JPH03290356A - Aluminum oxide based ceramics having high toughness and strength and production thereof - Google Patents

Aluminum oxide based ceramics having high toughness and strength and production thereof

Info

Publication number
JPH03290356A
JPH03290356A JP2090783A JP9078390A JPH03290356A JP H03290356 A JPH03290356 A JP H03290356A JP 2090783 A JP2090783 A JP 2090783A JP 9078390 A JP9078390 A JP 9078390A JP H03290356 A JPH03290356 A JP H03290356A
Authority
JP
Japan
Prior art keywords
powder
oxides
aluminum oxide
less
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2090783A
Other languages
Japanese (ja)
Other versions
JP2805969B2 (en
Inventor
Akio Nishiyama
昭雄 西山
Takashi Koyama
孝 小山
Yasutaka Aikawa
相川 安孝
Hideo Oshima
秀夫 大島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2090783A priority Critical patent/JP2805969B2/en
Priority to US07/658,914 priority patent/US5188908A/en
Priority to EP91102673A priority patent/EP0443624B1/en
Priority to DE69104862T priority patent/DE69104862T2/en
Publication of JPH03290356A publication Critical patent/JPH03290356A/en
Priority to US07/932,195 priority patent/US5275981A/en
Application granted granted Critical
Publication of JP2805969B2 publication Critical patent/JP2805969B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To improve toughness and strength of the title ceramics by blending specific Al2O3 powder with metal oxide powder and metal carbide, nitride or oxide powder and then forming the blend under pressure and sintering the formed article in Ar- containing atmosphere. CONSTITUTION:(a) Al2O3 powder having <=0.6mum average grain size is blended with (b) 1-12wt.% one or two or more kind of metal oxides among oxides of Y, Mg, Cr, Ni, Co and rare earth elements having <=1mum average grain size and (c) 2.1-50wt.% one or two or more kind of metal carbide, nitride or oxide powder among carbide, (carbon) nitride, carboxide, nitride and carbon nitride oxide of Ti, Zr and Hf containing >=10wt.% compound having <=0.3mum grain size and the blend is formed into a pressed body, which is then sintered in an atmosphere of Ar or Ar and inert gas at 1680-1830 deg.C for 10-40min and then retained in an atmosphere of Ar or Ar and inert gas at 1300-1450 deg.C for 2-10hr to provide Al2O3 based ceramics containing 0.5-10wt.% metal oxide other than Al2O3 and CrO2, 2-40wt.% component (c) in the crystalline grain boundary of (a) in which (b) is made to solid solution and containing 0.1-30wt.% component (c) having <=0.3mum grain size in the cystalline grain boundary of (a) as rigid disperse phase component.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、特に高靭性を有し、かつ高強度も合せもち
、さらに電気伝導性にもすぐれているので、放電加工に
よる成形も可能であり、したがってこれらの特性が要求
される、例えばAl1などの押出し加工やCu合金板材
の打抜き加工、さらに粉末冶金法による圧粉体成形加工
などに用いられるダイスとして使用するのに適した酸化
アルミニウム(以下A I 20 sで示す)基セラミ
ックスおよびその製造法に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] This invention has particularly high toughness and strength, and also has excellent electrical conductivity, so it can be formed by electrical discharge machining. Therefore, aluminum oxide ( The present invention relates to a base ceramic (hereinafter referred to as A I 20 s) and a method for producing the same.

〔従来の技術〕[Conventional technology]

従来、AM 20 a基セラミックスおよびその製造法
としては、例えば特開昭53−1.18410号公報に
記載される方法が知られている。
Conventionally, as an AM 20 a-based ceramic and a method for manufacturing the same, a method described in, for example, Japanese Patent Application Laid-Open No. 53-1.18410 is known.

この方法は、原料粉末として、この発明のAD203基
セラミックスの製造と対応して示せば、A I 20 
s粉末、Y、Mg、Cr、Ni 。
This method, as a raw material powder, corresponds to the production of AD203-based ceramics of the present invention, A I 20
s powder, Y, Mg, Cr, Ni.

Co、および希土類元素の酸化物(以下、それぞれY 
 O、MgO,Cr2O3,Cod。
Co, and oxides of rare earth elements (hereinafter referred to as Y
O, MgO, Cr2O3, Cod.

3 N i O,およびR20aで示す、ただしR:希土類
元素)のうちの1種または2種以上からなる金属酸化物
の粉末、さらにTi、Zr、およびHfの炭化物、窒化
物、炭窒化物、炭酸化物、窒酸化物、および炭窒酸化物
(以下、それぞれMC。
3 N i O, and metal oxide powder consisting of one or more types of R20a (where R: rare earth element), as well as carbides, nitrides, carbonitrides of Ti, Zr, and Hf, Carbonates, nitrides, and carbonitoxides (hereinafter referred to as MC, respectively).

MN、MCN、MCO,MNO,およびMCN0で示す
、ただしMはTi、Zr、およびHfのうちの1種また
は2種以上からなる)のうちの1種または2種以上から
なる金属炭・窒・酸化物(以下、M −C−N −0で
示す)の粉末を用意し、これら原料粉末を、重量%で(
以下%は重量%を示す)、 金属酸化物粉末  =10%以下、 M−C◆N−0粉末:10〜90%、 A M 20 g粉末  :残り、 からなる配合組成に配合し、通常の条件で、混合し、圧
粉体に成形した後、同じく通常の条件である、例えば1
oOtorrの窒素分圧雰囲気中、温度=1580℃、
圧力=30気圧、保持時間=10〜30分の条件でホッ
トプレスを施すことによりA it 20 a基セラミ
ックスを製造する方法であり、かつ製造されたAρ20
3基セラミックスは、上記金属酸化物か結合相を構成し
、上記A I 20 aおよびM・C−N・0が分散相
を構成する組織をもち、かつ実質的に配合組成と同じ成
分組成をもつものである。
MN, MCN, MCO, MNO, and MCN0, where M consists of one or more of Ti, Zr, and Hf). Powders of oxides (hereinafter referred to as M-C-N-0) are prepared, and these raw material powders are mixed in weight% (
The following % indicates weight %), metal oxide powder = 10% or less, M-C◆N-0 powder: 10 to 90%, A M 20 g powder: the remainder, and the usual After mixing and forming into a compact under the same conditions, e.g.
Temperature = 1580°C in a nitrogen partial pressure atmosphere of oOtorr,
This is a method for producing A it 20 a-based ceramics by hot pressing under the conditions of pressure = 30 atm and holding time = 10 to 30 minutes, and the produced A ρ20
The three-group ceramic has a structure in which the above-mentioned metal oxide constitutes a binder phase, the above-mentioned A I 20 a and M・C-N・0 constitutes a dispersed phase, and has substantially the same component composition as the blended composition. It is something that we have.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

一方、近年の各種産業分野における省力化およびコスト
低減に対する要求は一段と厳しさを増し、例えばダイス
による成形加工の分野においても同様であり、これに伴
ない使用条件が増々苛酷になると共に、使用寿命のより
一層の延命化か要求される傾向にあるが、上記の従来A
g2O3基セラミツクスはじめ、その他のいずれのA 
I 203基セラミツクスも未だ十分満足する靭性およ
び強度を具備したものでないために、これに対応するこ
とができないのが現状である。
On the other hand, in recent years, demands for labor saving and cost reduction in various industrial fields have become even more severe.For example, the same is true in the field of molding processing using dies. There is a tendency to demand further extension of the lifespan of conventional A.
g2O3 group ceramics and any other A
I203-based ceramics do not yet have sufficiently satisfactory toughness and strength, so it is currently impossible to meet these requirements.

〔課題を解決するための手段〕[Means to solve the problem]

そこで、本発明者等は、上述のような観点から、高靭性
および高強度を具備したA II 20 aセラミック
スを開発すべく研究を行なった結果、原料粉末として、
平均粒径:0.6tHo以下のA 1’ 20 a粉末
、同1−以下の上記金属酸化物粉末、さらに平均粒径:
1.5印以下にして、0.3−以下の粒径か10%以上
を占める上記M−C−N・0粉末を用い、これら原料粉
末を、 上記金属酸化物粉末:1〜12%、 上記M−C−N・0粉末:2゜1〜50%、A I 2
0 s粉末:残り、 からなる配合組成に配合し、通常の条件で、混合し、圧
粉体に成形した後、この圧粉体に、0.8〜5気圧のA
rまたはArと不活性ガスの混合ガス雰囲気中、温度:
 1680〜1830℃に10〜40分間保持、 の条件で高温短時間焼結を施すと、この高温短時間焼結
で上記金属酸化物の一部(この場合Cr 20 aは完
全固溶する)がAg2O3中に固溶し、残りがAg2o
3と化合物を形成して前記Ap Oの結晶粒界に存在し
、ざらにA it 20 gの3 結晶粒界には硬質分散相に占める割合で10%以上が0
.3−以下の粒径で、平均粒径が1.5−以下のM−C
−N−0が硬質分散相として分布した組織をもったA1
1203基セラミツクスが形成され、さらに、これに前
記高温短時間焼結に連続して、あるいは断続的に、 100〜2000気圧のArまたはArと不活性ガスの
混合ガス雰囲気中、温度: 1300〜1450℃に2
〜10時間保持、 の条件で熱処理を施すと、この熱処理て、AlI2O3
中に固溶する金属酸化物かA I 203の結晶粒成長
を促進することと含まって、Al1203が前記M−C
◆N−0のうちの0.3−以下の微細な粒径のM−C−
N−0を結晶粒内に取り込みながら粒成長−前記Ag2
O3の結晶粒界に硬質分散相としてM−C−N−0が分
布するが、Aρ203結晶粒内にも0.3−以下の微細
な粒径のM−C−N・0が分布した組織をもつようにな
り、この結果のAg2o3基セラミツクスは、Ag2o
3の結晶粒内に分布した微細なM−C−N・0によって
、これの存在しないAg2o3基セラミツクスに比して
著しく高い強度と靭性をもつようになるという研究結果
を得たのである。
Therefore, from the above-mentioned viewpoint, the present inventors conducted research to develop A II 20a ceramics with high toughness and high strength, and as a result, as a raw material powder,
A 1' 20 a powder with an average particle size of 0.6 tHo or less, the above metal oxide powder with an average particle size of 1- or less, and an average particle size of:
Using the above M-C-N 0 powder which accounts for 10% or more with a particle size of 0.3- or less with a mark of 1.5 or less, the above-mentioned metal oxide powder: 1 to 12%, The above M-C-N・0 powder: 2°1-50%, A I 2
0s powder: The remainder is blended into a composition consisting of the following, mixed under normal conditions, and formed into a green compact.
In a mixed gas atmosphere of r or Ar and inert gas, temperature:
When high-temperature short-time sintering is performed under the conditions of holding at 1680-1830°C for 10-40 minutes, a part of the metal oxide (in this case Cr20a is completely dissolved) is dissolved in the high-temperature short-time sintering. Solid solution in Ag2O3, the rest is Ag2o
It forms a compound with 3 and exists in the grain boundaries of Ap
.. M-C with a particle size of 3- or less and an average particle size of 1.5- or less
-A1 with a structure in which N-0 is distributed as a hard dispersed phase
A 1203 group ceramic is formed, and this is further sintered continuously or intermittently after the high temperature short time sintering in an atmosphere of Ar or a mixed gas of Ar and an inert gas at a pressure of 100 to 2000 atm at a temperature of 1300 to 1450. ℃2
When heat treatment is performed under the conditions of ~10 hours of retention, this heat treatment results in AlI2O3
The metal oxide dissolved therein promotes the grain growth of A I 203, so that Al 1203
◆M-C- with a fine particle size of 0.3- or less of N-0
Grain growth while incorporating N-0 into crystal grains - Ag2
M-C-N-0 is distributed as a hard dispersed phase at the grain boundaries of O3, but there is also a structure in which M-C-N-0 with a fine grain size of 0.3- or less is distributed within the Aρ203 grains. The resulting Ag2o3-based ceramics have Ag2o
The research results showed that the fine M-C-N.0 distributed within the crystal grains of No. 3 gave significantly higher strength and toughness than Ag2o3-based ceramics that did not contain this.

この発明は、上記研究結果にもとづいてなされたもので
あって、 原料粉末として、平均粒径:0.6団以下のAl120
3粉末、同1部以下の上記金属酸化物粉末、および平均
粒径:1.5ρ以下にして、0.3t!In以下の粒径
が10%以上含有の上記M−C−N−0鉛C−用い、こ
れら原料粉末を、 上記金属酸化物:1〜12%、 上記M◆C−N−0:2.1〜50%、Al120 a
  :残り、 からなる配合組成に配合し、通常の条件で、混合し、圧
粉体に成形した後、この圧粉体を、0.8〜5気圧のA
rまたはArと不活性ガスの混合ガス雰囲気中、温度:
 1880〜1830℃に10〜40分間保持、 の条件で高温短時間焼結し、引続いて連続的に、あるい
は断続的に、 100〜2000気圧のA「またはArと不活性ガスの
混合ガス雰囲気中、温度71300〜1450℃に2〜
10時間保持、 の条件でAg2O3結晶粒戊長熱処理を施すことにより
Ag2O3基セラミツクスを製造する方法、並びにこの
方法で製造された、 上記金属酸化物か固溶したAg2o3の結晶粒界に、 A I 20 aと上記金属酸化物(ただしCr 20
3は除く)の化合物:o、5〜10%と、硬質分散相形
成成分として上記M−C−N −02〜40%、 か存在し、さらにA12o3の結晶粒内にも(1,3血
以下の粒径の上記M −C−N −0が01〜30%の
割合で、同じく硬質分散相形成成分として存在(ただし
結晶粒界および結晶粒内の上記M・C−N−0の合計f
fi : 50重量%以下)してなるAg2O3基セラ
ミツクスに特徴を有するものである。
This invention was made based on the above research results, and uses Al120 as a raw material powder with an average particle size of 0.6 groups or less.
3 powder, 1 part or less of the above metal oxide powder, and an average particle size of 1.5ρ or less, 0.3t! Using the above M-C-N-0 lead C- containing 10% or more of particle size smaller than In, these raw material powders were prepared: the above-mentioned metal oxide: 1 to 12%, the above-mentioned M◆C-N-0: 2. 1-50%, Al120a
: The remainder is blended into a composition consisting of the following, mixed under normal conditions, and formed into a green compact.
In a mixed gas atmosphere of r or Ar and inert gas, temperature:
Hold at 1880-1830°C for 10-40 minutes, sinter at high temperature for a short period of time, and then continuously or intermittently sinter at 100-2000 atm A or a mixed gas atmosphere of Ar and inert gas. Medium, temperature 71300-1450℃ 2~
A method for producing Ag2O3-based ceramics by subjecting Ag2O3 crystal grain elongation heat treatment under the conditions of holding for 10 hours, and A I 20 a and the above metal oxide (however, Cr 20
(excluding 3): 5 to 10%, and the above M-C-N-02 to 40% as a hard dispersed phase forming component, and also in the crystal grains of A12o3 (1,3 blood). The above M-C-N-0 with the following grain sizes is present as a hard dispersed phase forming component at a ratio of 01 to 30% (however, the total of the above M-C-N-0 at the grain boundaries and within the grains) f
fi: 50% by weight or less).

つぎに、この発明のセラミックスおよびその製造法にお
いて、製造条件並びに成分組成を上記の通りに限定した
理由を説明する。
Next, the reason for limiting the manufacturing conditions and component compositions as described above in the ceramics and the manufacturing method thereof of the present invention will be explained.

A、製造条件 (a)Ag203粉末の平均粒径 その平均粒径が0.8tEOを越えて大きくなると、セ
ラミックスにおけるAl2O3結晶粒の平均粒径を0.
9−以下に抑制することが困難になり、A 1’ 20
 s結晶粒が0.9tlnを越えたセラミックスは強度
低下が著しくなることから、その平均粒径を0.f3u
Ia以下と定めた。
A. Manufacturing conditions (a) Average grain size of Ag203 powder When the average grain size becomes larger than 0.8tEO, the average grain size of Al2O3 crystal grains in ceramics is reduced to 0.8tEO.
It becomes difficult to suppress it to 9- or less, and A 1' 20
Ceramics with s-crystal grains exceeding 0.9 tln have a significant decrease in strength, so the average grain size is set to 0.9 tln. f3u
It was set as Ia or below.

(b)M−C−N・0粉末の配合割合 M−C−N−0には、Ag2O3結晶粒界に硬質分散相
として分布してセラミックスの耐摩耗性を向上させ、か
つA I 20 s結晶粒内にも分布してセラミックス
の強度と靭性を向上させる作用があるが、その配合割合
が2.1%未満ではセラミックスにおける含有割合も2
.1%未満になって前記作用に所望の効果が得られず、
一方その配合割合が50%を越えると焼結性が低下し、
セラミックスにおける含有割合も50%を越えて高くな
り、相対的にAN)、、03の含有割合が低くなって、
A I! 20 aによってもたらされる耐熱性および
耐酸化性が低下するようになることから、配合割合を2
.1〜50%と定めた。この場合、粉末の平均粒径が1
.5−を越えると、セラミックスにおける平均粒径も1
.5−を越えて粗くなり、強度低下の原因となることか
ら、その平均粒径を1.5−以下にしなければならない
。また、Ag2O3結晶粒成長熱処理時にA i) 2
0 s結晶粒内にM−C−N・Oを取込み、分布させ易
くするには、その粒径を0.3−以下にしなければなら
ず、さらにこの場合0.3−以下の粒径のものをM−C
−N−0粉末に占める割合で10%以上にすることによ
り、M・C−N−0のA I! 20 a結晶粒成長時
における結晶粒内への取込みを活発にし、その割合をセ
ラミックス全体に占める割合で0.1〜30%とするこ
とによりセラミックスの強度と靭性の著しい向上がはか
れるものである。
(b) Blending ratio of M-C-N・0 powder M-C-N-0 has a hard dispersion phase distributed in Ag2O3 grain boundaries to improve the wear resistance of ceramics, and It also distributes within the crystal grains and has the effect of improving the strength and toughness of ceramics, but if the blending ratio is less than 2.1%, the content ratio in ceramics will also be 2.
.. If it is less than 1%, the desired effect cannot be obtained from the above action,
On the other hand, when the blending ratio exceeds 50%, sinterability decreases,
The content rate in ceramics has also increased to more than 50%, and the content rate of AN),,03 has become relatively low.
AI! Since the heat resistance and oxidation resistance brought about by 20 a decrease, the blending ratio was changed to 2.
.. It was set at 1 to 50%. In this case, the average particle size of the powder is 1
.. When it exceeds 5-, the average particle size in ceramics also decreases to 1.
.. The average particle size must be 1.5 or less, as exceeding 5-5-100 mm will result in coarseness and a decrease in strength. In addition, during Ag2O3 grain growth heat treatment, A i) 2
In order to easily incorporate and distribute M-C-N O into the 0s crystal grains, the grain size must be 0.3- or less, and in this case, the grain size of 0.3- or less must be M-C things
- By making the proportion of -N-0 powder 10% or more, the AI! 20a By activating the incorporation into the crystal grains during crystal grain growth and controlling the ratio to 0.1 to 30% of the total ceramic, the strength and toughness of the ceramic can be significantly improved.

(c)  金属酸化物粉末の配合割合 金属酸化物には、高温短時間焼結時にその一部がAg2
O3と化合物を形成して焼結性を向上させ、もってセラ
ミックスの強度を向上させるほか、残りが、Al2O3
に固溶してA 1) 20 g結晶粒成長熱処理時に0
.3Ltn以下の微細なM−C−N・0を結晶粒内に取
込みながらAf1203が粒成長するのを促進させる作
用があるが、その配合割合が1%未満ては前記作用に所
望の効果が得られず、一方その配合割合が12%を越え
ると、セラミックス中に金属酸化物の形で残留するよう
になって、特に高温での硬さおよび強度が低下するよう
になることから、その配合割合を1〜12%と定めた(
この当然の結果としてセラミックスにおける含有割合も
1〜12%となる)。また、その平均粒径がILmを越
えると、A i’ 20 aへの固溶および化合物形成
が困難になり、粒界に金属酸化物の状態で残留するよう
になって、セラミックスの高温での強度および硬さ低下
の原因となることから、その平均粒径を1−以下に定め
た。
(c) Mixing ratio of metal oxide powder During high-temperature, short-time sintering, part of the metal oxide becomes Ag2.
In addition to forming a compound with O3 to improve sinterability and thereby improving the strength of ceramics, the remainder is Al2O3.
A solid solution in A1) 0 during heat treatment for 20g grain growth
.. It has the effect of promoting grain growth of Af1203 while incorporating fine M-C-N・0 of 3Ltn or less into the crystal grains, but if the blending ratio is less than 1%, the desired effect is not obtained. On the other hand, if the blending ratio exceeds 12%, it will remain in the ceramic in the form of metal oxides and the hardness and strength, especially at high temperatures, will decrease. was set at 1-12% (
As a natural result of this, the content ratio in ceramics is also 1 to 12%). In addition, when the average grain size exceeds ILm, it becomes difficult to form a solid solution in A i' 20 a and to form a compound, and the metal oxide remains at the grain boundary, which makes it difficult for ceramics to work at high temperatures. Since this causes a decrease in strength and hardness, the average particle size is set to 1- or less.

(d)  高温短時間焼結条件 その雰囲気圧力が0.8気圧未満でも、また温度および
保持時間がそれぞれ1000℃未満および10分未満て
も満足な焼結を行なうことができず、この結果金属酸化
物のA I) 20 sへの固溶および化合物形成によ
る緻密化が不十分となり、一方その雰囲気圧力が5気圧
を越えると、焼結時に発生したガスが内在するようにな
って、緻密な焼結体を得ることができず、また温度が工
830℃を越えると原料粉末に分解が起るようになり、
この分解により発生したガスにより焼結性が低下するよ
うになり、さらに保持時間が40分を越えると、特にM
−C・N−0のうちの微細な0.3tlIo以下の粒径
に粒成長が起り、後工程でのAg2O3結晶粒内への取
込みが十分に行なわれなくなることから、その条件を、
雰囲気圧カニ0,8〜5気圧、温度: 1680〜18
30℃、保持時間710〜40分と定めた。
(d) High-temperature, short-time sintering conditions Satisfactory sintering cannot be achieved even if the atmospheric pressure is less than 0.8 atm, or if the temperature and holding time are less than 1000°C and less than 10 minutes, respectively. The densification due to the solid solution of the oxide and the formation of compounds becomes insufficient, and on the other hand, if the atmospheric pressure exceeds 5 atm, the gas generated during sintering becomes internal and the densification becomes insufficient. It was not possible to obtain a sintered body, and when the temperature exceeded 830°C, the raw material powder began to decompose.
The gas generated by this decomposition reduces sinterability, and if the holding time exceeds 40 minutes, especially M
- Grain growth occurs in the fine grain size of -C/N-0 of 0.3 tlIo or less, and the incorporation into Ag2O3 crystal grains in the subsequent process is not carried out sufficiently, so the conditions are as follows:
Atmospheric pressure: 0.8 to 5 atm, temperature: 1680 to 18
The temperature was set at 30° C. and the holding time was set at 710 to 40 minutes.

(e)Ag203の結晶粒成長熱処理 この熱処理は、セラミックス中のボアを減少させて、こ
れを真密度に近いものとすると共に、A、i’ 203
結晶粒の成長をはかり、同時にAg2O3結晶粒界に存
在するM−C−N−0のうちの粒径がOJ!In以下の
微細なM−C−N・0を取込んで、これを結晶粒内に分
布せしめ、もってセラミックスの強度と靭性を向上させ
るために行なわれるが、その雰囲気圧力が100気圧未
満ではボアの除去が不十分であり、また温度が1300
℃未満ではA1120 g結晶粒の成長がきわめて遅く
、実用的でなく、さらに保持時間が2時間未満ではA 
ji’ 203結晶粒内に分布するM−C−N・0の割
合をセラミックス全体に占める割合で0.5%以上とす
ることができず、一方2000気圧を越えた雰囲気圧力
は技術的実用的に無意味であり、また1450℃を越え
た温度は、Ap203結晶粒の成長と同時に、M−C−
N・0も粒成長してしまい、Ag2O3結晶粒内に分布
するM・C−N−0の割合が著しく少なくなり、さらに
(0時間を越えた保持時間は技術的に無意味で、コスト
高の原因となることから、その条件を、雰囲気圧カニ1
00〜2000気圧、温度: 1300〜1450℃、
保持時間=2〜10時間と定めた。
(e) Grain growth heat treatment of Ag203 This heat treatment reduces the bore in the ceramic to bring it close to true density, and A,i'203
The growth of crystal grains is measured, and at the same time the grain size of M-C-N-0 existing at Ag2O3 grain boundaries is OJ! This is done to improve the strength and toughness of ceramics by taking in fine M-C-N.0 of In or less and distributing it within the crystal grains. Removal is insufficient and the temperature is 1300
If the holding time is less than 2 hours, the growth of A1120g crystal grains will be extremely slow, making it impractical.
ji' 203 It is impossible to make the proportion of M-C-N・0 distributed within the crystal grains more than 0.5% in the whole ceramic, and on the other hand, the atmospheric pressure exceeding 2000 atm is technically and practically impractical. Moreover, temperatures exceeding 1450°C cause the growth of Ap203 grains and M-C-
N・0 grains also grow, and the proportion of M・C−N−0 distributed within the Ag2O3 crystal grains becomes extremely small. The conditions should be changed to atmospheric pressure 1.
00~2000 atm, temperature: 1300~1450℃,
The holding time was set at 2 to 10 hours.

なお、この発明の方法において、0.3μs以下の微細
粒径を10%以上含有する平均粒径:1.5−以下のM
−C−N−0粉末は、平均粒径:0.7〜2−のM−C
−N−0粉末を直径=1〜31.aMのWCC超超硬合
金製ボール一緒にアトライターに装入し、10〜100
時間の粉砕を施すことにより調製される。
In addition, in the method of this invention, an average particle size of 1.5- or less containing 10% or more of fine particles with a diameter of 0.3 μs or less is used.
-C-N-0 powder has an average particle size of 0.7 to 2-M-C
-N-0 powder with a diameter of 1 to 31. Insert aM's WCC cemented carbide balls together into the attritor, 10 to 100
Prepared by subjecting to time grinding.

B、成分組成 (a)Ag203と金属酸化物の化合物この化合物は、
上記の通り高温短時間焼結時に形成され、焼結性を向上
させてセラミックスを緻密化し、靭性を向上させる作用
をもつが、その含有量が0,5%未満では前記作用に所
望の効果が得られず、一方その含有量が10%を越える
と硬さが低下し、耐摩耗性が劣化するようになることか
ら、その含有量を0.5〜10%と定めた。
B. Component composition (a) Compound of Ag203 and metal oxide This compound is:
As mentioned above, it is formed during high-temperature, short-time sintering, and has the effect of improving sinterability, densifying ceramics, and improving toughness, but if the content is less than 0.5%, the desired effect will not be achieved. On the other hand, if the content exceeds 10%, the hardness decreases and the wear resistance deteriorates, so the content was set at 0.5 to 10%.

(b)  結晶粒界のM−C−N・0 これらの成分には、セラミックスの耐摩耗性を向上させ
る作用があるが、その含有量か2%未満では所望の耐摩
耗性向上効果が得られず、一方その含有量が40%を越
えると、セラミックスの強度が低下するようになること
から、その含有量を2〜40%と定めた。
(b) M-C-N・0 at grain boundaries These components have the effect of improving the wear resistance of ceramics, but if their content is less than 2%, the desired effect of improving wear resistance cannot be obtained. On the other hand, if the content exceeds 40%, the strength of the ceramic will decrease, so the content was set at 2 to 40%.

(c)  結晶粒内のM−C−N−0 これらの成分には、上記の通りセラミックスの靭性と強
度を飛躍的に向上させる作用があるが、その含有量が0
.1%未満では前記作用に所望の効果が得られず、その
含有量が30%を越えると靭性が低下するようになるこ
とから、その含有量を0.1〜30%と定めた。ただし
、この場合上記の通り結晶粒界および結晶粒内のM−C
−N・0は合計で50%を越えてはならない。
(c) M-C-N-0 in the crystal grains These components have the effect of dramatically improving the toughness and strength of ceramics as described above, but if their content is 0.
.. If the content is less than 1%, the desired effect cannot be obtained, and if the content exceeds 30%, the toughness will decrease, so the content was set at 0.1 to 30%. However, in this case, as mentioned above, M-C at the grain boundaries and within the grains
-N.0 must not exceed 50% in total.

〔実 施 例〕〔Example〕

つぎに、この発明のセラミックスおよびその製造法を実
施例により具体的に説明する。
Next, the ceramics of the present invention and the method for producing the same will be specifically explained using examples.

原料粉末として、それぞれ第1表に示される各種のAp
203粉末、M−C−N−0粉末、および金属酸化物粉
末を用い、これら原料粉末を同じく第1表に示される配
合組成に配合し、ボールミルで72時時間式混合し、乾
燥した後、平面:30關X30mm、厚さ:10mmの
寸法をもった圧粉体、並びに直径: 120 mmX厚
さ:60關の寸法をもった圧粉体に11on/ c−の
圧力にてブレス成形し、ついでこれらの圧粉体に同じく
第1表に示される条件で高温短時間焼結およびAp20
3結晶粒成長熱処理を施すことにより本発明法1〜15
を実施し、本発明セラミックス1〜15をそれぞれ製造
した。
Various Aps shown in Table 1 were used as raw material powders.
Using 203 powder, M-C-N-0 powder, and metal oxide powder, these raw material powders were blended into the composition shown in Table 1, mixed for 72 hours in a ball mill, and dried. A green compact with dimensions of 30 mm x 30 mm (plane) and 10 mm (thickness) and a compact of 120 mm (diameter) x 60 mm (thickness) were press-molded at a pressure of 11 on/c-. These compacts were then subjected to high-temperature short-time sintering and Ap20 under the same conditions shown in Table 1.
3. Methods 1 to 15 of the present invention by performing grain growth heat treatment
Ceramics 1 to 15 of the present invention were produced respectively.

また、比較の目的で、第1表に示される原料粉末を用い
、同じく第1表に示される配合組成に配合し、さらに上
記の高温短時間焼結およびA 11203結晶粒成長熱
処理に代って、同じく第1表に示される条件でホットプ
レスを行なう以外は同一の条件て従来法1〜5を実施し
、従来セラミックス1〜5をそれぞれ製造した。
In addition, for the purpose of comparison, the raw material powders shown in Table 1 were blended to the composition shown in Table 1, and further, instead of the above-mentioned high-temperature short-time sintering and A 11203 grain growth heat treatment, Conventional methods 1 to 5 were carried out under the same conditions except that hot pressing was carried out under the conditions shown in Table 1 to produce conventional ceramics 1 to 5, respectively.

つぎに、この結果得られた各種のセラミックスについて
、成分組成、理論密度比、ロックウェル硬さ(Aスケー
ル)、抗折力、およびインデンテーション法(1M法)
による破壊靭性値を測定した。
Next, for the various ceramics obtained as a result, the component composition, theoretical density ratio, Rockwell hardness (A scale), transverse rupture strength, and indentation method (1M method)
The fracture toughness value was measured.

また、上記の直径:120mmx厚さ: [i0a++
*の円板状セラミックスの中央部に、放電加工により一
辺長が30+usのL字状貫通孔をあけ、これをダイス
として用い、 被加工材:純AII(加熱温度:480’C)、押出し
速度: 20rn/gin s の条件でAllの温間押出し加工を行ない、ダイスに割
れが発生し、使用寿命に至るまでの押出し加工時間を測
定した。これらの結果を第2表に示した。
In addition, the above diameter: 120mm x thickness: [i0a++
An L-shaped through hole with a side length of 30+us was made in the center of the circular ceramic disc marked * by electric discharge machining, and this was used as a die. Workpiece material: pure AII (heating temperature: 480'C), extrusion speed : All was warm extruded under the conditions of 20 rn/gin s, and the extrusion time from the time when cracks occurred in the die to the end of its service life was measured. These results are shown in Table 2.

〔発明の効果〕〔Effect of the invention〕

第1表および第2表に示される結果から、本発明法ユ〜
15で製造された本発明セラミックス1〜15は、いず
れも99%以上の理論密度比をもち、緻密で、マイクロ
ポアの形成もきわめて少なく、従来法1〜5で製造され
た従来セラミックス1〜5に比して一段とすぐれた強度
と靭性を有し、かつ高硬度をも合せもつので、これらの
特性か要求される苛酷な条件下での押出し加工にダイス
として用いた場合にすぐれた耐欠損性を示し、長期に亘
ってすぐれた性能を発揮することが明らかである。
From the results shown in Tables 1 and 2, it is clear that the method of the present invention
The ceramics 1 to 15 of the present invention manufactured by the conventional methods 1 to 15 all have a theoretical density ratio of 99% or more, are dense, and have extremely few micropores, and are superior to the conventional ceramics 1 to 5 manufactured by the conventional methods 1 to 5. It has superior strength and toughness, as well as high hardness, so these properties provide excellent fracture resistance when used as a die for extrusion processing under harsh conditions. It is clear that it exhibits excellent performance over a long period of time.

上述のように、この発明の方法によれば、高強度および
高靭性を有し、さらに耐摩耗性および電気伝導性にもす
ぐれたAρ203基セラミックスを製造することかでき
、しかもこの結果得られたこの発明のA f) 20 
a基セラミックスは上記の通りのすぐれた特性を有する
ので、ダイスの製造に用いた場合は勿論のこと、その他
の産業技術分野の高速化および高性能化、さらに省力化
に寄与するところ大であるなどの工業上有用な効果かも
たらされるのである。
As described above, according to the method of the present invention, it is possible to produce Aρ203-based ceramics that have high strength and toughness, and also have excellent wear resistance and electrical conductivity. A f) of this invention 20
Since a-based ceramics have the excellent properties described above, they can of course be used in the manufacture of dies, but can also greatly contribute to higher speeds, higher performance, and labor savings in other industrial technology fields. Industrially useful effects such as these are brought about.

Claims (1)

【特許請求の範囲】 (1)Y,Mg,Cr,Ni,Co,および希土類元素
の酸化物のうちの1種または2種以上からなる金属酸化
物が固溶した酸化アルミニウムの結晶粒界に、 酸化アルミニウムと酸化クロムを除く上記金属酸化物の
化合物:0.5〜10重量%と、 硬質分散相形成成分としてTi,Zr,およびHfの炭
化物、窒化物、炭窒化物、炭酸化物、窒酸化物、および
炭窒酸化物のうちの1種または2種以上からなる金属炭
・窒・酸化物:2〜40重量%、 が存在し、さらに上記酸化アルミニウムの結晶粒内にも
0.3μm以下の微細粒径の上記金属炭・窒・酸化物が
0.1〜30重量%の割合で硬質分散相形成成分として
存在すること(ただし結晶粒界および結晶粒内の上記金
属炭・窒・酸化物の合計量は50重量%以下)、 を特徴とする高靭性および高強度を有する酸化アルミニ
ウム基セラミックス。 (2)原料粉末として、平均粒径:0.6μm以下の酸
化アルミニウム粉末、同1μm以下のY,Mg,Cr,
Ni,Co,および希土類元素の酸化物のうちの1種ま
たは2種以上からなる金属酸化物粉末、並びに平均粒径
:1.5μm以下にして、0.3μm以下の粒径が10
重量%以上含有の、Ti,Zr,およびHfの炭化物、
窒化物、炭窒化物、炭酸化物、窒酸化物、および炭窒酸
化物のうちの1種または2種以上からなる金属炭・窒・
酸化物粉末を用意し、これら原料粉末を、重量%で、 金属酸化物粉末:1〜12%、 金属炭・窒・酸化物粉末:2.1〜50%、酸化アルミ
ニウム粉末:残り、 からなる配合組成に配合し、通常の条件で、混合し、圧
粉体に成形した後、この圧粉体を、 0.8〜5気圧のArまたはArと不活性ガスの混合ガ
ス雰囲気中、1680〜1830℃に10〜40分間保
持、 の条件で高温短時間焼結し、引続いて連続的あるいは断
続的に、 100〜2000気圧のArまたはArと不活性ガスの
混合ガス雰囲気中、温度:1300〜1450℃に2〜
10時間保持、 の条件で酸化アルミニウムの結晶粒成長熱処理を施すこ
と、 を特徴とする高靭性および高強度を有する酸化アルミニ
ウム基セラミックスの製造法。
[Claims] (1) At the grain boundaries of aluminum oxide in which a metal oxide consisting of one or more of oxides of Y, Mg, Cr, Ni, Co, and rare earth elements is dissolved. , Compounds of the above metal oxides excluding aluminum oxide and chromium oxide: 0.5 to 10% by weight, and carbides, nitrides, carbonitrides, carbonates, and nitrides of Ti, Zr, and Hf as hard dispersed phase forming components. 2 to 40% by weight of metal carbon/nitrogen/oxide consisting of one or more of oxides and carbonitride oxides, and furthermore, 0.3 μm in the crystal grains of the aluminum oxide. The above-mentioned metal carbon/nitrogen/oxides with the following fine grain sizes must be present as hard dispersed phase forming components at a ratio of 0.1 to 30% by weight (however, the above-mentioned metal carbon/nitrogen/oxides at the grain boundaries and within the grains) (The total amount of oxides is 50% by weight or less). An aluminum oxide-based ceramic having high toughness and strength. (2) As raw material powder, aluminum oxide powder with an average particle size of 0.6 μm or less, Y, Mg, Cr, with an average particle size of 1 μm or less,
Metal oxide powder consisting of one or more of oxides of Ni, Co, and rare earth elements, and an average particle size of 1.5 μm or less, with a particle size of 0.3 μm or less being 10
Carbides of Ti, Zr, and Hf containing at least % by weight,
Metallic carbon/nitrogen/carbonitride consisting of one or more of nitrides, carbonitrides, carbonates, nitrides, and carbonitrides.
Oxide powder is prepared, and these raw material powders are composed of, in weight percent, metal oxide powder: 1 to 12%, metal carbon/nitrogen/oxide powder: 2.1 to 50%, and aluminum oxide powder: the remainder. After mixing and forming into a powder compact under normal conditions, the compact is heated to 1680 to 1000 ml in an atmosphere of Ar or a mixed gas of Ar and inert gas at 0.8 to 5 atm. Hold at 1830°C for 10-40 minutes, sinter at high temperature for a short time under the following conditions, then continuously or intermittently sinter in Ar or a mixed gas atmosphere of Ar and inert gas at 100-2000 atm, temperature: 1300°C. ~1450℃2~
A method for producing an aluminum oxide-based ceramic having high toughness and high strength, comprising: holding the aluminum oxide for 10 hours and subjecting the aluminum oxide to crystal grain growth heat treatment under the following conditions.
JP2090783A 1990-02-23 1990-04-05 Aluminum oxide based ceramics with high toughness and high strength Expired - Lifetime JP2805969B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2090783A JP2805969B2 (en) 1990-04-05 1990-04-05 Aluminum oxide based ceramics with high toughness and high strength
US07/658,914 US5188908A (en) 1990-02-23 1991-02-22 Al2 O3 Based ceramics
EP91102673A EP0443624B1 (en) 1990-02-23 1991-02-23 Alumina based ceramics
DE69104862T DE69104862T2 (en) 1990-02-23 1991-02-23 Ceramic material based on alumina.
US07/932,195 US5275981A (en) 1990-02-23 1992-08-20 Al2 O3 based ceramic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2090783A JP2805969B2 (en) 1990-04-05 1990-04-05 Aluminum oxide based ceramics with high toughness and high strength

Publications (2)

Publication Number Publication Date
JPH03290356A true JPH03290356A (en) 1991-12-20
JP2805969B2 JP2805969B2 (en) 1998-09-30

Family

ID=14008198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2090783A Expired - Lifetime JP2805969B2 (en) 1990-02-23 1990-04-05 Aluminum oxide based ceramics with high toughness and high strength

Country Status (1)

Country Link
JP (1) JP2805969B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140048048A (en) * 2012-10-15 2014-04-23 니혼텅스텐 가부시키가이샤 Electrostatic chuck dielectric layer and electrostatic chuck
WO2014061358A1 (en) * 2012-10-15 2014-04-24 日本タングステン株式会社 Ceramic material and abrasion resistant member using same
WO2019065372A1 (en) 2017-09-27 2019-04-04 日本特殊陶業株式会社 Ceramic sintered body, insert, cutting tool, and friction stir welding tool

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61174165A (en) * 1985-01-25 1986-08-05 株式会社 リケン Alumina-silicon carbide heat-resistant composite sintered body and manufacture
JPS6259567A (en) * 1985-09-06 1987-03-16 日本タングステン株式会社 Ceramic material excellent in abrasion resistance
JPH01119558A (en) * 1987-10-30 1989-05-11 Kyocera Corp Alumina-based sintered compact for cutting tool and its production

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61174165A (en) * 1985-01-25 1986-08-05 株式会社 リケン Alumina-silicon carbide heat-resistant composite sintered body and manufacture
JPS6259567A (en) * 1985-09-06 1987-03-16 日本タングステン株式会社 Ceramic material excellent in abrasion resistance
JPH01119558A (en) * 1987-10-30 1989-05-11 Kyocera Corp Alumina-based sintered compact for cutting tool and its production

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140048048A (en) * 2012-10-15 2014-04-23 니혼텅스텐 가부시키가이샤 Electrostatic chuck dielectric layer and electrostatic chuck
WO2014061358A1 (en) * 2012-10-15 2014-04-24 日本タングステン株式会社 Ceramic material and abrasion resistant member using same
JP2014082277A (en) * 2012-10-15 2014-05-08 Nippon Tungsten Co Ltd Electrostatic chuck dielectric layer and electrostatic chuck
WO2019065372A1 (en) 2017-09-27 2019-04-04 日本特殊陶業株式会社 Ceramic sintered body, insert, cutting tool, and friction stir welding tool
US11299431B2 (en) 2017-09-27 2022-04-12 Ngk Spark Plug Co., Ltd. Ceramic sintered body, insert, cutting tool, and friction stir welding tool

Also Published As

Publication number Publication date
JP2805969B2 (en) 1998-09-30

Similar Documents

Publication Publication Date Title
JP3476507B2 (en) Method for producing cubic boron nitride-containing sintered body
JPS6159391B2 (en)
JPH03290356A (en) Aluminum oxide based ceramics having high toughness and strength and production thereof
JPS644988B2 (en)
JPS5918157A (en) Aluminum oxide ceramic for cutting tool
JPS62193731A (en) Manufacture of cutting tool made of cermet and having high wear-resistance
JP3359481B2 (en) Cermet for cutting tools
JPS644989B2 (en)
JPS6059195B2 (en) Manufacturing method of hard sintered material with excellent wear resistance and toughness
JPH04294907A (en) Hard layer coated tungsten carbide group sintered hard alloy-made cutting tool
JP2910293B2 (en) Manufacturing method of tungsten carbide based cemented carbide cutting tool coated with hard layer
JPH11181540A (en) Hyperfine-grained cemented carbide
JP2002292507A (en) Cutting tool made of cermet and its manufacturing method
JPS6245291B2 (en)
JPH0513762B2 (en)
JPH0478584B2 (en)
JP3366696B2 (en) Manufacturing method of high strength cermet
JPH0122224B2 (en)
JP2805957B2 (en) Aluminum oxide based ceramic cutting tool with high strength and high toughness
JPS599140A (en) Production of sintered material for cutting tool having excellent high-temperature characteristic
JPS6232151B2 (en)
JPH025811B2 (en)
JPH0122223B2 (en)
JPS641430B2 (en)
JPS6253474B2 (en)