JPS6253474B2 - - Google Patents
Info
- Publication number
- JPS6253474B2 JPS6253474B2 JP58068375A JP6837583A JPS6253474B2 JP S6253474 B2 JPS6253474 B2 JP S6253474B2 JP 58068375 A JP58068375 A JP 58068375A JP 6837583 A JP6837583 A JP 6837583A JP S6253474 B2 JPS6253474 B2 JP S6253474B2
- Authority
- JP
- Japan
- Prior art keywords
- solid solution
- composite carbonitride
- carbonitride solid
- powder
- ceramics
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000002131 composite material Substances 0.000 claims description 58
- 239000006104 solid solution Substances 0.000 claims description 58
- 239000000919 ceramic Substances 0.000 claims description 50
- 238000005520 cutting process Methods 0.000 claims description 45
- 239000000843 powder Substances 0.000 claims description 35
- 229910052721 tungsten Inorganic materials 0.000 claims description 26
- 238000005245 sintering Methods 0.000 claims description 13
- 238000004519 manufacturing process Methods 0.000 claims description 10
- 239000000203 mixture Substances 0.000 claims description 9
- 229910052735 hafnium Inorganic materials 0.000 claims description 8
- 229910052758 niobium Inorganic materials 0.000 claims description 8
- 229910052715 tantalum Inorganic materials 0.000 claims description 8
- 229910052720 vanadium Inorganic materials 0.000 claims description 8
- 229910052804 chromium Inorganic materials 0.000 claims description 6
- 229910052750 molybdenum Inorganic materials 0.000 claims description 6
- 229910052726 zirconium Inorganic materials 0.000 claims description 6
- 238000002156 mixing Methods 0.000 claims description 5
- 238000006467 substitution reaction Methods 0.000 claims description 5
- 239000011812 mixed powder Substances 0.000 claims description 3
- 239000012535 impurity Substances 0.000 claims description 2
- 230000001590 oxidative effect Effects 0.000 claims 1
- 239000000463 material Substances 0.000 description 14
- 230000000052 comparative effect Effects 0.000 description 8
- 229910001018 Cast iron Inorganic materials 0.000 description 5
- 229910000831 Steel Inorganic materials 0.000 description 5
- 229910052799 carbon Inorganic materials 0.000 description 5
- 239000010959 steel Substances 0.000 description 5
- 238000007731 hot pressing Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- 238000005299 abrasion Methods 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
Landscapes
- Cutting Tools, Boring Holders, And Turrets (AREA)
- Ceramic Products (AREA)
Description
この発明は、高硬度および高靭性を有し、特に
これらの特性が要求される鋼や鋳鉄などの高速切
削などに切削工具として用いた場合にすぐれた切
削性能を発揮する複合炭窒化物固溶体系セラミツ
クス、およびその製造法に関するものである。
一般に、切削工具の分野では、近年生産性向上
のために速い切削速度での切削加工が要望される
傾向にあるが、例えば炭化タングステン基超硬合
金や、炭化チタン基サーメツトなどの硬質焼結材
料は、すぐれた靭性をもつものの、耐摩耗性が十
分でないために、高速切削などの苛酷な条件下で
の使用に際しては、満足する切削寿命を示さない
ものである。
そこで、高硬度、すなわち十分な耐摩耗性を有
する酸化アルミニウムを主体としたセラミツクス
焼結材料を、上記の分野で使用する試みもなされ
ているが、これらの酸化物系セラミツクスは反対
に靭性に劣るものであるために、その用途が限ら
れてしまうものである。
また、最近、切削工具用材料として、窒化けい
素基セラミツクス焼結材料が注目されている。し
かし、この材料の場合、窒化けい素が共有結合性
の強い化合物であることから、焼結が難しく、こ
のため、その製造に際してはホツトプレス法を用
いることが多い。しかし、ホツトプレス法を用い
た場合、緻密な焼結材料が得られるものの、複雑
な形状の焼結材料は製造不可能であり、かつ生産
性の低いものとなる。
さらに、窒化けい素よりも焼結性が高く、かつ
耐熱衝撃性および耐酸化性などにもすぐれた、β
−Si3N4格子のSiの一部をAlで、Nの一部をOで
置換した化合物、すなわち組成式:
Si6−zAlzOzN8−z(ただしO<z≦4.3)、で
表わされるβ−サイアロンを主成分とするサイア
ロン基セラミツクス焼結材料を、切削工具として
用いる試みもなされているが、このサイアロン基
セラミツクス焼結材料を鋼および鋳鉄などの高速
切削に用いると、構成成分のSiと被削材中のFe
との反応性が高いために、切刃における逃げ面摩
耗およびすくい面摩耗とも著しく発達してしま
い、十分満足する耐摩耗性(切削寿命)を示さな
いのが現状である。
しかして、本発明者等は、上述のような観点か
ら、ホツトプレス法などによらずに、通常の焼結
条件で、高強度と高靭性を兼ね備え、特にこれら
の特性が要求される鋼や鋳鉄などの高速切削など
に切削工具として用いた場合にすぐれた切削性能
を発揮する材料を製造すべく研究を行つた結果、
TiとWの複合炭窒化物固溶体{以下、(Ti、
W)CNで示す}粉末、
Tiと、Wと、Tiの10〜40原子%の範囲で置
換含有するZr、Hf、V、Nb、およびTaのうち
の1種または2種以上との複合炭窒化物固溶体
{以下、(M1、Ti、W)CNで示す、したがつて
M1はTiの10〜40原子%の範囲で置換含有する
Zr、Hf、V、Nb、およびTaのうちの1種また
は2種以上を示す}粉末、
Tiと、Wと、Wの10〜30原子%の範囲で置
換含有するCrおよびMoのうちの1種または2
種との複合炭窒化物固溶体{以下、(Ti、M2、
W)CNで示す、したがつてM2はWの10〜30原
子%の範囲で置換含有するCrおよびMoのうち
の1種または2種を示す}粉末、
M1と、Tiと、M2と、Wとの複合炭窒化物固
溶体{以下、(M1、Ti、M2、W)CNで示す}
粉末、
以上〜のうちのいずれか1種からなる単一
相のTiとWを主成分とする複合炭窒化物固溶体
粉末に、MgおよびCaの酸化物(以下、MgOおよ
びCaOで示す)粉末のうちの1種または2種を
0.5〜10重量%配合してなる混合粉末よりプレス
成形した圧粉体を、非酸化性雰囲気中、1800〜
2500℃の範囲内の温度で焼結すると、焼結時に、
前記酸化物粉末の大半が分解し、この分解生成
O2と、前記複合炭窒化物固溶体粉末の表面部の
炭素Cが反応し、前記複合炭窒化物固溶体粉末の
表面部におけるCは減少するが、同時に前記複合
炭窒化物固溶体粉末の内部から、これの構成成分
であるWとC成分とが優先的に表面部に拡散する
ようになり、この結果前記複合炭窒化物固溶体粉
末は、内部がWとC成分の拡散減少によりTiと
N成分に富み、一方表面部が内部から拡散したW
とC成分とによつて内部に比して相対的にWとC
成分に富んだ有芯2相構造組織をもつようにな
り、このような有芯2相構造組織を有する複合炭
窒化物固溶体のW成分に富んだ表面部によつて焼
結が著しく促進されるようになると共に、上記の
ように大半は焼結中に分解・反応してしまうが、
残存した0.01〜1重量%(以下%は重量%を示
す)の前記酸化物が前記複合炭窒化物固溶体の粒
成長を抑制することから、得られたセラミツクス
は、緻密で高強度をもつたものになり、さらに上
記のように複合炭窒化物固溶体が有芯2相構造組
織をもつようになることから、高硬度と高靭性、
すなわちすぐれた耐摩耗性と高抗折力をもつたも
のになるという知見を得たのである。
この発明は、上記知見にもとづいてなされたも
のであつて、
(1) MgOおよびCaOのうちの1種または2種:
0.01〜1%、
を含有し、残りが、
(Ti、W)CN、
(M1、Ti、W)CN、
(Ti、M2、W)CN、
(M1、Ti、M2、W)CN、
以上〜のうちのいずれか1種からなる
TiとWを主成分とする複合炭窒化物固溶体と
不可避不純物からなる組成を有し、かつ前記複
合炭窒化物固溶体が有芯2相構造組織を有する
切削工具用複合炭窒化物固溶体系セラミツク
ス。並びに、
(2) (Ti、W)CN粉末、
(M1、Ti、W)CN粉末、
(Ti、M2、W)CN粉末、
(M1、Ti、M2、W)CN粉末、
以上〜のうちのいずれか1種からなる単
一相のTiとWを主成分とする複合炭窒化物固
溶体粉末に、MgO粉末およびCaO粉末のうち
の1種または2種を0.5〜10%配合してなる混
合粉末よりプレス成形した圧粉体を、非酸化性
雰囲気中、1800〜2500℃の範囲内の温度で焼結
することによつて、上記(1)に示す組成および組
織を有する切削工具用複合炭窒化物固溶体系セ
ラミツクスを製造する方法。
に特徴を有するものである。
つぎに、この発明のセラミツクスおよびその製
造法において、MgOおよびCaOの配合量および
含有量、並びに焼結温度を上記の通りに限定した
理由を説明する。
(a) MgOおよびCaOの配合量および含有量
これらの成分は、上記のように焼結時に、そ
の大半が分解し、分解生成O2が複合炭窒化物
固溶体粉末と反応して有芯2相構造組織を形成
し、もつた焼結性を促進し、かつそのわずかな
量がセラミツクス中に残存して複合炭窒化物固
溶体相の粒成長を抑制し、もつてセラミツクス
を緻密化し、かつ強化する作用をもつが、その
配合量が0.5%未満では所望の焼結性改善効果
が得られないばかりでなく、セラミツクス中に
在存する量が0.01%未満となつてしまつて所望
の粒成長抑制効果が得られず、一方、その配合
量が10%を越えると、セラミツクス中の残存量
が1%を越えて高くなつてしまい、セラミツク
ス中に多量の巣が発生し、靭性および耐欠損性
の劣化が著しくなることから、その配合量を
0.5〜10%、含有量を0.01〜1%と定めた。
(b) 焼結温度
その温度が1800℃未満では、MgOおよび
CaOの分解が十分行なわれず、したがつて焼結
性の改善を期待することはできず、しかも
MgOおよびCaOの多くがセラミツクス中に残
存するようになることから、巣が発生しやすく
なり、この結果セラミツクスの靭性および耐欠
損性は低下するようになり、一方、その温度が
2500℃を越えると、複合炭窒化物固溶体が粒成
長してセラミツクスの靭性および耐欠損性が低
下するようになることから、その温度を1800〜
2500℃と定めた。
なお、この発明の複合炭窒化物固溶体、すな
わち(M1、Ti、W)CN、(Ti、M2、W)CN、
および(M1、Ti、M2、W)CNに関して、M1
は(Ti、W)・CNにおけるTiの一部を10〜40
原子%の範囲内で置換した形で含有するのが望
ましく、この場合M1がZrおよびHfであれば、
セラミツクスの耐摩耗性が一段と向上するよう
になり、またM1がV、Nb、およびTaであれ
ば、靭性および耐欠損性が一層向上し、さらに
M2は同じく(Ti、W)CNにおけるWの一部を
10〜30原子%の範囲内で置換した形で含有して
もよく、この場合は焼結性が一段と向上するよ
うになる。
つぎに、この発明のセラミツクスおよびその製
造法を実施例により具体的に説明する。
実施例
原料粉末として、それぞれ第1表に示される組
成式(括弧内数字は原子比を示す)をもち、かつ
いずれも平均粒径が1μmにして単一相の各種の
複合炭窒化物固溶体粉末、平均粒経:0.4μmの
MgO粉末、および同0.5μmのCaO粉末を用意
し、これら原料粉末を同じく第1表に示される配
合組成に配合し、ボールミルにて72時間湿式粉砕
混合し、乾燥した後、15Kg/mm2の圧力にて圧粉体
にプレス成形し、ついでこの圧粉体を同じく第1
表に示される条件にて焼結することによつて本発
明セラミツクス1〜26および比較セラミツクス1
〜5をそれぞれ製造した。
なお、比較セラミツクス1〜26は、いずれも配
合組成(最終成分組成)および焼結温度のうちの
いずれかの条件(第1表に※印を付したもの)
This invention provides a composite carbonitride solid solution system that has high hardness and toughness and exhibits excellent cutting performance when used as a cutting tool for high-speed cutting of steel, cast iron, etc., which particularly require these properties. This article relates to ceramics and their manufacturing methods. In general, in the field of cutting tools, there has been a trend in recent years to require cutting at high cutting speeds to improve productivity. Although it has excellent toughness, it does not have sufficient wear resistance, so it does not show a satisfactory cutting life when used under severe conditions such as high-speed cutting. Therefore, attempts have been made to use ceramic sintered materials mainly made of aluminum oxide, which have high hardness, that is, sufficient wear resistance, in the above fields, but these oxide-based ceramics, on the other hand, have poor toughness. Because it is a product, its uses are limited. Furthermore, silicon nitride-based ceramic sintered materials have recently attracted attention as materials for cutting tools. However, this material is difficult to sinter because silicon nitride is a compound with strong covalent bonds, and for this reason hot pressing is often used for its manufacture. However, when hot pressing is used, although a dense sintered material can be obtained, it is impossible to produce a sintered material with a complicated shape, and productivity is low. In addition, β
-Si 3 N 4 A compound in which part of the Si in the lattice is replaced with Al and part of the N is replaced with O, i.e. β expressed by the composition formula: Si 6 -zAlzOzN 8 -z (O<z≦4.3) - Attempts have been made to use sialon-based ceramic sintered materials containing sialon as a main component as cutting tools, but when this sialon-based ceramic sintered material is used for high-speed cutting of steel, cast iron, etc. Fe in work material
Due to the high reactivity with the cutting edge, both flank wear and rake face wear on the cutting edge develop significantly, and the current situation is that the wear resistance (cutting life) is not sufficiently satisfactory. Therefore, from the above-mentioned viewpoint, the present inventors have found that steel and cast iron, which have both high strength and high toughness, can be produced under normal sintering conditions without using the hot pressing method or the like, and which particularly require these characteristics. As a result of research to produce a material that exhibits excellent cutting performance when used as a cutting tool for high-speed cutting such as
W) Powder denoted by CN; Composite carbon of Ti, W, and one or more of Zr, Hf, V, Nb, and Ta substituted in a range of 10 to 40 atom % of Ti. Nitride solid solution {hereinafter referred to as (M 1 , Ti, W)CN, therefore
M 1 contains substituted Ti in the range of 10 to 40 atom%
Powder containing one or more of Zr, Hf, V, Nb, and Ta; Ti, W, and one of Cr and Mo containing W by substitution in the range of 10 to 30 atom %; species or two
Composite carbonitride solid solution with species {hereinafter, (Ti, M 2 ,
W) CN, therefore M 2 represents one or two of Cr and Mo substituted in the range of 10 to 30 atom % of W} powder, M 1 , Ti, M 2 and a composite carbonitride solid solution with W {hereinafter referred to as (M 1 , Ti, M 2 , W)CN}
Powder, a single-phase composite carbonitride solid solution powder consisting of any one of the above ~ mainly composed of Ti and W, and Mg and Ca oxide (hereinafter referred to as MgO and CaO) powder. One or two of these
A green compact press-molded from a mixed powder containing 0.5 to 10% by weight is heated to 1800 to
When sintering at a temperature within the range of 2500℃, during sintering,
Most of the oxide powder decomposes, and this decomposition product
O 2 and carbon C on the surface of the composite carbonitride solid solution powder react, and C on the surface of the composite carbonitride solid solution powder decreases, but at the same time, from inside the composite carbonitride solid solution powder, The W and C components, which are the constituent components of this, diffuse preferentially to the surface, and as a result, the interior of the composite carbonitride solid solution powder becomes Ti and N components due to the reduced diffusion of the W and C components. rich, while the surface part has W diffused from the inside.
and C component, W and C relatively compared to the inside.
The composite carbonitride solid solution has a cored two-phase structure rich in components, and sintering is significantly promoted by the surface portion rich in W components of the composite carbonitride solid solution having such a cored two-phase structure. However, as mentioned above, most of it decomposes and reacts during sintering.
Since the remaining 0.01 to 1% by weight (hereinafter % indicates weight%) of the oxide suppresses grain growth of the composite carbonitride solid solution, the obtained ceramic is dense and has high strength. Furthermore, as mentioned above, the composite carbonitride solid solution has a cored two-phase structure, resulting in high hardness, high toughness,
In other words, they found that it has excellent abrasion resistance and high transverse rupture strength. This invention was made based on the above findings, and includes: (1) one or two of MgO and CaO:
0.01 to 1%, and the rest is (Ti, W) CN, (M 1 , Ti, W) CN, (Ti, M 2 , W) CN, (M 1 , Ti, M 2 , W) CN, consisting of any one of the above
A composite carbonitride solid solution ceramic for a cutting tool, which has a composition consisting of a composite carbonitride solid solution containing Ti and W as main components and inevitable impurities, and wherein the composite carbonitride solid solution has a cored two-phase structure. and (2) (Ti, W) CN powder, (M 1 , Ti, W) CN powder, (Ti, M 2 , W) CN powder, (M 1 , Ti, M 2 , W) CN powder, and above. 0.5 to 10% of one or two of MgO powder and CaO powder is blended into a single-phase composite carbonitride solid solution powder mainly composed of Ti and W consisting of any one of ~. A cutting tool having the composition and structure shown in (1) above is produced by sintering a compact press-molded from a mixed powder made of A method for producing composite carbonitride solid solution ceramics for use in carbonitrides. It has the following characteristics. Next, the reason why the blending amount and content of MgO and CaO and the sintering temperature are limited as described above in the ceramics and the manufacturing method thereof of the present invention will be explained. (a) Blending amount and content of MgO and CaO Most of these components decompose during sintering as described above, and the decomposed O 2 reacts with the composite carbonitride solid solution powder to form a cored two-phase It forms a structural structure and promotes sinterability, and a small amount of it remains in the ceramics to suppress grain growth of the composite carbonitride solid solution phase, thereby densifying and strengthening the ceramics. However, if the amount is less than 0.5%, not only will the desired sinterability improvement effect not be obtained, but the amount present in the ceramic will be less than 0.01%, and the desired grain growth suppressing effect will not be achieved. On the other hand, if the blending amount exceeds 10%, the residual amount in the ceramic will exceed 1%, and a large number of cavities will occur in the ceramic, resulting in deterioration of toughness and fracture resistance. Since it becomes noticeable, its amount should be reduced.
The content was set at 0.5-10%, and the content was set at 0.01-1%. (b) Sintering temperature When the temperature is less than 1800℃, MgO and
CaO is not sufficiently decomposed, and therefore no improvement in sinterability can be expected.
Since most of MgO and CaO remain in the ceramic, cavities are more likely to occur, and as a result, the toughness and fracture resistance of the ceramic decrease.
If the temperature exceeds 2500℃, the composite carbonitride solid solution will grow grains and the toughness and fracture resistance of the ceramic will decrease.
The temperature was set at 2500℃. Note that the composite carbonitride solid solution of the present invention, that is, (M 1 , Ti, W) CN, (Ti, M 2 , W) CN,
and (M 1 , Ti, M 2 , W) CN, M 1
(Ti, W)・Part of Ti in CN is 10 to 40
It is desirable to contain it in a substituted form within the range of atomic %, and in this case, if M 1 is Zr and Hf,
The wear resistance of ceramics has been further improved, and if M 1 is V, Nb, and Ta, the toughness and fracture resistance are further improved, and
M 2 is also (Ti, W) a part of W in CN
It may be contained in a substituted form within the range of 10 to 30 atom %, and in this case, the sinterability is further improved. Next, the ceramics of the present invention and the method for producing the same will be specifically explained using examples. Examples As raw material powders, various single-phase composite carbonitride solid solution powders each having the compositional formula shown in Table 1 (the numbers in parentheses indicate the atomic ratio) and each having an average particle size of 1 μm were used. , average grain size: 0.4μm
MgO powder and 0.5 μm CaO powder were prepared, and these raw material powders were blended into the composition shown in Table 1, wet pulverized and mixed in a ball mill for 72 hours, and dried . It is press-formed into a green compact using pressure, and then this green compact is also passed through the first
By sintering under the conditions shown in the table, ceramics 1 to 26 of the present invention and comparative ceramics 1 were prepared.
-5 were produced, respectively. Comparative ceramics 1 to 26 are all under one of the conditions of blending composition (final component composition) and sintering temperature (those marked with * in Table 1).
【表】【table】
【表】【table】
【表】
がこの発明の範囲から外れた条件で製造されたも
のである。
ついで、この結果得られた本発明セラミツクス
1〜26および比較セラミツクス1〜5について、
MgOとCaOの含有量を測定すると共に、金属顕
微鏡による組織観察を行ない、さらに耐摩耗性を
評価する目的でビツカース硬さを、また靭性を評
価する目的で抗折力を測定し、さらにASTM規
格に則したボア発生状態を観察した。これらの結
果を第1表に合せて示した。
第1表に示される結果から、本発明セラミツク
ス1〜26は、いずれも高硬度および高靭性を有す
ると共に、緻密な有芯2相構造組織を有するのに
対して、比較セラミツクス1〜5に見られるよう
に、配合組成(成分組成)および焼結温度のうち
のいずれかでもこの発明の範囲を外れると、硬さ
および靭性の劣つたものになり、しかもボア発生
の多いものとなることが明らかである。なお、比
較セラミツクス2は、本発明セラミツクス1〜26
と同様に複合炭窒化物固溶体が有芯2相構造組織
をもつものであつたが、比較セラミツクス1、
3、4および5は、いずれも複合炭窒化物固溶体
が1相組織をもつものであつた。
また、上記本発明セラミツクス1〜26および比
較セラミツクス1〜5について、
チツプ形状:SNP432(ホーニング:0.2×25
゜)、
被削材:SNCM−8(硬さ:HB220)の丸棒、
切削速度:350m/min、
送り:0.2mm/rev.、
切込み:1.5mm、
切削時間:10min、
の条件での鋼連続高速切削試験、および
チツプ形状:SNP432(ホーニング:0.1×25
゜)、
被削材:FC25(硬さ:HB140)の角材、
切削速度:500m/min、
送り:0.2mm/刃、
切込み:2mm、
切削時間:10min、
の条件での鋳鉄高速フライス切削試験を行ない、
前者の切削試験では耐摩耗性を評価する目的で切
刃の逃げ面摩耗幅を測定し、また後者の切削試験
では靭性および耐欠損性を評価する目的で10個の
切刃について試験を行ない、欠損発生切刃数(欠
損切刃数/試験切刃数)をチエツクした。これら
の結果を第1表に示した。また、第1表には、比
較の目的で市販のAl2O3−TiCセラミツクスおよ
びSi3N4−Al2O3セラミツクスの同一条件による切
削試験結果も示した。
第1表に示される結果から、本発明セラミツク
ス1〜26は高硬度および高靭性を有するので、硬
さおよび靭性の劣る比較セラミツクス1〜5およ
び特に靭性の劣る市販セラミツクスに比して、き
わめてすぐれた耐摩耗性および耐欠損性を示すこ
とが明らかである。
上述のように、この発明の方法によれば、高硬
度および高靭性を有し、かつ緻密な組織を有する
複合炭窒化物固溶体系セラミツクスをホツトプレ
スなどの方法を用いることなく製造することがで
き、しかもこの結果の複合炭窒化物固溶体系セラ
ミツクスを鋼および鋳鉄などの高速切削などに切
削工具として用いた場合には著しく長期に亘つて
すぐれた切削性能を発揮するなど工業上有用な効
果が得られるのである。[Table] was manufactured under conditions outside the scope of this invention. Next, regarding the resulting ceramics of the present invention 1 to 26 and comparative ceramics 1 to 5,
In addition to measuring the content of MgO and CaO, we also observed the structure using a metallurgical microscope, and also measured the Bitkers hardness to evaluate wear resistance and the transverse rupture strength to evaluate toughness. We observed the state of bore generation in accordance with the above. These results are also shown in Table 1. From the results shown in Table 1, ceramics 1 to 26 of the present invention all have high hardness and toughness, as well as a dense cored two-phase structure, whereas comparative ceramics 1 to 5 do not. As can be seen, it is clear that if either the compounding composition (component composition) or the sintering temperature is out of the scope of the present invention, the hardness and toughness will be poor, and moreover, the occurrence of bores will increase. It is. Note that comparative ceramics 2 are ceramics 1 to 26 of the present invention.
Similarly, the composite carbonitride solid solution had a cored two-phase structure, but Comparative Ceramics 1,
In all of No. 3, No. 4, and No. 5, the composite carbonitride solid solution had a one-phase structure. In addition, regarding the above-mentioned ceramics 1 to 26 of the present invention and comparative ceramics 1 to 5, chip shape: SNP432 (honing: 0.2 × 25
), Work material: SNCM-8 (hardness: H B 220) round bar, Cutting speed: 350m/min, Feed: 0.2mm/rev., Depth of cut: 1.5mm, Cutting time: 10min, under the following conditions. Steel continuous high-speed cutting test, and chip shape: SNP432 (honing: 0.1×25
゜), Work material: FC25 (Hardness: H B 140) square material, Cutting speed: 500m/min, Feed: 0.2mm/tooth, Depth of cut: 2mm, Cutting time: 10min, High speed milling of cast iron under the following conditions. conduct a test,
In the former cutting test, the flank wear width of the cutting edge was measured for the purpose of evaluating wear resistance, and in the latter cutting test, 10 cutting edges were tested for the purpose of evaluating toughness and fracture resistance. The number of chipped cutting edges (number of chipped cutting edges/number of tested cutting edges) was checked. These results are shown in Table 1. Table 1 also shows cutting test results of commercially available Al 2 O 3 --TiC ceramics and Si 3 N 4 --Al 2 O 3 ceramics under the same conditions for comparison purposes. From the results shown in Table 1, ceramics 1 to 26 of the present invention have high hardness and toughness, and are therefore extremely superior to comparative ceramics 1 to 5, which are inferior in hardness and toughness, and commercially available ceramics, which are particularly inferior in toughness. It is clear that the material exhibits excellent wear resistance and chipping resistance. As described above, according to the method of the present invention, composite carbonitride solid solution ceramics having high hardness and high toughness and a dense structure can be produced without using a method such as hot pressing, Moreover, when the resulting composite carbonitride solid solution ceramics are used as a cutting tool for high-speed cutting of steel, cast iron, etc., industrially useful effects such as extremely long-term excellent cutting performance can be obtained. It is.
Claims (1)
種:0.01〜1重量%、 を含有し、残りがTiとWを主成分とする複合炭
窒化物固溶体と不可避不純物からなる組成を有
し、かつ前記複合炭窒化物固溶体が有芯2相構造
組織を有することを特徴とする切削工具用複合炭
窒化物固溶体系セラミツクス。 2 上記複合炭窒化物固溶体が、TiとWとの複
合炭窒化物固溶体からなることを特徴とする上記
特許請求の範囲第1項記載の切削工具用複合炭窒
化物固溶体系セラミツクス。 3 上記複合炭窒化物固溶体が、Tiと、Wと、
Tiの10〜40原子%の範囲で置換含有するZr、
Hf、V、Nb、およびTaのうちの1種または2種
以上との複合炭窒化物固溶体からなることを特徴
とする上記特許請求の範囲第1項記載の切削工具
用複合炭窒化物固溶体系セラミツクス。 4 上記複合炭窒化物固溶体が、Tiと、Wと、
Wの10〜30原子%の範囲で置換含有するCrおよ
びMoのうちの1種または2種との複合炭窒化物
固溶体からなることを特徴とする上記特許請求の
範囲第1項記載の切削工具用複合炭窒化物固溶体
系セラミツクス。 5 上記複合炭窒化物固溶体が、Tiと、Wと、
Tiの10〜40原子%の範囲で置換含有するZr、
Hf、V、Nb、およびTaのうち1種または2種以
上と、Wの10〜30原子%の範囲で置換含有する
CrおよびMoのうちの1種または2種との複合炭
窒化物固溶体からなることを特徴とする上記特許
請求の範囲第1項記載の切削工具用複合炭窒化物
固溶体系セラミツクス。 6 単一相のTiとWを主成分とする複合炭窒化
物固溶体粉末に、MgおよびCaの酸化物粉末のう
ちの1種または2種を0.5〜10重量%配合してな
る混合粉末よりプレス成形した圧粉体を、非酸化
性雰囲気中、1800〜2500℃の範囲内の温度で焼結
することを特徴とする切削工具用複合炭窒化物固
溶体系セラミツクスの製造法。 7 上記複合炭窒化物固溶体粉末が、単一相の
TiとWとの複合炭窒化物固溶体粉末からなるこ
とを特徴とする上記特許請求の範囲第6項記載の
切削工具用複合炭窒化物固溶体系セラミツクスの
製造法。 8 上記複合炭窒化物固溶体粉末が、単一相の
Tiと、Wと、Tiの10〜40原子%の範囲で置換含
有するZr、Hf、V、Nb、およびTaのうちの1種
または2種以上との複合炭窒化物固溶体粉末から
なることを特徴とする上記特許請求の範囲第6項
記載の切削工具用複合炭窒化物固溶体系セラミツ
クスの製造法。 9 上記複合炭窒化物固溶体粉末が、単一相の
Tiと、Wと、Wの10〜30原子%の範囲で置換含
有するCrおよびMoのうちの1種または2種との
複合炭窒化物固溶体粉末からなることを特徴とす
る上記特許請求の範囲第6項記載の切削工具用複
合炭窒化物固溶体系セラミツクスの製造法。 10 上記複合炭窒化物固溶体粉末が、単一相の
Tiと、Wと、Tiの10〜40原子%の範囲で置換含
有するZr、Hf、V、Nb、およびTaのうちの1種
または2種以上と、Wの10〜30原子%の範囲で置
換含有するCrおよびMoのうちの1種または2種
との複合炭窒化物固溶体粉末からなることを特徴
とする上記特許請求の範囲第6項記載の切削工具
用複合炭窒化物固溶体系セラミツクスの製造法。[Claims] 1. One or two of oxides of Mg and Ca.
Species: 0.01 to 1% by weight, and the remainder has a composition consisting of a composite carbonitride solid solution mainly composed of Ti and W and unavoidable impurities, and the composite carbonitride solid solution has a cored two-phase structure. Composite carbonitride solid solution ceramics for cutting tools characterized by having a microstructure. 2. The composite carbonitride solid solution ceramic for a cutting tool according to claim 1, wherein the composite carbonitride solid solution is composed of a composite carbonitride solid solution of Ti and W. 3 The composite carbonitride solid solution contains Ti, W,
Zr containing substitution in the range of 10 to 40 atom% of Ti,
The composite carbonitride solid solution system for a cutting tool according to claim 1, characterized in that it is made of a composite carbonitride solid solution with one or more of Hf, V, Nb, and Ta. Ceramics. 4 The composite carbonitride solid solution contains Ti, W,
The cutting tool according to claim 1, characterized in that it is made of a composite carbonitride solid solution with one or two of Cr and Mo containing 10 to 30 at % of W by substitution. Composite carbonitride solid solution ceramics. 5 The composite carbonitride solid solution contains Ti, W,
Zr containing substitution in the range of 10 to 40 atom% of Ti,
Contains one or more of Hf, V, Nb, and Ta as a substitute in the range of 10 to 30 atom% of W
The composite carbonitride solid solution ceramic for cutting tools according to claim 1, characterized in that it is made of a composite carbonitride solid solution with one or two of Cr and Mo. 6 Pressed from a mixed powder made by blending 0.5 to 10% by weight of one or two of Mg and Ca oxide powders to a single-phase composite carbonitride solid solution powder mainly composed of Ti and W. 1. A method for producing composite carbonitride solid solution ceramics for cutting tools, which comprises sintering a compacted compact at a temperature within the range of 1800 to 2500°C in a non-oxidizing atmosphere. 7 The above composite carbonitride solid solution powder is a single-phase
7. A method for producing a composite carbonitride solid solution ceramic for a cutting tool according to claim 6, characterized in that the composite carbonitride solid solution ceramic is made of a composite carbonitride solid solution powder of Ti and W. 8 The above composite carbonitride solid solution powder is a single-phase
It is composed of a composite carbonitride solid solution powder of Ti, W, and one or more of Zr, Hf, V, Nb, and Ta substituted in the range of 10 to 40 at% of Ti. A method for producing composite carbonitride solid solution ceramics for cutting tools as set forth in claim 6. 9 The composite carbonitride solid solution powder has a single phase.
The scope of the above-mentioned claims is characterized in that it consists of a composite carbonitride solid solution powder of Ti, W, and one or two of Cr and Mo containing 10 to 30 atom % of W by substitution. 7. A method for producing a composite carbonitride solid solution ceramic for cutting tools according to item 6. 10 The above composite carbonitride solid solution powder is a single-phase
Ti, W, and one or more of Zr, Hf, V, Nb, and Ta substituted in a range of 10 to 40 atom% of Ti, and one or more of Zr, Hf, V, Nb, and Ta in a range of 10 to 30 atom% of W. A composite carbonitride solid solution ceramic for a cutting tool according to claim 6, characterized in that the composite carbonitride solid solution powder is composed of a composite carbonitride solid solution powder with one or two of substituted Cr and Mo. Manufacturing method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58068375A JPS59195582A (en) | 1983-04-20 | 1983-04-20 | Carbonitride ceramics for cutting tool and manufacture |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58068375A JPS59195582A (en) | 1983-04-20 | 1983-04-20 | Carbonitride ceramics for cutting tool and manufacture |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59195582A JPS59195582A (en) | 1984-11-06 |
JPS6253474B2 true JPS6253474B2 (en) | 1987-11-10 |
Family
ID=13371933
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58068375A Granted JPS59195582A (en) | 1983-04-20 | 1983-04-20 | Carbonitride ceramics for cutting tool and manufacture |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59195582A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6383241A (en) * | 1986-09-27 | 1988-04-13 | Hitachi Metals Ltd | Tool cermet and its production |
-
1983
- 1983-04-20 JP JP58068375A patent/JPS59195582A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS59195582A (en) | 1984-11-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS59199579A (en) | Abrasion resistant sialon base ceramics | |
JPS6152102B2 (en) | ||
JP3266200B2 (en) | Silicon nitride based sintered body | |
JPS6253474B2 (en) | ||
JPS6251228B2 (en) | ||
JP2712737B2 (en) | Silicon nitride based sintered material with high toughness and high strength | |
JP2778179B2 (en) | Manufacturing method of silicon nitride based sintered material with high toughness and high strength | |
JPH07224346A (en) | Titanium carbon nitride cement excellent in toughness | |
JPS6257597B2 (en) | ||
JPH01122971A (en) | Cubic boron nitride sintered product | |
JP2684250B2 (en) | Silicon nitride sintered body and method for producing the same | |
JPH05208304A (en) | Alumina-nitrocarbonate titanium system ceramic cutting tool | |
JPH01119558A (en) | Alumina-based sintered compact for cutting tool and its production | |
JP3615634B2 (en) | High toughness silicon nitride sintered body and manufacturing method thereof | |
JP2778189B2 (en) | Fracture resistant silicon nitride based sintered material with high toughness and high strength | |
JPH03290356A (en) | Aluminum oxide based ceramics having high toughness and strength and production thereof | |
JPS6241194B2 (en) | ||
JPH01115873A (en) | Sintered form containing boron nitride of cubic system | |
JP3082432B2 (en) | Manufacturing method of aluminum oxide based ceramic cutting tool with excellent toughness | |
JPH01179754A (en) | Ceramic member for cutting tool | |
JPS6146542B2 (en) | ||
JPS5973472A (en) | Cutting tool ceramic material | |
JPS61295271A (en) | Titanium compound base high hardness sintered body | |
JPH1112025A (en) | Cutting tool made of aluminum oxide-sintered material excellent in hardwearing property | |
JPS6257596B2 (en) |