JPH0122223B2 - - Google Patents

Info

Publication number
JPH0122223B2
JPH0122223B2 JP55041068A JP4106880A JPH0122223B2 JP H0122223 B2 JPH0122223 B2 JP H0122223B2 JP 55041068 A JP55041068 A JP 55041068A JP 4106880 A JP4106880 A JP 4106880A JP H0122223 B2 JPH0122223 B2 JP H0122223B2
Authority
JP
Japan
Prior art keywords
weight
parts
sintered body
sintering
tic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55041068A
Other languages
Japanese (ja)
Other versions
JPS56140066A (en
Inventor
Yutaka Kanemitsu
Takehiko Hagio
Mitsuhiko Furukawa
Yoshimichi Hara
Michihito Myahara
Takashi Kitahira
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Tungsten Co Ltd
Original Assignee
Nippon Tungsten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Tungsten Co Ltd filed Critical Nippon Tungsten Co Ltd
Priority to JP4106880A priority Critical patent/JPS56140066A/en
Publication of JPS56140066A publication Critical patent/JPS56140066A/en
Publication of JPH0122223B2 publication Critical patent/JPH0122223B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本願発明は焼結性が改善され、かつ強靭性に優
れた酸化アルミニウム(Al2O3)−炭化チタン
(TiC)系セラミツク焼結体の製造方法に関する
ものである。 セラミツク焼結体は常温において硬度が高く、
しかも高温度においても硬度低下が少いほかに機
械的強度が大であるので、耐摩耗性が要求される
摺動部材、あるいは高速切削工具用材料として重
要な材料である。 このようなセラミツク焼結体の焼結方法として
ホツトプレス法と熱間等方等圧加圧焼結(以下、
HIPと記す)法とが有効であるとされている。 まずHIP法についてはすでに実用化の段階に至
つているが、このHIP法を適用するにはその予備
処理としてセラミツク圧粉体を対理論密度94%以
上の予備焼結体とする必要がある。この種の
Al2O3−TiC系セラミツク焼結体の製造工程にお
いて、その焼結体を改善し、かつ結晶粒子の成長
を抑制する手段としてMgO、NiOおよびCr2O3
1種又は2種以上を約1.5重量%以下添加する方
策がとられているが、この様な手段においてもな
お上述の予備焼結の際の焼結温度を1850〜1900℃
まで高めなければ目的とする対理論密度の予備焼
結体は得られない。そのため、このようにAl2O3
−TiC系セラミツクスが高温に曝されるので上記
の結晶粒成長抑制剤を添加しているにもかかわら
ず、Al2O3、TiC結晶粒子の成長を伴ない、機械
的強度の低下がみられるし、しかも高温を必要と
するため作業性が悪く、省エネルギーの点でも問
題がある。 次にホツトプレス法においては、Al2O3−TiC
系の原料粉末を1600〜1800℃でホツトプレス焼結
するわけであるが、このように焼結温度を比較的
高温に保たなければならないが故に、前記の結晶
粒抑制剤を添加しているにもかかわらず、なお、
Al2O3−TiC結晶粒の成長が相当量みられ、強靭
性の点でまだ改良すべき問題点が残されていた。 本願発明は、上記諸問題を解消するセラミツク
焼結体の製造方法にかかわるものであり、その要
旨は、炭化チタン15〜60重量%、残部酸化アルミ
ニウムからなるもの100重量部と、酸化イツトリ
ウム0.05〜2.00重量部とからなる組成を有する原
料粉末により成形した素体を還元性ガス又は不活
性ガス雰囲気中で対理論密度が94%以上となる様
予備焼結をし、次いで該予備焼結体を熱間等方等
圧加圧焼結することを特徴とするセラミツク焼結
体の製造方法、ならびに炭化チタン15〜60重量
%、残部酸化アルミニウムからなるもの100重量
部と、酸化イツトリウム0.05〜2.00重量部とから
なる原料粉末をホツトプレス焼結することを特徴
とするセラミツク焼結体の製造方法である。 上述のHIP法に於いてその予備焼結時に還元性
ガスか不活性ガス(チツ素ガスは含まず)雰囲気
にする理由は、酸化性雰囲気であればTiCが酸化
されTiO2となるので好ましくなく、又真空条件
下であればAl2O3が約1450℃位から分解蒸発を起
こし、緻密な焼結体は得られない。又チツ素ガス
雰囲気下では、該チツ素が本願セラミツク焼結体
の構成成分と反応を起こし、最終製品の組成が変
化するので好ましくないのである。 なお本発明方法に於いて、酸化アルミニウム焼
結体の粒成長抑制剤として公知のNi、Mo、Cr、
Co、Mg、Fe、Mn等の各酸化物の1種あるいは
2種以上を併用すれば得られる焼結体の結晶が微
細となり、その結果靭性が大となるのでより好ま
しく、この粒成長抑制剤の添加量は全量に対し
0.1〜1.0重量部が最適量である。 以下、本願発明を開発するに至つた実験につい
て述べる。 <実験> (a) 実験方法及び結果 純度99.9%、平均粒子径0.6μのα−Al2O3
純度99%、平均粒子径1μのTiC、Y2O3を、
TiC10〜70重量%、Y2O30.025〜2.500重量%の
範囲で各種配合したものをボールミル混合機に
より20時間湿式混合粉砕を行つた後、ワツクス
を添加して造粒し、1.3ton/cm2の圧力で焼結後
の寸法が、13.0角、厚さ5.0mmの切削バイトチ
ツプ素体になるよう成型する。この場合常温で
圧縮成型時の圧力は経験則上0.5ton/cm2以上必
要であることがわかつているのでその条件で行
つた。この常温で圧縮成型した素体をアルゴン
ガス雰囲気炉で1650℃〜1950℃の範囲でその温
度に達して1時間保持の予備焼結体の密度が対
理論密度94%以上となる様予備焼結を行つた。
この場合に於ける温度とTiC、Y2O3の配合割
合との関係を第1図−1のグラフに、又代表例
として(70Al2O3−30TiC)100重量部に
Y2O30.5重量部配合したものについての電子顕
微鏡組織写真を第2図に、更に比較の為に
70Al2O3−30TiCなる組成(Y2O3を全く含まな
い)のものを1時間の保持時間でその対理論密
度が94%以上となる様に予備焼結(温度は約
1900℃が必要であつた)したものの電子顕微鏡
組織写真を第3図に示す。又第1図−1に示す
結果を得た場合と同様であるが、配合原料とし
て粒成長抑制剤の一例であるMgOを全量の
0.25重量部添加した場合についての予備焼結温
度の変化を第1図−2に示す。次にこの様にし
て得られた対理論密度94%〜95%の予備焼結体
をMo発熱体を内包する高圧容器からなるHIP
炉内へ入れ、1400℃×1hr、1000Kg/cm2の高圧
Arガス圧下でバイトチツプ予備焼結体に等方
等圧を加えて最終焼結体を得た。次にこの各種
最終焼結体をダイヤモンド砥石にて研削加工
後、各種焼結体の硬さ(ロツクウエルAスケー
ル)測定を行つた。その結果を第4図にグラフ
で示す。又、HIP後の最終焼結体の電子顕微鏡
組織写真を第5図に示す。この試料は
(70Al2O3−30TiC)100重量部に対し、Y2O3
0.5重量部添加したものである。 又、比較のために70Al2O3−30TiC(Y2O3
全く含まない)なる組成のものを対理論密度が
94%以上になるべく予備焼結した後HIP処理を
したものの電子顕微鏡組織写真を第6図に示
す。又同じく(70Al2O3−30TiC)100重量部に
対しY2O3を0.5重量部添加したもの及び
70Al2O3−30TiC(Y2O3を全く含まない)もの
についてのX線回折図形をそれぞれ第7図及び
第8図に示す。 またHIP焼結の有効条件を求めるため、対理
論密度94%〜95%の密度を有する(70Al2O3
30TiC)100重量部に対しY2O3を0.5重量部配合
した予備焼結体をHIP炉内に入れ1300℃、1350
℃、1375℃、1400℃、1435℃、1470℃、1500
℃、1600℃、1700℃の各温度で350Kg/cm2、400
Kg/cm2、1000Kg/cm2および2000Kg/cm2の高圧
Arガス圧下にて1時間保持し、その後除圧、
炉冷を行い各HIP条件下での最終焼結体の対理
論密度の変化を求めた。その結果を第9図にグ
ラフで示す。 次に対理論密度94〜95%の密度を有する各種
配合された予備焼結体をHIP炉内に入れ、1400
℃×1hr、1000Kg/cm2の高圧Arガス圧下で焼結
して、最終焼結体の対理論密度99%以上の密度
を有する最終焼結体を切削工具形状
SNGN432、糸面寸法0.1×30゜に加工し、それ
ぞれを切削試験に供し、性能判定を行つた。そ
の時の試験条件は次の通りである。即ち、 <連続切削試験> 切削材:高硬度材SNCM−8(硬さHs85) 切削条件: V×d×f=50m/min×0.5mm×0.2mm/rev 寿命判定:逃げ面摩耗幅0.3mm この連続切削試験結果を第10図及び第11
図のグラフに示す。 <耐欠損切削試験> 被削材:鋳鉄FC25 切削条件:V×d=245m/min×1.5mm 寿命判定:上記条件でフライス切削を行い、1
刃当りの送りf(mm/tooth)を0.4、0.5、
0.6、0.7、0.8、0.9、1.0と大きくして行き、
切削工具の刃先にカケが発生した時点を工具
寿命とした。 この耐欠損切削試験結果を下記第1表に示
す。 この第1表中、〇印は2回共カケが発生しな
かつた事を、△印は2回中1回のみカケが発生
した事を、×印は2回共カケが発生した事をそ
れぞれ示す。
The present invention relates to a method for producing an aluminum oxide (Al 2 O 3 )-titanium carbide (TiC) ceramic sintered body having improved sinterability and excellent toughness. Ceramic sintered bodies have high hardness at room temperature,
In addition, it exhibits little hardness loss even at high temperatures and has high mechanical strength, making it an important material for sliding members that require wear resistance or for high-speed cutting tools. Hot press method and hot isostatic pressure sintering (hereinafter referred to as
The law (written as HIP) is considered to be effective. First of all, the HIP method has already reached the stage of practical application, but in order to apply this HIP method, it is necessary to prepare the ceramic powder compact into a pre-sintered compact with a theoretical density of 94% or more. this kind of
In the manufacturing process of Al 2 O 3 -TiC ceramic sintered bodies, one or more of MgO, NiO and Cr 2 O 3 is added as a means to improve the sintered bodies and suppress the growth of crystal grains. Measures have been taken to add approximately 1.5% by weight or less, but even with such measures, the sintering temperature during the above-mentioned preliminary sintering must be kept at 1850 to 1900°C.
If the density is not increased to a certain level, a pre-sintered body with the desired theoretical density cannot be obtained. Therefore, like this Al 2 O 3
-As TiC-based ceramics are exposed to high temperatures, mechanical strength decreases due to growth of Al 2 O 3 and TiC crystal particles despite the addition of the above-mentioned grain growth inhibitors. However, since it requires high temperatures, it has poor workability and also poses problems in terms of energy conservation. Next, in the hot press method, Al 2 O 3 −TiC
The raw material powder of the system is hot-press sintered at 1,600 to 1,800℃, and because the sintering temperature must be kept relatively high, the grain suppressor mentioned above is added. Nevertheless,
A considerable amount of growth of Al 2 O 3 -TiC crystal grains was observed, and there were still problems to be improved in terms of toughness. The present invention relates to a method for manufacturing a ceramic sintered body that solves the above-mentioned problems, and its gist consists of 15 to 60% by weight of titanium carbide, the balance being 100 parts by weight of aluminum oxide, and 0.05 to 0.05 to yttrium oxide. An element body formed from raw material powder having a composition of 2.00 parts by weight is pre-sintered in a reducing gas or inert gas atmosphere so that the theoretical density becomes 94% or more, and then the pre-sintered body is A method for producing a ceramic sintered body characterized by hot isostatic pressure sintering, and 15 to 60 weight percent of titanium carbide, the balance being 100 parts by weight of aluminum oxide, and 0.05 to 2.00 weight of yttrium oxide. This method of manufacturing a ceramic sintered body is characterized by hot-press sintering a raw material powder consisting of: The reason for using a reducing gas or inert gas (not including nitrogen gas) atmosphere during preliminary sintering in the HIP method described above is that an oxidizing atmosphere is not preferable because TiC will oxidize and become TiO 2 . Also, under vacuum conditions, Al 2 O 3 decomposes and evaporates from about 1450°C, making it impossible to obtain a dense sintered body. Further, in a nitrogen gas atmosphere, the nitrogen reacts with the constituent components of the ceramic sintered body of the present invention, changing the composition of the final product, which is not preferable. In the method of the present invention, known grain growth inhibitors for aluminum oxide sintered bodies such as Ni, Mo, Cr,
It is more preferable to use one or more of oxides such as Co, Mg, Fe, and Mn in combination because the resulting sintered body will have finer crystals, resulting in greater toughness. The amount added is based on the total amount.
The optimum amount is 0.1-1.0 parts by weight. The experiments that led to the development of the present invention will be described below. <Experiment> (a) Experimental method and results α-Al 2 O 3 with a purity of 99.9% and an average particle size of 0.6μ,
TiC, Y2O3 with a purity of 99% and an average particle size of ,
Various blends of TiC 10-70% by weight and Y 2 O 3 0.025-2.500% by weight were wet mixed and pulverized for 20 hours using a ball mill mixer, then wax was added and granulated to produce 1.3 ton/cm. After sintering, mold the chip into a cutting tool chip body with dimensions of 13.0 square and 5.0 mm thick at a pressure of 2 . In this case, it was known from experience that the pressure during compression molding at room temperature should be 0.5 ton/cm 2 or more, so the compression molding was carried out under these conditions. The element body compressed at room temperature is pre-sintered in an argon gas atmosphere furnace at a temperature in the range of 1650°C to 1950°C and held for 1 hour so that the density of the pre-sintered body becomes 94% or more of the theoretical density. I went there.
The relationship between the temperature and the blending ratio of TiC and Y 2 O 3 in this case is shown in the graph in Figure 1-1.
Figure 2 shows an electron micrograph of the structure containing 0.5 parts by weight of Y 2 O 3 , and for comparison.
70Al 2 O 3 -30TiC (contains no Y 2 O 3 ) is pre-sintered (at a temperature of approx.
Fig. 3 shows an electron micrograph of the structure of the product (which required a temperature of 1900°C). Also, the results shown in Figure 1-1 are the same as those obtained when MgO, which is an example of a grain growth inhibitor, is used as a blended raw material.
Figure 1-2 shows the change in pre-sintering temperature when 0.25 parts by weight is added. Next, the pre-sintered body with a theoretical density of 94% to 95% obtained in this way is placed in a HIP consisting of a high-pressure container containing a Mo heating element.
Put into the furnace, 1400℃×1hr, high pressure of 1000Kg/ cm2
A final sintered body was obtained by applying isostatic pressure to the pre-sintered part of the bite chip under Ar gas pressure. Next, after grinding the various final sintered bodies using a diamond grindstone, the hardness (Rockwell A scale) of the various sintered bodies was measured. The results are shown graphically in FIG. Furthermore, an electron micrograph of the structure of the final sintered body after HIP is shown in FIG. In this sample, Y 2 O 3 was added to 100 parts by weight of (70Al 2 O 3 −30TiC).
0.5 part by weight was added. In addition, for comparison, a composition of 70Al 2 O 3 −30TiC (which does not contain any Y 2 O 3 ) has a theoretical density.
Figure 6 shows an electron micrograph of the structure of the product which was pre-sintered to 94% or higher and then subjected to HIP treatment. Similarly, 0.5 parts by weight of Y 2 O 3 was added to 100 parts by weight of (70Al 2 O 3 -30TiC), and
The X-ray diffraction patterns of 70Al 2 O 3 -30TiC (which does not contain any Y 2 O 3 ) are shown in FIGS. 7 and 8, respectively. In addition, in order to find the effective conditions for HIP sintering, a material with a density of 94% to 95% of theoretical density (70Al 2 O 3
A pre-sintered body containing 0.5 parts by weight of Y 2 O 3 per 100 parts by weight of 30TiC was placed in a HIP furnace at 1300°C and 1350°C.
℃, 1375℃, 1400℃, 1435℃, 1470℃, 1500
350Kg/cm 2 , 400 at each temperature of ℃, 1600℃, 1700℃
High pressure of Kg/cm 2 , 1000Kg/cm 2 and 2000Kg/cm 2
Maintained under Ar gas pressure for 1 hour, then depressurized.
The furnace was cooled and the changes in theoretical density of the final sintered body under each HIP condition were determined. The results are shown graphically in FIG. Next, various blended pre-sintered bodies having a density of 94 to 95% of the theoretical density were placed in a HIP furnace, and
Sintered under high-pressure Ar gas pressure of 1000Kg/ cm2 at ℃×1hr to produce a final sintered body with a density of 99% or more relative to the theoretical density of the final sintered body into a cutting tool shape.
SNGN432 was processed into thread surface dimensions of 0.1 x 30°, each was subjected to a cutting test, and the performance was evaluated. The test conditions at that time were as follows. That is, <Continuous cutting test> Cutting material: High hardness material SNCM-8 (hardness Hs85) Cutting conditions: V x d x f = 50 m/min x 0.5 mm x 0.2 mm/rev Life judgment: Flank wear width 0.3 mm The results of this continuous cutting test are shown in Figures 10 and 11.
Shown in the graph of Figure. <Fraction resistance cutting test> Work material: Cast iron FC25 Cutting conditions: V x d = 245 m/min x 1.5 mm Life judgment: Milling was performed under the above conditions, and 1
Feed per tooth f (mm/tooth) 0.4, 0.5,
Increase it to 0.6, 0.7, 0.8, 0.9, 1.0,
The time when a chip appeared on the cutting edge of the cutting tool was defined as the tool life. The results of this chipping resistance cutting test are shown in Table 1 below. In Table 1, the 〇 mark means that no chipping occurred on both occasions, the △ mark means that chipping occurred only once out of 2 times, and the × mark means that chipping occurred on both occasions. show.

【表】【table】

【表】 また予備焼結雰囲気の影響を調べる為に、
30TiC−70Al2O3100重量部に対し、Y2O3を0.5
重量部配合したものについて焼結雰囲気を変え
て、対理論密度が94〜95%となる様に予備焼結
を行い、その後1400℃×1hr、1000Kg/cm2アル
ゴンガス圧下でHIP法により得られた最終焼結
体の対理論密度と硬さを下記第2表に示す。
[Table] In addition, in order to investigate the influence of the pre-sintering atmosphere,
30TiC−70Al 2 O 3 100 parts by weight, 0.5 Y 2 O 3
Preliminary sintering was performed by changing the sintering atmosphere so that the theoretical density was 94 to 95%, and then the product was obtained by the HIP method at 1400℃ x 1 hour under 1000Kg/ cm2 argon gas pressure. The theoretical density and hardness of the final sintered body are shown in Table 2 below.

【表】 (b) 考察 HIP法を適用するに必要な対理論密度を有す
る予備焼結体を得る為の温度は、Y2O3を全く
含まないものに比べ、Y2O3の添加量を増すに
つれて次第に低温へと移行する(第1図−1及
び70Al2O3−30TiCなるものが約1900℃を要し
たという事から判る)。更に詳述すれば、Y2O3
添加量が0.025重量部ではまだあまり温度低下
はないが、0.05重量部を超えるとその添加量に
従つて大きな温度低下現象が見られる。そして
第2図及び第3図にそれぞれ示す電子顕微鏡組
織写真より予備焼結温度が低い程結晶粒子が微
細なものが得られるという事が判る。 又粒成長抑制剤たるMgOを0.25重量部加え
た例では、焼結体を顕微鏡観察した結果は、
MgOを含むまない物と比べ結晶粒が微細化し
ている事が明らかに識別出来たが第1図−2に
示した予備焼結温度については、少しは低温側
へ移行していたが、その差は僅かであり、
MgO添加は予備焼結温度の低下という点では
殆ど効果はない事が判つた。 又第4図に示すグラフより、Y2O3の添加量
が、0.025重量部の場合には、無添加の場合に
比べて多少の硬さの上昇が認められるが、先の
第1図−1から明らかな如く予備焼結時の焼結
性がまだ劣るが為に、構成結晶粒子が幾分成長
する結果、硬さはいずれもHA93.0以下で不十
分である。一方、Y2O3を0.05重量部以上配合
すると構成粒子も微細となる結果(第5図参
照)TiC/Al2O3+TiC×100が15〜60のものに
あつては、いずれもその硬さがHA93.0以上を
示している。 HIP条件と得られる最終焼結体の対理論密度
との関係を示す第9図によれば、高圧条件下、
例えば2000Kg/cm2や1000Kg/cm2の場合は1350℃
で対理論密度98.75%および98.55%のものが得
られるが、比較的低圧の400Kg/cm2や350Kg/cm2
の場合では対理論密度が98.5%以上のものを得
るためには、それぞれ1450℃と1550℃以上の高
温を必要とするので、通常は1000〜2000Kg/cm2
の圧力下でHIP処理する事が望ましい。なお高
温の1700℃に近づくにつれ、保持時間は20分間
位にまで短縮することが出来構成結晶粒子の成
長をおさえる事ができる事を確かめた事を付言
しておく。 第10図に示す結果から、(Al2O3+TiC)中
のTiCの量が10重量%と少いものにあつては、
Y2O3の量が0.25〜2.0重量部の範囲ではHA硬
さが93.0以上あつた(第4図参照)にもかかわ
らず、工具寿命が短かく、逆に(Al2O3+TiC)
中のTiCの量が大となり過ぎて70重量%となれ
ば、常温での硬さは十分であるが(第4図参
照)、TiCが高温硬さが低いという特性を有す
るので、工具寿命が短かくなるという欠点があ
るし、第1表の結果をも勘案すれば(Al2O3
TiC)中のTiCは15〜60重量%が又Y2O3の量は
0.05〜2.00重量部が好ましい事が判る。 次に硬さと工具寿命との関係を示す第11図
よりHA硬さが93.0以下の場合には急速に工
具寿命の低下が見られる。ここで採用した切削
試験方法は、セラミツク工具材料にとつて非常
に苛酷な条件となし、短時間で寿命判定が出来
る様にしたものであるから、4分間以上の値で
あれば一般的な用途では優れた切削性能といえ
るものである。又予備焼結時の雰囲気について
は不活性ガス、還元性ガスであれば、どのガス
でもさしたる変化のない事が第2表より判るの
で通常は安全性、経済性の面からアルゴンガス
を用いる様にする。 <実験> (a) 実験方法及び結果 純度99.9%、平均粒子径0.6μのα−Al2O3
純度99%、平均粒子径1μのTiC、Y2O3をそれ
ぞれ用い、TiC10重量%〜70重量%のAl2O3
TiCの混合物100重量部に対し、Y2O3を0.025重
量部〜2.500重量部の範囲で各種配合したもの
をボールミル混合機により20時間湿式混合粉砕
を行つた後、これを充分に乾燥して焼結用原料
とし、50×50mm角、高さ60mmの黒鉛型内に上記
各種焼結用原料を充填すると共に、高周波コイ
ルに挿入し、1350〜1900℃の温度範囲内で各所
定温度にて200Kg/cm2の圧力を加え、60分間保
持し、次いで圧力を抜いて放冷する事により50
×50×5.5mmの目的の焼結体を得た。 この様に、ホツトプレス法によつて対理論密
度を少くとも98.5%となる様に焼結する為のホ
ツトプレス温度を下記第3表に示す。 但し、その場合の圧力は200Kg/cm2、保持時
間は60分間とした。
[Table] (b) Discussion The temperature required to obtain a pre - sintered body with the theoretical density required for applying the HIP method is higher than that of a pre-sintered body that does not contain any Y 2 O 3 . As the temperature increases, the temperature gradually shifts to lower temperatures (as can be seen from Figure 1-1 and the fact that 70Al 2 O 3 -30TiC required about 1900°C). In more detail, Y 2 O 3
When the amount added is 0.025 parts by weight, there is still not much of a temperature drop, but when it exceeds 0.05 parts by weight, a large temperature drop phenomenon is observed depending on the amount added. From the electron micrographs shown in FIGS. 2 and 3, it can be seen that the lower the pre-sintering temperature, the finer the crystal grains can be obtained. In addition, in an example in which 0.25 parts by weight of MgO, a grain growth inhibitor, was added, the results of microscopic observation of the sintered body were as follows.
It was clearly discernible that the crystal grains were finer than those that did not contain MgO, but the pre-sintering temperature shown in Figure 1-2 was slightly lower. The difference is slight;
It was found that the addition of MgO had little effect on lowering the pre-sintering temperature. Also, from the graph shown in Figure 4, when the amount of Y 2 O 3 added is 0.025 parts by weight, a slight increase in hardness is observed compared to the case where no addition is made. As is clear from No. 1, the sinterability during preliminary sintering was still poor, and as a result, the constituent crystal grains grew to some extent, resulting in insufficient hardness of H to A93.0 or less. On the other hand, when 0.05 parts by weight or more of Y 2 O 3 is added, the constituent particles become finer (see Figure 5). For TiC/Al 2 O 3 + TiC x 100 of 15 to 60, the hardness It shows H to A93.0 or higher. According to Figure 9, which shows the relationship between HIP conditions and the theoretical density of the final sintered body, under high pressure conditions,
For example, 1350℃ for 2000Kg/cm 2 or 1000Kg/cm 2
Although theoretical densities of 98.75% and 98.55% can be obtained at relatively low pressures of 400Kg/cm 2 and 350Kg/cm 2
In this case, in order to obtain a theoretical density of 98.5% or higher, high temperatures of 1450℃ and 1550℃ or higher are required, respectively, so normally 1000 to 2000Kg/cm 2
It is preferable to perform HIP treatment under the pressure of It should be noted that as the temperature approaches the high temperature of 1700°C, the holding time can be shortened to about 20 minutes, and it has been confirmed that the growth of the constituent crystal grains can be suppressed. From the results shown in Figure 10, when the amount of TiC in (Al 2 O 3 + TiC) is as small as 10% by weight,
When the amount of Y 2 O 3 was in the range of 0.25 to 2.0 parts by weight, the H to A hardness was 93.0 or more (see Figure 4 ), but the tool life was short; )
If the amount of TiC inside is too large (70% by weight), the hardness at room temperature is sufficient (see Figure 4), but since TiC has a characteristic of low high temperature hardness, the tool life will be shortened. It has the disadvantage that it becomes shorter, and considering the results in Table 1, (Al 2 O 3 +
TiC in TiC) is 15-60% by weight, and the amount of Y 2 O 3 is
It turns out that 0.05 to 2.00 parts by weight is preferable. Next, as shown in FIG. 11, which shows the relationship between hardness and tool life, when H ~ A hardness is 93.0 or less, tool life rapidly decreases. The cutting test method adopted here uses extremely harsh conditions for ceramic tool materials, and is designed to allow life to be determined in a short period of time, so a value of 4 minutes or more is suitable for general use. This can be said to have excellent cutting performance. Regarding the atmosphere during preliminary sintering, it is clear from Table 2 that there is no significant change in any gas as long as it is an inert gas or a reducing gas, so argon gas is usually used from the standpoint of safety and economy. Make it. <Experiment> (a) Experimental method and results α-Al 2 O 3 with a purity of 99.9% and an average particle size of 0.6μ,
TiC and Y2O3 with a purity of 99% and an average particle size of 1μ were used, respectively, and Al2O3 with a TiC content of 10% to 70% by weight was used .
A mixture of 100 parts by weight of TiC and various amounts of Y 2 O 3 in the range of 0.025 parts by weight to 2.500 parts by weight was wet mixed and pulverized for 20 hours using a ball mill mixer, and then thoroughly dried. As raw materials for sintering, fill a graphite mold of 50 x 50 mm square and 60 mm in height with the above various sintering raw materials, insert it into a high frequency coil, and heat it at each specified temperature within the temperature range of 1350 to 1900 ° C. By applying a pressure of 200Kg/ cm2 , holding it for 60 minutes, and then releasing the pressure and leaving it to cool,
A desired sintered body of ×50 × 5.5 mm was obtained. As described above, the hot press temperature for sintering to a theoretical density of at least 98.5% by the hot press method is shown in Table 3 below. However, the pressure in that case was 200 Kg/cm 2 and the holding time was 60 minutes.

【表】 又上記第3表に示す各々の配合原料に更に全
量の0.25重量部のMgOを加え、上記第3表に
示す結果を得たのと同様のホツトプレス焼結を
した結果は、焼結温度は各々MgOを含まない
場合と比べ僅か(5〜10℃)に低くはなつた
が、さほど大きな変化はなかつた。 また(70Al2O3−30TiC)100重量部に対し
て、Y2O3を0.5重量部添加した材料について、
保持時間を60分間とした場合に於けるホツトプ
レス温度と圧力、対理論密度との関係を第12
図のグラフに示す。なお更にこの(70Al2O3
30TiC)100重量部に対し、Y2O30.5重量部添加
したもの、及び70Al2O3−30TiC(Y2O3を全く
含まない)ものについての電子顕微鏡組織写真
をそれぞれ第13図及び第14図に、又X線回
折図形をそれぞれ第15図及び第16図に示
す。ホツトプレス条件はY2O3入りのものが
1580℃×60分間、200Kg/cm2、Y2O3なしのもの
が1750℃×60分間、200Kg/cm2である。 次いでこの様にして得た焼結体をダイヤモン
ド砥石で切断し、更に220番のダイヤモンド砥
石で切削工具型番SNGN432、糸面寸法0.1×
30゜の工具を作り、この各種工具の硬さ(ロツ
クウエルAスケール)の測定を行つた結果を第
17図のグラフに示す。 次いで、これら各種工具の切削性能を判定す
る目的で、旋盤により、被削材として高硬度材
SNCM−8(Hs85)を用い、V×d×f=50
m/min×0.5mm×0.2mm/revの切削条件で連続
切削試験を行つた。なおこの時の工具寿命判定
基準として逃げ面摩耗幅が0.3mmに達した時点
で工具の寿命とした。この結果を第18図及び
第19図のグラフに示す。 また、これら各種工具の耐欠損性を見る為、
鋳鉄(FC25)をV×d=245m/min×1.5mm、
送り=0.4〜1.0mm/toothの範囲でフライス切削
した結果を第4表に示す。 この第4表中〇印は2回共カケが発生しなか
つた事を、△印は2回中1回のみカケが発生し
た事を、×印は2回共カケが発生した事をそれ
ぞれ示す。
[Table] In addition, 0.25 parts by weight of MgO was added to each of the raw materials shown in Table 3 above, and hot press sintering was performed in the same way as the results shown in Table 3 above. Although the temperature was slightly lower (5 to 10°C) than in the case without MgO, there was no significant change. In addition, for the material in which 0.5 parts by weight of Y 2 O 3 was added to 100 parts by weight of (70Al 2 O 3 −30TiC),
The relationship between hot press temperature, pressure, and theoretical density when the holding time is 60 minutes is shown in the 12th table.
Shown in the graph of figure. Furthermore, this (70Al 2 O 3
Figures 13 and 13 show the electron micrographs of the structure of 70Al 2 O 3 -30TiC (containing no Y 2 O 3 at all) and 100 parts by weight of 30TiC) with 0.5 parts by weight of Y 2 O 3 added. The X-ray diffraction pattern is shown in FIG. 14, and the X-ray diffraction pattern is shown in FIG. 15 and FIG. 16, respectively. The hot press conditions are those containing Y 2 O 3 .
1580°C x 60 minutes, 200Kg/cm 2 , and the one without Y 2 O 3 is 1750°C x 60 minutes, 200Kg/cm 2 . Next, the sintered body obtained in this way was cut with a diamond whetstone, and then cut with a No. 220 diamond whetstone using a cutting tool model number SNGN432 and a thread surface dimension of 0.1×.
30° tools were made, and the hardness (Rockwell A scale) of these various tools was measured and the results are shown in the graph of Figure 17. Next, in order to judge the cutting performance of these various tools, a high-hardness material was used as a workpiece using a lathe.
Using SNCM-8 (Hs85), V×d×f=50
Continuous cutting tests were conducted under cutting conditions of m/min x 0.5 mm x 0.2 mm/rev. The tool life criterion at this time was that the tool life was reached when the flank wear width reached 0.3 mm. The results are shown in the graphs of FIGS. 18 and 19. In addition, in order to check the fracture resistance of these various tools,
Cast iron (FC25) V×d=245m/min×1.5mm,
Table 4 shows the results of milling at a feed rate of 0.4 to 1.0 mm/tooth. In this Table 4, the ○ mark indicates that no chipping occurred on both occasions, the △ mark indicates that chipping occurred only once out of 2 times, and the × mark indicates that chipping occurred on both occasions. .

【表】 (b) 考察 対理論密度が少くとも98.5%以上の焼結体を
得るのにY2O3を全く含まない70Al2O3−30TiC
なるものが1750℃を必要としているのに比べ、
第3表から判る様にY2O3を添加したものはそ
の焼結温度が相当低くなつている。しかるにそ
の添加量が、0.025重量部ではまだあまり温度
が下がらず、0.05重量部を超えるとその添加量
が増すにつれて順次相当な温度低下現象が見ら
れる。又第12図に示すグラフよりホツトプレ
ス焼結時の温度及び圧力は共に高い方が対理論
密度の大きな焼結体が得られるという事が判る
が、第13図と第14図とを比べてみれば判る
如くホツトプレス温度が低い方が得られる焼結
体の結晶粒子は微細となる。 Y2O3の添加量と得られる焼結体の硬さを示
す第17図によれば、Y2O3の添加量が0.025重
量部のものにあつては無添加の場合に比べて多
少硬さが上昇するが、上述した如くホツトプレ
ス焼結条件が劣る(温度が高い)為に構成結晶
粒子が幾分成長するから硬さが高々92.9とまだ
不十分である。一方Y2O3を0.05重量部以上配
合すると構成粒子も微細となる結果、TiC/
Al2O3+TiC×100が15〜60のものにあつてはい
ずれもが93.0以上を示している。 第18図に示す結果から(Al2O3+TiC)中
のTiCの量が10重量%と少いもの及び70重量%
と多すぎるものはその中間にあるものよりは工
具寿命の点で大きく劣る事、又(Al2O3+TiC)
中のTiCの量としては適量と考えられる15、
30、60重量%のものでもY2O3の量によつてそ
の工具寿命は大きく左右され、切削工具材料と
して要望される値(4分間あれば十分)を満た
すのはY2O3が0.05重量部〜2.0重量部位である
という事が判る。又第19図に示す結果から得
られる焼結体の硬さはHA93以上が必要であ
るという事が判る。 以上述べて来た様に本願発明に係るセラミツク
焼結体は高硬度かつ緻密であり、それを例えば切
削工具用として用いた場合には優れた性質を示
す。そしてこれらの特性は硬さをHA93.0以上、
対理論密度を98.5%以上としたものにあつては一
段と優れている。そして更に該セラミツク焼結体
の構成粒子径が10μm以下のものは又一段と優れ
ている。 次に本願発明に係るセラミツク焼結体の製造方
法ではその焼結温度を大きく低下せしめる事がで
きるので、その分だけ構成粒子を微細とする事が
できるという効果がある。
[Table] (b) Consideration 70Al 2 O 3 −30TiC containing no Y 2 O 3 to obtain a sintered body with a theoretical density of at least 98.5%
Compared to that which requires 1750℃,
As can be seen from Table 3, the sintering temperature of the materials to which Y 2 O 3 was added was considerably lower. However, when the amount added is 0.025 parts by weight, the temperature does not decrease much, and when the amount exceeds 0.05 parts by weight, the temperature gradually decreases considerably as the amount added increases. Also, from the graph shown in Figure 12, it can be seen that the higher the temperature and pressure during hot press sintering, the higher the theoretical density of a sintered body can be obtained. Compare Figures 13 and 14. As can be seen, the lower the hot pressing temperature, the finer the crystal grains of the sintered body obtained. According to Fig. 17, which shows the amount of Y 2 O 3 added and the hardness of the obtained sintered body, when the amount of Y 2 O 3 added is 0.025 parts by weight, it is slightly harder than when no addition is made. Although the hardness increases, as mentioned above, due to the poor hot press sintering conditions (high temperature), the constituent crystal grains grow somewhat, so the hardness is still insufficient at 92.9 at most. On the other hand, when 0.05 parts by weight or more of Y 2 O 3 is added, the constituent particles become finer, resulting in TiC/
When Al 2 O 3 +TiC×100 is 15 to 60, all values are 93.0 or higher. From the results shown in Figure 18, the amount of TiC in (Al 2 O 3 + TiC) is as low as 10% by weight and 70% by weight.
If there is too much, the tool life will be significantly inferior to something in between (Al 2 O 3 +TiC).
The amount of TiC inside is considered to be appropriate15,
Even if it is 30 or 60% by weight, the tool life is greatly affected by the amount of Y 2 O 3 , and the value required for a cutting tool material (4 minutes is enough) is met when Y 2 O 3 is 0.05 It can be seen that it is 2.0 parts by weight. Moreover, it is clear from the results shown in FIG. 19 that the hardness of the sintered body required is H to A93 or higher. As described above, the ceramic sintered body according to the present invention is highly hard and dense, and exhibits excellent properties when used as a cutting tool, for example. These characteristics increase the hardness from H to A93.0 or higher,
It is even better when the theoretical density is 98.5% or more. Furthermore, the ceramic sintered body having a constituent particle diameter of 10 μm or less is even more excellent. Next, in the method for manufacturing a ceramic sintered body according to the present invention, the sintering temperature can be significantly lowered, so that the constituent particles can be made finer.

【図面の簡単な説明】[Brief explanation of drawings]

第1図−1は実験の温度とTiC、TiO2
Y2O3の関係を示すグラフ、第1図−2は同様に
MgOを0.25重量部含んだ場合の温度とTiC、
TiO2、Y2O3の関係を示すグラフ、第2図は実験
の(70Al2O3−30TiC)100重量部−Y2O30.5重
量部なる材料の予備焼結後の電子顕微鏡組織写
真、第3図は実験の70Al2O3−30TiCなる材料
の予備焼結後の電子顕微鏡組織写真、第4図は実
験の各種焼結体の硬さを示すグラフ、第5図は
実験の(70Al2O3−30TiC)100重量部−
Y2O30.5重量部なる材料のHIP後の電子顕微鏡組
織写真、第6図は実験の70Al2O3−30TiCなる
材料のHIP後の電子顕微鏡組織写真、第7図は実
験の(70Al2O3−30TiC)100重量部−Y2O30.5
重量部なる材料のHIP後のX線回折図形、第8図
は実験の70Al2O3−30TiCなる材料のHIP後の
X線回折図形、第9図は実験のHIP条件による
対理論密度の変化を示すグラフ、第10図及び第
11図はそれぞれ実験の連続切削試験結果を示
すグラフ、第12図は実験のホツトプレス条件
による対理論密度の変化を示すグラフ、第13図
は実験の(70Al2O3−30TiC)100重量部−
Y2O30.5重量部なる材料の電子顕微鏡組織写真、
第14図は実験の70Al2O3−30TiCなる材料の
電子顕微鏡組織写真、第15図は実験の
(70Al2O3−30TiC)100重量部−Y2O30.5重量部
なる材料のX線回折図形、第16図は実験の
70Al2O3−30TiCなる材料のX線回折図形、第1
7図は実験の各種焼結体の硬さを示すグラフ、
第18図及び第19図はそれぞれ実験の連続切
削試験結果を示すグラフ、なお図中、電子顕微鏡
組織写真の倍率は全て3000倍である。
Figure 1-1 shows the experimental temperature and TiC, TiO 2 ,
The graph showing the relationship of Y 2 O 3 , Figure 1-2 is similarly
Temperature and TiC when 0.25 parts by weight of MgO is included,
A graph showing the relationship between TiO 2 and Y 2 O 3. Figure 2 is an electron micrograph of the experimental material after preliminary sintering of 100 parts by weight of (70Al 2 O 3 - 30TiC) - 0.5 parts by weight of Y 2 O 3 . , Figure 3 is an electron micrograph of the experimental material 70Al 2 O 3 -30TiC after preliminary sintering, Figure 4 is a graph showing the hardness of various sintered bodies in the experiment, and Figure 5 is the ( 70Al 2 O 3 −30TiC) 100 parts by weight −
Figure 6 is an electron micrograph of the experimental material 70Al 2 O 3 -30TiC after HIP, and Figure 7 is the experimental (70Al 2 O 3 −30TiC) 100 parts by weight −Y 2 O 3 0.5
The X-ray diffraction pattern after HIP of the material (weight part), Figure 8 is the X-ray diffraction pattern after HIP of the experimental material 70Al 2 O 3 -30TiC, and Figure 9 shows the change in theoretical density depending on the experimental HIP conditions. Figures 10 and 11 are graphs showing the experimental continuous cutting test results, Figure 12 is a graph showing the change in theoretical density depending on the experimental hot press conditions, and Figure 13 is the experimental (70Al 2 O 3 −30TiC) 100 parts by weight−
Electron micrograph of the material consisting of 0.5 parts by weight of Y 2 O 3 ,
Fig. 14 is an electron micrograph of the experimental material 70Al 2 O 3 -30TiC, and Fig. 15 is an X-ray of the experimental material 100 parts by weight (70Al 2 O 3 -30TiC) - 0.5 parts by weight Y 2 O 3 Diffraction pattern, Figure 16 is the experimental one.
X-ray diffraction pattern of material 70Al 2 O 3 -30TiC, 1st
Figure 7 is a graph showing the hardness of various sintered bodies in the experiment.
FIG. 18 and FIG. 19 are graphs showing the results of continuous cutting tests, respectively. In the figures, the magnification of all electron micrographs is 3000x.

Claims (1)

【特許請求の範囲】 1 炭化チタン15〜60重量%、残部酸化アルミニ
ウムからなるもの100重量部と、酸化イツトリウ
ム0.05〜2.00重量部とからなる組成を有する原料
粉末により成形した素体を還元性ガス又は不活性
ガス雰囲気中で対理論密度が94%以上となる様予
備焼結をし、次いで該予備焼結体を熱間等方圧加
圧焼結することを特徴とするセラミツク焼結体の
製造方法。 2 炭化チタン15〜60重量%、残部酸化アルミニ
ウムからなるもの100重量部と酸化イツトリウム
0.05〜2.00重量部とからなる原料粉末をホツトプ
レス焼結することを特徴とするセラミツク焼結体
の製造方法。
[Scope of Claims] 1. An element body molded from a raw material powder having a composition of 15 to 60 weight percent titanium carbide, the balance 100 parts by weight of aluminum oxide, and 0.05 to 2.00 parts by weight of yttrium oxide is exposed to a reducing gas. Or a ceramic sintered body characterized by pre-sintering in an inert gas atmosphere so that the theoretical density becomes 94% or more, and then sintering the pre-sintered body under hot isostatic pressure. Production method. 2 15 to 60% by weight of titanium carbide, 100 parts by weight of aluminum oxide and yttrium oxide
1. A method for producing a ceramic sintered body, comprising hot press sintering raw material powder containing 0.05 to 2.00 parts by weight.
JP4106880A 1980-03-29 1980-03-29 Ceramic sintered body and manufacture Granted JPS56140066A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4106880A JPS56140066A (en) 1980-03-29 1980-03-29 Ceramic sintered body and manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4106880A JPS56140066A (en) 1980-03-29 1980-03-29 Ceramic sintered body and manufacture

Publications (2)

Publication Number Publication Date
JPS56140066A JPS56140066A (en) 1981-11-02
JPH0122223B2 true JPH0122223B2 (en) 1989-04-25

Family

ID=12598117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4106880A Granted JPS56140066A (en) 1980-03-29 1980-03-29 Ceramic sintered body and manufacture

Country Status (1)

Country Link
JP (1) JPS56140066A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH062615B2 (en) * 1984-12-29 1994-01-12 ティーディーケイ株式会社 Magnetic head slider material
JPS6259566A (en) * 1985-09-06 1987-03-16 住友特殊金属株式会社 Material for magnetic head substrate

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52104515A (en) * 1976-02-28 1977-09-02 Toshiba Tungaloy Co Ltd Manufacture of ceramics sintered bodies
JPS5541009A (en) * 1978-09-18 1980-03-22 Hitachi Ltd Analog switch circuit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52104515A (en) * 1976-02-28 1977-09-02 Toshiba Tungaloy Co Ltd Manufacture of ceramics sintered bodies
JPS5541009A (en) * 1978-09-18 1980-03-22 Hitachi Ltd Analog switch circuit

Also Published As

Publication number Publication date
JPS56140066A (en) 1981-11-02

Similar Documents

Publication Publication Date Title
US4563433A (en) Ceramic material and method of manufacture
JPH0475190B2 (en)
WO1990009969A1 (en) Alumina ceramic, production thereof, and throwaway tip made therefrom
JPS5826018A (en) Silicon carbide powder for producing high density silicon carbide sintered body and composition containing same
JPS6335589B2 (en)
CN107267836A (en) A kind of twin crystal hard alloy and preparation method thereof
JP2004026555A (en) Cubic boron nitride-containing sintered compact and method for producing the same
JPH0122223B2 (en)
JPS61146762A (en) Antiabrasive silicon nitride base product
JP2004256863A (en) Cemented carbide, production method therefor, and rotary tool using the same
JPS644988B2 (en)
JP3550420B2 (en) Wear-resistant silicon nitride sintered body, method for producing the same, and cutting tool
JPH0122224B2 (en)
EP2619342B1 (en) Sintered cubic boron nitride cutting tool
JPS5833187B2 (en) Manufacturing method of ceramic materials for tools
JPS632913B2 (en)
JP2004256862A (en) Cemented carbide, production method therefor, and cutting tool using the same
JPS644989B2 (en)
JP2673523B2 (en) Alumina sintered body for cutting tool and its manufacturing method
JPH0531514B2 (en)
JPS6232151B2 (en)
JP2004190118A (en) Cemented carbide, its production method, and cutting tool using the same
JPS6259568A (en) Ceramic material excellent in precise processability
JPH03290356A (en) Aluminum oxide based ceramics having high toughness and strength and production thereof
JPS621592B2 (en)