JPS6383241A - Tool cermet and its production - Google Patents

Tool cermet and its production

Info

Publication number
JPS6383241A
JPS6383241A JP61229182A JP22918286A JPS6383241A JP S6383241 A JPS6383241 A JP S6383241A JP 61229182 A JP61229182 A JP 61229182A JP 22918286 A JP22918286 A JP 22918286A JP S6383241 A JPS6383241 A JP S6383241A
Authority
JP
Japan
Prior art keywords
cermet
solid solution
phase
toughness
tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61229182A
Other languages
Japanese (ja)
Inventor
Hisaaki Ida
井田 久晶
Yusuke Iyori
裕介 井寄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Moldino Tool Engineering Ltd
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Hitachi Tool Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd, Hitachi Tool Engineering Ltd filed Critical Hitachi Metals Ltd
Priority to JP61229182A priority Critical patent/JPS6383241A/en
Publication of JPS6383241A publication Critical patent/JPS6383241A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • C22C29/04Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbonitrides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To manufacture a tool cermet excellent in hardness, deflectivity, and toughness, by mixing a solid solution having a specific composition consisting of TiCN and one or more elements among W, Wo, Ta, and Nb, WC, and iron group metals in a specific ratio and then by subjecting the resulting mixture to compacting and then to heating and sintering. CONSTITUTION:The solid solution in which 5-60% of the quantity corresponding to that of Ti atoms in TiCN is substituted by one or more components among W, Mo, Ta and Nb is formed. The above solid solution (54-92wt%) as a hard component, 5-40% WC as an independent addition agent, and 3-6% iron group metals to be a binding phase are mixed, to which 3-4% VC is further added independently, if necessary. The resulting mixture is subjected to press compacting with the addition of prescribed compacting auxiliaries. Subsequently, the above green compact is sintered in vacuum, etc. In this way, the tool cermet in which the hard phase of three-layer structure consisting of a central core, an intermediate layer in the outside periphery of the core, and a peripheral structure in the outermost periphery is bound by means of the binding phase composed principally of iron group metals together with the independent addition agent and which has high hardness and excellent toughness can be obtained.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、硬度が高く、しかも靭性のすぐれた工具用サ
ーメットおよびその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION "Field of Industrial Application" The present invention relates to a cermet for tools that has high hardness and excellent toughness, and a method for manufacturing the same.

「従来の技術」 TiN−TiC系サーメットは、切削工具に広く利用さ
れている。
"Prior Art" TiN-TiC cermets are widely used in cutting tools.

TiN −TiC系サーメットは、焼結時に焼結むらや
空孔が生じやすく、その強度が低下するとして、硬質相
にZr、 Hf、■、Nb、 Ta等を適量添加させた
り、結合相の旧とGoの量を考慮したものが特公昭57
−35259号公報に開示されている。
TiN-TiC cermets tend to have uneven sintering and voids during sintering, which reduces their strength. The one that takes into account the amount of Go and
It is disclosed in Japanese Patent No.-35259.

またTiN −TiC系サーメットは、それに各種金属
を添加したり、結合相を改善しただけでは、互いに反比
例する関係の耐摩耗性と耐欠損性の両方を共に向上でき
ないとして特公昭58−58420号公報に、次の方法
を開示している。特定の焼結条件により、炭窒化チタン
相がX線回折像として非対称性であり、X線回折像の最
高ピーク位置を中心として低角側のバックグランド化の
巾と高角側のバックグランド化の巾とを適切なものにし
、耐摩肝性と耐欠損性とを共に改善している。
In addition, it was reported in Japanese Patent Publication No. 58-58420 that it is not possible to improve both the wear resistance and chipping resistance of TiN-TiC cermets, which are inversely proportional to each other, simply by adding various metals or improving the binder phase. discloses the following method. Due to specific sintering conditions, the titanium carbonitride phase has an asymmetrical X-ray diffraction image, and the width of the background on the low angle side and the width of the background on the high angle side centering on the highest peak position of the X-ray diffraction image. It has an appropriate width and improves both wear resistance and chipping resistance.

「発明が解決しようとする問題点」 従来、 TiN−TiC系サーメットは、強度向上のた
め各種の金属を適量添加して改善しているが、硬度をに
げると靭性が低下し、靭性を向上させると硬度が低下す
るため、両特性をともに十分向」ニさせることができな
かった。
``Problems to be solved by the invention'' Conventionally, TiN-TiC cermets have been improved by adding appropriate amounts of various metals to improve their strength, but reducing the hardness leads to a decrease in toughness; As a result, both properties could not be sufficiently matched.

そこで本発明者は、TiN−TiC系サーメットの製造
時の各種金属の添加手段を変えて試験した結果、WCを
炭窒化チタンとの固溶体とは別個に単独状態で添加する
ことにより、サーメットの硬質相が中心のコア、その外
周の中間相、さらに外周の周辺組織とからなる3重相に
なり、この3重相の各粒子がスケルトンを形成している
中に若干量単独に存在することを知った。組織をこのよ
うなスケルトン状態と単独の混和とすることで、硬度お
よび靭性を向上でき、またVCをさらに単独添加するこ
とで耐摩耗性、切削面の面粗度が向上することを知り本
発明を完成した。
Therefore, as a result of testing by changing the means of adding various metals during the production of TiN-TiC cermets, the present inventors found that by adding WC alone, separately from the solid solution with titanium carbonitride, the hardness of the cermet could be improved. The phase is a triple phase consisting of a core at the center, an intermediate phase at the outer periphery, and a peripheral structure at the outer periphery, and each particle of this triple phase exists in small amounts independently in the skeleton. Knew. It was discovered that hardness and toughness can be improved by blending the structure with such a skeleton state, and that wear resistance and surface roughness of the cut surface can be improved by adding VC alone. completed.

「問題点を解決するための手段」 第1の発明は、炭窒([Z”’チタンのTi原子相当分
の5〜60%をW、 Mo、 Ta、 Nbのうち1種
又は2種以上の成分で置換した硬質相が、Tiを主成分
とするコアと、コア外周のWとTi成分からなる中間層
と、中間層外周のWを主成分とする周辺組織とからなる
工具用サーメットである。そしてサーメットの組織にお
いては、3つの相からなる硬質相の各粒子がスケルトン
を形成する中に単独に存在している。
"Means for Solving the Problems" The first invention provides carbonitride (5 to 60% of the Ti atom equivalent of titanium is made of one or more of W, Mo, Ta, and Nb). A cermet for tools in which the hard phase substituted with the component consists of a core mainly composed of Ti, an intermediate layer around the core consisting of W and Ti components, and a peripheral structure mainly composed of W around the outer periphery of the intermediate layer. In the structure of cermet, each particle of the hard phase consisting of three phases exists independently in a skeleton.

上記サーメットにおいて、コア外周に中間相(白い相)
が形成されること、および硬質相粒子がスケルトンを形
成する中にさらに単独に存在することが重要であり、こ
れによりサーメットの高度、靭性がともに向上する。
In the above cermet, there is an intermediate phase (white phase) on the outer periphery of the core.
It is important that the hard phase particles are formed and that the hard phase particles exist singly in forming the skeleton, thereby improving both the height and toughness of the cermet.

第2の発明は工具用サーメットの製法であり、炭窒化チ
タンのTi原子相当分の5〜Bout%をW、Mo、 
Ta、 Nbのうち1種又は2種以上の成分で置換した
硬質相となる固溶体54〜I]2wt%と、単独添加材
としてのWC5〜40wt%と、結合相としての鉄属金
属3〜8wt%とを混合し、成形後に加熱焼結してサー
メットを製造する。
The second invention is a method for manufacturing a cermet for tools, in which 5 to Bout% of titanium carbonitride equivalent to Ti atoms is mixed with W, Mo,
Solid solution 54-I which becomes a hard phase substituted with one or more components among Ta and Nb] 2wt%, WC5-40wt% as a single additive, and 3-8wt% ferrous metal as a binder phase. % and then heated and sintered after molding to produce a cermet.

なお、各成分の混合前にさらにVCを2〜4wt%単独
添加して製造してもよい。
Incidentally, VC may be added alone in an amount of 2 to 4 wt% before mixing each component.

炭窒化チタンのTi原子相当分の5〜80wt%をW、
 Mo、 Ta、 Nbのうち1種又は2種以上の成分
で置換した固溶体を54〜92wt%としたのは、54
wt%未満では必要な硬さや切削工具としての耐摩耗性
が期待できず、92wt%を越えると靭性の低下を招く
からである。
5 to 80 wt% of the Ti atom equivalent of titanium carbonitride is W,
The reason why the solid solution substituted with one or more components among Mo, Ta, and Nb was 54 to 92 wt% was 54
This is because if it is less than 92 wt%, the required hardness and wear resistance as a cutting tool cannot be expected, and if it exceeds 92 wt%, it will lead to a decrease in toughness.

単独添加剤としてのWC量を5〜40wt%とじたのは
、5 at%未渦の単独添加ではスケルトンの量が多す
ぎ、靭性が低すぎる。40wt%を越えて単独添加する
と硬さが増し、靭性が低下するためである。
The reason why the amount of WC as a single additive is limited to 5 to 40 wt% is that when 5 at% is added alone without swirling, the amount of skeleton is too large and the toughness is too low. This is because when added alone in an amount exceeding 40 wt%, hardness increases and toughness decreases.

また単独添加剤としてのVCの量を2〜4 wt%とし
たのは、2 wt%未渦の添加ではその効果が得られず
、 4wt%を越えて添加するとクラック抵抗が下がり
、刃先のチッピングが起こりやすくなり不都合なためで
ある。
Furthermore, the reason for setting the amount of VC as a single additive to 2 to 4 wt% is that adding 2 wt% without swirling does not have the effect, and adding more than 4 wt% reduces crack resistance and reduces chipping of the cutting edge. This is because it is more likely to occur and is inconvenient.

結合剤として含有する鉄属金属を3〜8 wt%とした
のは、 3wt%未満では結合剤が不足し、耐摩耗性耐
欠損性が低下し、E1wt%を越えて含有すると硬さが
低下するからである。
The reason for setting the ferrous metal content as a binder to 3 to 8 wt% is because if it is less than 3 wt%, the binder will be insufficient and the wear resistance and chipping resistance will decrease, and if it is contained in excess of E1 wt%, the hardness will decrease. Because it does.

「実施例」 サーメットの硬質相となる成分として(Ti、 W、 
Mo、丁a、 Nb) CNの固溶体を使用した。この
固溶体の各金属の量は、Ti > W > Ta> N
o> Nbの関係とし、Tiは全金属量の21〜87.
4wt%となるようにした。
"Example" Components that become the hard phase of cermet (Ti, W,
Mo, Dina, Nb) A solid solution of CN was used. The amount of each metal in this solid solution is Ti > W > Ta > N
The relationship is o>Nb, and Ti is 21 to 87% of the total metal content.
The content was adjusted to 4wt%.

この固溶体に、単独のwcを添加し、さらに結合相とし
てのGo+Niを添加して、変成アルコール中ボールミ
ル(se I(r)で混合した。なお、サーメット作る
場合の混合量は、固溶体を54〜92wt%、単独添加
ty) W Cヲ5〜40wt%、Go+Niを3〜8
wt%とするのが望ましいが、それ以外の成分の試料も
作って、サーメットの特性を測定した。
To this solid solution, WC was added alone, Go+Ni as a binder phase was added, and the mixture was mixed in a ball mill (se I(r)) in denatured alcohol. 92 wt%, single addition ty) W C 5 to 40 wt%, Go+Ni 3 to 8
Although it is preferable to use wt%, samples with other components were also prepared and the characteristics of the cermet were measured.

上記混合体に、成型助材としてパラフィン約2wt%添
加して乾燥し、フルイにかけてプレス成形した。次に真
空中又はN2ガス中、1350〜1500’0で焼結し
てサーメットとじた。
Approximately 2 wt % of paraffin was added to the above mixture as a molding aid, dried, passed through a sieve, and press-molded. Next, it was sintered at 1350 to 1500'0 in vacuum or N2 gas to form a cermet.

このように製造した各組成のサーメットの硬度(Ilv
)と、抗折力(kg/11m2)、靭性を表わすクラッ
ク抵抗(kg/層璽)とを測定し、第1表に示した。
The hardness (Ilv
), transverse rupture strength (kg/11 m2), and crack resistance (kg/layer) representing toughness were measured and shown in Table 1.

第1表には、上記組成にさらにVCを単独添加してサー
メットを同様に製造し、前記と同様の特性を測定して示
した。
In Table 1, cermets were produced in the same manner by adding VC alone to the above composition, and the same properties as above were measured and shown.

(余  白  ) 表1 (wt%) 表1から、試料り、E、F、工、M、N、Qのものが、
硬度、抗折力とクラック抵抗とが全体的によく望ましい
(Margin) Table 1 (wt%) From Table 1, samples E, F, engineering, M, N, and Q are as follows:
Hardness, transverse rupture strength and crack resistance are generally good and desirable.

望ましい試料のサーメットの成分は、炭窒化チタンのT
i原子相当分の5〜80wt%をW、Mo、Ta、Nb
のうち1種又は2種以上の成分で置換した固溶体が54
〜92wt%の範囲内となっている。また望ましい試料
の単独添加材としてのWC量は、5〜40wt%となっ
ており、さらに結合相となる鉄属金属の量は3〜B a
t%となっている。
A desirable sample cermet component is titanium carbonitride T.
5 to 80 wt% of i atom equivalent to W, Mo, Ta, Nb
A solid solution substituted with one or more of the following components is 54
It is within the range of ~92 wt%. In addition, the amount of WC as a single additive in a desirable sample is 5 to 40 wt%, and the amount of ferrous metal as a binder phase is 3 to B a
t%.

またVCを単独添加した試料で望ましいものは、WC量
が2〜4wt%となっている。
Further, a desirable sample in which VC is added alone has a WC amount of 2 to 4 wt%.

次に前記実施例で、単独添加WC量を15wt%とじ(
固溶体中のWC量は15wt%)、CO+旧量を5wt
%とじて製造したサーメット(合金中WC30wt%)
の顕微鏡組織写真(3000倍)を第1図に示した。さ
らに比較のため前記実施例で、WC(15wt%)を全
て固溶体中に含ませ、単独添加しないで製造したサーメ
ット(合金中WC30wt%)の顕微鏡組織写真(30
00倍)を第2図に示した。第1図から、WCを単独添
加したものは、硬質相の粒子のコアと、周辺組織の間に
中間層が生じて3重相となっており、この3重相の各粒
子がスケルトンを形成する中にさらに単独で存在してい
る。なお成分検査をしたところ、3重相のうちコアはT
iを主成分とし、中間層はWとTi (W≧Ti)であ
り、周辺組織はWを主成分として構成されている。
Next, in the above example, the amount of WC added alone was set at 15 wt% (
WC amount in solid solution is 15wt%), CO + old amount is 5wt%
% (WC30wt% in alloy)
A microscopic photograph (3000x) of the structure is shown in Fig. 1. Furthermore, for comparison, a microscopic structure photograph (30
00x) is shown in Figure 2. From Figure 1, in the case where WC is added alone, an intermediate layer is formed between the core of the hard phase particle and the surrounding structure, resulting in a triple phase, and each particle of this triple phase forms a skeleton. It exists even more independently within. In addition, when we did a component test, we found that the core of the triple phase is T.
i is the main component, the intermediate layer is W and Ti (W≧Ti), and the surrounding tissue is composed of W as the main component.

そして、この中間層がサーメットの硬度、抗折力、靭性
を向上させるものと考えられる。なお比較例の第2図で
は、硬質相のコアの外周に中間層は生じていないし、硬
質相のほとんどがスケルトンを形成していることがわか
る。
It is believed that this intermediate layer improves the hardness, transverse rupture strength, and toughness of the cermet. In FIG. 2 of the comparative example, it can be seen that no intermediate layer is formed around the outer periphery of the core of the hard phase, and that most of the hard phase forms a skeleton.

次に、前記実施例で製造したサーメット(試料A、D、
E、H1工、J)で切削テスト [被削材、SKD、切
削速度; 100 m / win 、送り; 0.1
5mm/rev、切込み; 1.5mm  ]をし、そ
の場合の時間経過での摩擦量を測定して第3図に示した
Next, the cermets (Samples A, D,
Cutting test with E, H1 machining, J) [Work material, SKD, cutting speed; 100 m/win, feed; 0.1
5 mm/rev, depth of cut: 1.5 mm], and the amount of friction over time was measured and shown in Figure 3.

第3図から、D、E、Iの試料は、摩耗量が少なくて望
ましく、A、H,Jは望ましくないことがわかる。
From FIG. 3, it can be seen that samples D, E, and I are desirable because they have a small amount of wear, while samples A, H, and J are not desirable.

上記同様に、被削材を変えて切削テストをし、その結果
を第4図に示す。試料は、A、D、F、H1工、Jとし
、被削材、SCM、切削速度;200m/win、送り
; 0.15mw/ rev 、切込み;  3mmと
した。
Similarly to the above, a cutting test was carried out by changing the work material, and the results are shown in FIG. The samples were A, D, F, H1 work, and J, and the work material, SCM, cutting speed: 200 m/win, feed: 0.15 mw/rev, and depth of cut: 3 mm.

第4図から、D、F、■、Jの試料は、摩耗量が少なく
て望ましく、A、Hは望ましくないことがわかる。
From FIG. 4, it can be seen that samples D, F, ■, and J are desirable because they have a small amount of wear, while samples A and H are undesirable.

上記同様に、ざらに被削材を変えて切削テストをし、そ
の結果を第5図に示す。試料は、A、 D、E、H,I
、Jとし、被削材; FCD、切削速度;150m/■
in 、送り; 0.15■腸/reマ、切込み; 1
.5m層とした。
Similarly to the above, a cutting test was carried out by changing the workpiece materials, and the results are shown in FIG. Samples are A, D, E, H, I
, J, work material: FCD, cutting speed: 150m/■
in, feed; 0.15 ■ intestine/rema, incision; 1
.. It was set as a 5m layer.

第5図から、D、E、Iの試料は、摩耗量が少なくて望
ましく、A、H,Jは望ましくないことがわかる。
From FIG. 5, it can be seen that samples D, E, and I are desirable because they have a small amount of wear, while samples A, H, and J are not desirable.

次に上記実施例のサーメットを使用して切削し、時間経
過での切削による被削面の粗さを測定して第6図に示す
。試料は、D、L、M、N、0とし、被削材、DAC1
切削速度; 100 m / sin、送り; 0.1
5璽璽/reマ、切込み; 1.5+s層とした。
Next, the cermet of the above example was used for cutting, and the roughness of the cut surface due to cutting over time was measured, and the results are shown in FIG. The samples are D, L, M, N, 0, and the work material is DAC1.
Cutting speed: 100 m/sin, feed: 0.1
5 seals/rema, incision; 1.5+s layer.

第6図から、D、L、M、Nの試料は、面粗さが小さく
望ましいが、0は望ましくないことがわかる。
From FIG. 6, it can be seen that samples D, L, M, and N have a small surface roughness, which is desirable, but a surface roughness of 0 is not desirable.

以上4種類の切削テストにより、試料り、E、F、■の
ものは切削性が望ましいが、これらは表1に示す硬度、
抗折力、クラック抵抗が望ましいことに対応するもので
ある。
Through the above four types of cutting tests, samples E, F, and ■ have desirable machinability, but these have the hardness shown in Table 1,
This corresponds to the fact that transverse rupture strength and crack resistance are desirable.

「発明の効果」 本発明は、サーメットの材料として炭窒化チタン系の硬
質相材と鉄族金属の結合相材に、単独のWCを添加混合
させた後、焼結してサーメットを製造することにより、
硬質相が、中心のコアとその外周の中間相とさらにその
外周の周辺組織の3層構造となる。そして3つの層から
なる硬質相の粒子がスケルトンを形成した中に単独に存
在することにより、サーメットの硬度、抗折力、靭性の
全てが向上する。
"Effects of the Invention" The present invention involves adding and mixing a single WC to a titanium carbonitride-based hard phase material and an iron group metal binder phase material as cermet materials, and then sintering the mixture to produce a cermet. According to
The hard phase has a three-layer structure consisting of a central core, an intermediate phase on its outer periphery, and a surrounding tissue on its outer periphery. Since the hard phase particles consisting of three layers exist independently in the skeleton, the hardness, transverse rupture strength, and toughness of the cermet are all improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のサーメットの顕微鏡組織写真、第、2
図は比較例のサーメットの顕微鏡組織写真、第3.4.
5.6図はそれぞれサーメットを使用した切削テストの
結果を示すグラフである。
Figure 1 is a micrograph of the cermet of the present invention, Figure 2.
The figure is a microscopic structure photograph of a cermet of a comparative example, Section 3.4.
Figure 5.6 is a graph showing the results of cutting tests using cermets.

Claims (3)

【特許請求の範囲】[Claims] (1)炭窒化チタンのTi原子相当分の5〜60%をW
、Mo、Ta、Nbのうち1種又は2種以上の成分で置
換した硬質相が、中心のコアとコア外周の中間層と最外
周の周辺組織とからなり、その3層構造の硬質相を鉄属
金属を主成分とする結合相で結合したことを特徴とする
工具用サーメット。
(1) 5 to 60% of the Ti atom equivalent of titanium carbonitride is replaced with W.
, Mo, Ta, and Nb, the hard phase is composed of a central core, an intermediate layer around the outer periphery of the core, and a peripheral structure at the outermost periphery, and the hard phase has a three-layer structure. A cermet for tools that is bonded with a binder phase mainly composed of ferrous metals.
(2)硬質相となる成分であって炭窒化チタンのTi原
子相当分の5〜60%をW、Mo、Ta、Nbのうち1
種又は2種以上の成分で置換した固溶体54〜92wt
%と、単独添加材としてのWC5〜40wt%と、結合
相となる鉄属金属3〜6wt%とを混合し、成形後に加
熱焼結した工具用サーメットの製造方法。
(2) 5 to 60% of the hard phase component equivalent to Ti atoms in titanium carbonitride is one of W, Mo, Ta, and Nb.
Solid solution substituted with species or two or more components 54-92wt
%, 5 to 40 wt % of WC as a single additive, and 3 to 6 wt % of ferrous metal as a binder phase, and then heated and sintered after molding.
(3)全量に対し、2〜4wt%のVCをさらに単独添
加する特許請求の範囲第2項の工具用サーメットの製造
方法。
(3) The method for manufacturing a cermet for tools according to claim 2, wherein 2 to 4 wt% of VC is further added singly to the total amount.
JP61229182A 1986-09-27 1986-09-27 Tool cermet and its production Pending JPS6383241A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61229182A JPS6383241A (en) 1986-09-27 1986-09-27 Tool cermet and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61229182A JPS6383241A (en) 1986-09-27 1986-09-27 Tool cermet and its production

Publications (1)

Publication Number Publication Date
JPS6383241A true JPS6383241A (en) 1988-04-13

Family

ID=16888084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61229182A Pending JPS6383241A (en) 1986-09-27 1986-09-27 Tool cermet and its production

Country Status (1)

Country Link
JP (1) JPS6383241A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63125682A (en) * 1986-11-14 1988-05-28 Daido Steel Co Ltd Tool for working steel containing cr
JPH0230774A (en) * 1988-07-19 1990-02-01 Daido Steel Co Ltd Working tool for hot working cr steel
US5248352A (en) * 1991-03-27 1993-09-28 Hitachi Metals, Ltd. Tic-base cermet alloy
DE4406961C2 (en) * 1993-03-08 2002-12-19 Mitsubishi Materials Corp Wear-resistant cutting insert, made from a cermet based on titanium carbonitride
JP2013108152A (en) * 2011-11-24 2013-06-06 Sumitomo Electric Ind Ltd Hard particle and manufacturing method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5735259A (en) * 1980-08-11 1982-02-25 Matsushita Electric Ind Co Ltd Air conditioning equipment
JPS59195582A (en) * 1983-04-20 1984-11-06 三菱マテリアル株式会社 Carbonitride ceramics for cutting tool and manufacture
JPS61195950A (en) * 1985-02-25 1986-08-30 Mitsubishi Metal Corp Cermet for cutting tool having high hardness and toughness

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5735259A (en) * 1980-08-11 1982-02-25 Matsushita Electric Ind Co Ltd Air conditioning equipment
JPS59195582A (en) * 1983-04-20 1984-11-06 三菱マテリアル株式会社 Carbonitride ceramics for cutting tool and manufacture
JPS61195950A (en) * 1985-02-25 1986-08-30 Mitsubishi Metal Corp Cermet for cutting tool having high hardness and toughness

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63125682A (en) * 1986-11-14 1988-05-28 Daido Steel Co Ltd Tool for working steel containing cr
JPH0230774A (en) * 1988-07-19 1990-02-01 Daido Steel Co Ltd Working tool for hot working cr steel
US5248352A (en) * 1991-03-27 1993-09-28 Hitachi Metals, Ltd. Tic-base cermet alloy
DE4406961C2 (en) * 1993-03-08 2002-12-19 Mitsubishi Materials Corp Wear-resistant cutting insert, made from a cermet based on titanium carbonitride
JP2013108152A (en) * 2011-11-24 2013-06-06 Sumitomo Electric Ind Ltd Hard particle and manufacturing method thereof

Similar Documents

Publication Publication Date Title
EP1867741B1 (en) Insert for milling of cast iron
US4857108A (en) Cemented carbonitride alloy with improved plastic deformation resistance
JPS62170452A (en) Ticn-base cermet
US6057046A (en) Nitrogen-containing sintered alloy containing a hard phase
EP0812367B1 (en) Titanium-based carbonitride alloy with controllable wear resistance and toughness
JPH06158213A (en) Cutting tool made of titanium carbonitride-based cermet excellent in wear resistance
EP0512967A2 (en) Sintered carbonitride with controlled grain size
JPS6383241A (en) Tool cermet and its production
EP0687744B1 (en) Nitrogen-containing sintered hard alloy
JP5342093B2 (en) Chromium-containing cemented tungsten carbide coated cutting insert
JPH06256884A (en) Cutting tool made of titanium carbon nitride cermet excellent in wear resistance
JP2893886B2 (en) Composite hard alloy material
JPH0698540B2 (en) Method for manufacturing a cutting tool made of thermite with excellent wear resistance
JPS597349B2 (en) Coated cemented carbide tools
CN107177766A (en) A kind of ceramic tool material and preparation method thereof
JP2668977B2 (en) Cutting tool made of tungsten carbide based cemented carbide with excellent fracture resistance
JPS6117899B2 (en)
JPS63216941A (en) High-toughness cermet for cutting tool
JPS6134130A (en) Manufacture of high strength cermet having superior chipping resistance
JP2808715B2 (en) Coated cemented carbide
JPS6146542B2 (en)
JPS636617B2 (en)
CN117862507A (en) High-hardness coated metal ceramic cutter and preparation method thereof
JPH0796407A (en) Abrasion resistant cermet made cutting tool and manufacture thereof
JPH06299281A (en) Cutting tool made of titanium carbonitride-based cermet excellent in toughness