sintered body is observed for materials with high creep resistance. This has high creep resistance, so grain boundary burr or diffusion creep does not progress even at temperatures exceeding 2000°C (bore disappearance progresses even when hydrostatic pressure is applied to the pre-sintered compact using high-pressure gas). This is to prevent it from happening.

本発明は信頼性が高く、摺動性、耐摩耗性に優れた緻密
なSiC焼結体の製造方法を提供することを目的とする
An object of the present invention is to provide a method for manufacturing a dense SiC sintered body that is highly reliable and has excellent sliding properties and wear resistance.

「課題を解決するための手段」 B、Cを添加したSiC焼結体は耐クリープ性が大きい
ためHIP処理で緻密かしないが、A(を添加したSi
CはB−C系SiCに較べて高温強度は低下するが、高
温で軟化するため高温においてクリープ変形が進行し易
く、HIPによる緻密化が可能であることを見い出した
"Means for solving the problem" SiC sintered bodies with B and C added have high creep resistance and are not densified by HIP treatment, but SiC with A (added)
Although C has lower high-temperature strength than B--C SiC, it has been found that since it softens at high temperatures, creep deformation progresses easily at high temperatures, and densification by HIP is possible.

HIP処理を可能にするためには高温においてクリープ
変形が進行する助剤系を選べばよい。具体的にはA Q
=03  Y to 3系、Al−C系、B−AQ−C
系等が上げられる。これらの中で特にB1−C系につい
てはB1Al2eCt化合物の存在により1800℃に
て液相が生成すると云われており、より低温でのHIP
処理効果が大きい。しかも他の助剤に較べて強度等の特
性低下が少ない。
In order to enable HIP treatment, an auxiliary agent system that undergoes creep deformation at high temperatures may be selected. Specifically, AQ
=03 Y to 3 system, Al-C system, B-AQ-C
System etc. are mentioned. Among these, especially for the B1-C system, it is said that a liquid phase is generated at 1800°C due to the presence of the B1Al2eCt compound, and HIP at lower temperatures is not possible.
Great processing effect. Furthermore, compared to other auxiliary agents, properties such as strength are less likely to deteriorate.

本発明はこれらの知見に基づいてなされたものでその要
旨は、B、AQSCを含有するSiC粉末を成形し、常
圧焼結した後、ざらにHI P処理することを特徴とす
るSiC焼結体の製造法である。
The present invention has been made based on these findings, and the gist thereof is to form a SiC powder containing B and AQSC, sinter it under normal pressure, and then perform a rough HIP treatment. It is a method of manufacturing the body.

用いられるSiC粉末は、α、βいずれでもよ(、その
粒度は3μm以下が適当である。またその純度はS i
C95重量%以上のものが望ましい。
The SiC powder used may be either α or β (the particle size is suitably 3 μm or less, and the purity is Si
It is desirable that the content is C95% by weight or more.

Bは単体のほう素粉末でもよく、またB、Cの粉末でも
よい。
B may be a single boron powder, or B and C powders.

Cは成形体に加えたフェノール樹脂などの焼成による炭
化物、カーホンブラ、り、黒鉛粉末なとが用いられる。
As C, a carbide obtained by firing phenol resin added to the molded body, carbon black, phosphor, graphite powder, etc. are used.

AQは単体粉末の外1!、C,Ai、などの形で加えて
もよい。
AQ is 1 other than single powder! , C, Ai, etc.

これらの添加mはB:0.03〜5mW1%(以下%は
すべで重量基′I$)、AQ: O,1〜5%、C二0
.3〜5%が適当である。化合物として添加した場合、
例えばB、Cでは夫々B、Cとして計算される。
These addition m are B: 0.03 to 5 mW1% (all percentages below are based on weight), AQ: O, 1 to 5%, C20
.. 3 to 5% is appropriate. When added as a compound,
For example, B and C are calculated as B and C, respectively.

成形にはPVAなどの一次結合材を添加し、貝類粒化し
た後所望の形に加圧成形するのが一般的である。PVA
などの結合材に代えてフェノール樹脂などを用い、−次
結合材兼焼成後の炭化カーボンとすることもできる。
For molding, it is common to add a primary binder such as PVA, granulate the shellfish, and then pressure mold it into the desired shape. PVA
It is also possible to use a phenol resin or the like instead of a binder such as, and use it as a secondary binder and carbonized carbon after firing.

成形体は先ず常圧焼成する。この焼成は非酸化性雰囲気
下で1800〜2300 ’Cで行なう。
The molded body is first fired under normal pressure. This calcination is carried out at 1800-2300'C in a non-oxidizing atmosphere.

次にここで得られた焼結体を常法によりHIP処理する
。この温度は1600〜2200℃1圧力は200〜2
000kg/cm’の範囲が適当である。
Next, the sintered body obtained here is subjected to HIP treatment by a conventional method. This temperature is 1600~2200℃ 1 pressure is 200~2
A range of 000 kg/cm' is suitable.

「実施例」 SiC焼結体のHIP処理を可能とするためには、添加
する助剤の種類、配合量を選択しなければならない。助
剤としては、例えばAl2t03Y、O,系、AQ−C
系、B−A12−C系等が挙げられるが、特にB−、l
!−C系助剤は、比較的低温でのHI P処理を可能と
する。
"Example" In order to enable HIP processing of a SiC sintered body, the type and amount of the auxiliary agent to be added must be selected. As the auxiliary agent, for example, Al2t03Y, O, type, AQ-C
system, B-A12-C system, etc., but especially B-, l
! -C-based auxiliary agents enable HIP treatment at relatively low temperatures.

SiC中にBとA[が共存すると、低融点の化合物が形
成されるため、異常粒成長を生じ粗大粒が形成されるが
、この粒子の成長はCの添加によって制御することが出
来る。
When B and A[ coexist in SiC, a compound with a low melting point is formed, resulting in abnormal grain growth and formation of coarse grains, but this grain growth can be controlled by adding C.

B−AQ−C系助剤を添加する場合、Bの量が0.03
%未満、或いはAQの量が0.1%未満では、例え一方
の量が多くとも、低融点物の爪が少なく、HIP処理に
よる緻密化効果は得られない。
When adding B-AQ-C type auxiliary agent, the amount of B is 0.03
% or the amount of AQ is less than 0.1%, even if one of the amounts is large, there will be few nails of low melting point substances, and the densification effect by HIP treatment will not be obtained.

またCの量が0.3%未満では、粗大粒子を制御するこ
とが出来ない。
Moreover, if the amount of C is less than 0.3%, coarse particles cannot be controlled.

また、Bまたは八〇、の蛍が5%を越えると一方の里を
制限範囲内で減少しても、余剰分のBまたはAQが緻密
化を阻害し、Cの世も、5%を越えると緻密化が低下す
る。
In addition, if the number of B or 80 fireflies exceeds 5%, even if one village is reduced within the limit, the surplus B or AQ will inhibit densification, and the number of fireflies in C will also exceed 5%. and densification decreases.

また、HIP処理の温度が1600℃未満では、助剤が
溶融しないので、緻密化が行なわれず、2200℃を越
えても、緻密化効果は変わらず、経済的にも不利となる
Furthermore, if the temperature of the HIP treatment is less than 1,600°C, the auxiliary agent will not melt, so densification will not occur, and even if it exceeds 2,200°C, the densification effect will not change, which is economically disadvantageous.

実施例1〜6 平均粒径0,4μmのαSiCに助剤としてB、AQ、
Cをそれぞれ種々な量添加し、2 t/ am2の圧力
により成形した後、2000 ’C11hrの条件でA
r気流中で常圧焼結した。これらを、2000’C,2
000kg/cm”、  l hrの条件でHIP処理
し、HIP処理の前および後における焼結体の密度を測
定してHIP処理による緻密化の程度を調べた。結果を
第1表に示す。
Examples 1 to 6 αSiC with an average particle size of 0.4 μm was supplemented with B, AQ,
After adding various amounts of C and molding under a pressure of 2 t/am2, A
Normal pressure sintering was carried out in r air flow. these at 2000'C, 2
The sintered body was subjected to HIP treatment under conditions of 000 kg/cm" and 1 hr, and the density of the sintered body was measured before and after the HIP treatment to examine the degree of densification caused by the HIP treatment. The results are shown in Table 1.

第1表 第1表から、HIP処理によって、いずれも緻密化が進
行していることがわかる。
Table 1 From Table 1, it can be seen that densification progresses in all cases by the HIP treatment.

実施例7 実施例2と同じ加圧成形体を、2000’C,5hrで
常圧焼結し、2200℃12000kg/ affi’
、lhrの条件でH!P処理した。HIP処理前密度は
、3.13g/cmtに対し、HI P処理後の密度は
3 、17 g/ am3であった。
Example 7 The same pressure-molded body as in Example 2 was sintered under normal pressure at 2000'C for 5 hours, and 12000 kg/affi' at 2200°C.
, H under the condition of lhr! P-treated. The density before HIP treatment was 3.13 g/cmt, while the density after HIP treatment was 3.17 g/am3.

AQ: 0.7%に対して、Cを最低4%添加すれば、
粗大粒の生成はな(なるが、反面、不要なCにより緻密
化が阻害され、2200℃までHIP処理温度を高めて
も3.17g/cm’までしか緻密化しない。
AQ: If you add at least 4% of C to 0.7%,
No coarse grains are formed (but on the other hand, densification is inhibited by unnecessary C, and even if the HIP treatment temperature is increased to 2200° C., densification is only achieved to 3.17 g/cm').

実施例8〜25 平均粒径0.4μmのα−3iCに助剤としてB、AQ
、Cを添加し、2t/cffi′で加圧成形し、これら
を1900〜2000’C,l 〜5hrの条件で常圧
焼結した後、1900 ’C12000kg/ am’
、Ihrの条件でHIP処理を行なった。HIP処理前
、後の焼結体の密度を第2表に示す。
Examples 8 to 25 B and AQ as auxiliaries to α-3iC with an average particle size of 0.4 μm
, C was added, pressure molded at 2t/cffi', and these were sintered at normal pressure under conditions of 1900 to 2000'C, l to 5hr.
The HIP process was performed under the conditions of , Ihr. Table 2 shows the density of the sintered body before and after HIP treatment.

第2表 第2表より、1900℃のHIP処理温度においても充
分緻密化が進行していることがわかる。
From Table 2, it can be seen that densification progresses sufficiently even at the HIP treatment temperature of 1900°C.

「発明の効果」 以上述べたように、本発明に係るSiC焼結体の!!i
2遣方法は、B−AQ−C系助剤のそれぞれの成分添加
量を規制することによって、常圧焼結した焼結体をHI
P処理を施して効率よく緻密化することが可能となり、
さらにHIP処理温度を所定の範囲とすることによって
その効果が助長され、耐摩耗性の焼結体が容易に得られ
る優れた方法である。
"Effects of the Invention" As described above, the SiC sintered body according to the present invention! ! i
In the 2-way method, the sintered body sintered under normal pressure is HI
It becomes possible to efficiently densify by applying P treatment,
Furthermore, the HIP treatment temperature is within a predetermined range to enhance its effect, making it an excellent method for easily obtaining a wear-resistant sintered body.

Claims (2)

【特許請求の範囲】[Claims] 1.B、Al、Cを含有するSiC粉末を成形、常圧焼
結し、さらにHIP処理を施すことを特徴とするSiC
焼結体の製造方法。
1. SiC characterized by molding SiC powder containing B, Al, and C, pressureless sintering, and further performing HIP treatment.
A method for producing a sintered body.
2.HIP処理の温度が1600〜2200℃の範囲で
ある請求項1記載のSiC焼結体の製造方法。
2. The method for manufacturing a SiC sintered body according to claim 1, wherein the temperature of the HIP treatment is in the range of 1600 to 2200°C.
JP63269669A 1988-10-26 1988-10-26 Production of sintered sic body Pending JPH02116675A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63269669A JPH02116675A (en) 1988-10-26 1988-10-26 Production of sintered sic body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63269669A JPH02116675A (en) 1988-10-26 1988-10-26 Production of sintered sic body

Publications (1)

Publication Number Publication Date
JPH02116675A true JPH02116675A (en) 1990-05-01

Family

ID=17475560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63269669A Pending JPH02116675A (en) 1988-10-26 1988-10-26 Production of sintered sic body

Country Status (1)

Country Link
JP (1) JPH02116675A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100475258B1 (en) * 1998-09-11 2005-03-10 도요탄소 가부시키가이샤 Mechanical seal member

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6158861A (en) * 1984-08-27 1986-03-26 イ−グル工業株式会社 Silicon carbide material and manufacture
JPS6355162A (en) * 1986-08-22 1988-03-09 株式会社日立製作所 High heat conductivity sintered body and manufacture

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6158861A (en) * 1984-08-27 1986-03-26 イ−グル工業株式会社 Silicon carbide material and manufacture
JPS6355162A (en) * 1986-08-22 1988-03-09 株式会社日立製作所 High heat conductivity sintered body and manufacture

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100475258B1 (en) * 1998-09-11 2005-03-10 도요탄소 가부시키가이샤 Mechanical seal member

Similar Documents

Publication Publication Date Title
JP2671945B2 (en) Superplastic silicon carbide sintered body and method for producing the same
JP2507479B2 (en) SiC-Al Lower 2 O Lower 3 Composite Sintered Body and Manufacturing Method Thereof
JPS62275063A (en) Manufacture of silicon carbide-aluminum nitride sintered product
JP2507480B2 (en) SiC-Al Lower 2 O Lower 3 Composite Sintered Body and Manufacturing Method Thereof
JPH02116675A (en) Production of sintered sic body
JPS632913B2 (en)
JP2745030B2 (en) Silicon nitride sintered body and method for producing the same
JPH01242465A (en) Production of silicon carbide sintered body and sliding member thereof
JP2742619B2 (en) Silicon nitride sintered body
JPH025711B2 (en)
JPH0224789B2 (en)
JPH03141161A (en) Composite sintered compact
JPS6034515B2 (en) Manufacturing method of silicon carbide ceramic sintered body
JPH06279124A (en) Production of silicon nitride sintered compact
JPS63230570A (en) Sic-tic normal pressure sintered body and manufacture
JP2694368B2 (en) Method for producing silicon nitride based sintered body
JPH09278524A (en) Production of silicon carbide sintered compact
JPH09227233A (en) Production of silicon carbide sintered compact
EP0383431B1 (en) Process for producing high density silicon carbide sintered bodies
JPH0379308B2 (en)
JP2746760B2 (en) Silicon nitride-silicon carbide composite sintered body and method of manufacturing the same
JP2573720B2 (en) Manufacturing method of silicon nitride sintered body
JPH0826819A (en) Production of compound sintered compact of titanium oxycarbide with aluminum oxide
JPH0522669B2 (en)
JPH0122223B2 (en)