JPS636617B2 - - Google Patents

Info

Publication number
JPS636617B2
JPS636617B2 JP57178889A JP17888982A JPS636617B2 JP S636617 B2 JPS636617 B2 JP S636617B2 JP 57178889 A JP57178889 A JP 57178889A JP 17888982 A JP17888982 A JP 17888982A JP S636617 B2 JPS636617 B2 JP S636617B2
Authority
JP
Japan
Prior art keywords
powder
cermet
wear resistance
toughness
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57178889A
Other languages
Japanese (ja)
Other versions
JPS5967334A (en
Inventor
Hisashi Suzuki
Hideaki Matsubara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP57178889A priority Critical patent/JPS5967334A/en
Publication of JPS5967334A publication Critical patent/JPS5967334A/en
Publication of JPS636617B2 publication Critical patent/JPS636617B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、優れた靭性および耐摩耗性を有
し、かつ極めて少量の結合金属を含有する炭窒化
チタン基サーメツト焼結材料の製造法に関するも
のである。 従来、一般に、周期律表の4a,5aおよび6a族
遷移金属の炭化物を硬質分散相とし、これを結合
相形成成分である鉄族金属で結合した硬質焼結材
料が提案され、中でも炭化タングステンを主体と
したWC−Co系、WC−TiC−TaC−Co系などの
超硬合金や、炭化チタンを主体としたTiC−Mo
−Ni系、さらにこれに窒化チタンを含有させた
TiC−TiN−Mo−Ni系などのサーメツトなどの
硬質焼結材料は、比較的すぐれた耐摩耗性および
靭性を有することから、切削工具や耐摩耗工具、
さらに耐衝撃工具などとして広く用いられてい
る。 しかしながら、例えば切削工具の分野では、近
年生産性向上のために速い切削速度での切削加工
が要望される傾向にあるが、上記の超硬合金やサ
ーメツトなどの硬質焼結材料は、すぐれた靭性を
もつものの、耐摩耗性が十分でないために、高速
切削などの苛酷な条件下での使用に際しては、満
足な使用寿命を示さないものである。 そこで、十分な耐摩耗性を有する酸化アルミニ
ウムを主体としたセラミツク焼結材料を、上記の
分野で使用する試みもなされているが、このセラ
ミツク焼結材料は靭性に劣るものであるために、
その用途が限られてしまうのが現状である。 一方、すぐれた靭性を有する上記超硬合金にお
いて、その結合金属量を減少させて耐摩耗性を向
上させる試みもなされ、それによると確かに結合
金属量の減少によつて耐摩耗性が向上するように
なるが、反面焼結性が低下するようになるため、
緻密な焼結材料を製造するには、ホツトプレス法
を用いる必要がある。しかしながら、ホツトプレ
ス法を用いると、種々の形状が要求される最終製
品を製造するためには、焼結材料を切断しなけれ
ばならず、しかも上記材料は難研削性材料である
ため、工業的に量産するのは極めて困難である。 そこで、本発明者等は、上述のような観点か
ら、効率よい工業的生産を可能とする目的で、ホ
ツトプレス法を用いることなく、結合金属を極め
て少量とした状態で、高い耐摩耗性を確保し、さ
らに硬質分散相が微細にして靭性のすぐれた硬質
焼結材料を得べく研究を行なつた結果、炭窒化チ
タン粉末に、炭化モリブデン粉末:1〜40重量%
と、鉄粉末、ニツケル粉末およびコバルト粉末の
うちの1種または2種以上:0.1〜5重量%を配
合して得た混合粉末を成形し、その成形体を窒素
を含有する雰囲気中、1500〜1900℃の比較的高い
温度で焼結すると、極めて少量の結合金属の含有
で、ポアがA−3以下(ASTM規格)の靭性お
よび耐摩耗性の優れたサーメツト焼結材料が得ら
れることを見出した。 この発明は、上記知見に基いてなされたもので
あつて、炭化モリブデン粉末:1〜40重量%と、
鉄粉末、ニツケル粉末およびコバルト粉末のうち
の1種または2種以上:0.1〜5重量%を含有し、
残りが炭窒化チタンからなる配合組成を有する混
合粉末を、所定形状の圧粉体に成形した後、窒素
を含有する雰囲気(望ましくは10torr以上のN2
分圧)中、1500〜1900℃の温度において焼結し、
ポアがA−3以下(ASTM規格)にして、かつ
靭性および耐摩耗性に優れた炭窒化チタン基サー
メツト焼結材料を製造する方法に特徴を有するも
のである。 つぎに、この発明の方法において、混合粉末の
配合割合および焼結温度を上記のとおりに限定し
た理由を説明する。 (a) 炭化モリブデン粉末 炭化モリブデン(以下、Mo2Cと表わす)は、
本発明のサーメツトの主成分である炭窒化チタン
(以下、TiCNで表わす)粒子の周囲に(Ti,
Mo)・(C,N)からなる周辺組織を形成して、
結晶粒子の結合強度を高め、その結果、サーメツ
トの靭性を高める作用を有するが、その含有量が
1重量%未満では所望の効果が得られず、一方40
重量%を越えると、サーメツトの耐摩耗性が劣る
ようになることから、その配合割合を1〜40重量
%と定めた。 (b) 鉄族金属粉末 鉄、ニツケルおよびコバルトは本発明のサーメ
ツトの焼結性を向上させ、その結果、このサーメ
ツトの靭性を高める作用を有するが、その含有量
が0.1重量%未満では所望の効果が得られず、一
方5重量%を越えると、サーメツトの耐摩耗性が
劣るようになることから、これらの粉末の配合割
合を0.1〜5重量%と定めた。 (c) 焼結温度 焼結温度が1500℃未満では、サーメツト中に
巣、ポアが残存して緻密化されないため、サーメ
ツトの靭性は低下し、一方1900℃を越えると、粒
成長を起こしてやはり靭性が低下するところか
ら、焼結温度を1500〜1900℃と定めた。 既に述べたところから明らかなように、この発
明は、原料成分とその配合割合を上記のように特
定し、かつ焼結温度を上記のように限定すること
により、すぐれた靭性と耐摩耗性を有するサーメ
ツトを製造できるという効果を奏するものであ
る。 この発明は、以下の実施例において詳細に説明
するように、通常の粉末治金法にしたがつて遂行
することができる。 実施例 1 原料粉末として、いずれも平均粒径:1.2μmを
有する5種類のTiCN粉末、同1.0μmのMo2C粉
末および同2.2μmの鉄族金属粉末を用意し、これ
らをそれぞれ第1表に示される配合組成に配合
し、ボールミルにて3日間混合して混合粉末と
し、ついでこの混合粉末を10Kg/mm2の圧力でプレ
ス成形して得られた圧粉体を、第1表に示される
条件下で焼結することによつて、本発明サーメツ
ト焼結材料1〜18を製造した。また、比較のため
に、いずれも構成成分のうちのいずれかの成分含
有量(第1表で※印を付したもの)が本発明の範
囲から外れた組成を有する比較サーメツト焼結材
料1〜4と、製造条件が本発明の範囲から外れた
条件(第1表で※印を付す)で比較サーメツト焼
結材料4〜7も製造した。 ついで、この結果得られた本発明サーメツト焼
結材料1〜18および比較サーメツト焼結材料1
This invention relates to a method for producing a titanium carbonitride-based cermet sintered material that has excellent toughness and wear resistance and contains extremely small amounts of bonding metal. Conventionally, hard sintered materials have been proposed in which carbides of group 4a, 5a, and 6a transition metals of the periodic table are used as a hard dispersed phase, and these are bonded with iron group metals as binder phase forming components. Cemented carbide such as WC-Co based, WC-TiC-TaC-Co based, TiC-Mo mainly based on titanium carbide
−Ni-based, further containing titanium nitride
Hard sintered materials such as cermets such as TiC-TiN-Mo-Ni have relatively excellent wear resistance and toughness, so they can be used as cutting tools and wear-resistant tools.
Furthermore, it is widely used as impact-resistant tools. However, in the field of cutting tools, for example, there has been a trend in recent years to require cutting at high cutting speeds to improve productivity, but hard sintered materials such as cemented carbide and cermets have excellent toughness. However, due to insufficient wear resistance, it does not have a satisfactory service life when used under harsh conditions such as high-speed cutting. Therefore, attempts have been made to use ceramic sintered materials mainly made of aluminum oxide, which have sufficient wear resistance, in the above-mentioned fields, but since these ceramic sintered materials have poor toughness,
The current situation is that its uses are limited. On the other hand, attempts have been made to improve the wear resistance of the above-mentioned cemented carbide, which has excellent toughness, by reducing the amount of bonded metal, and it is true that the wear resistance is improved by reducing the amount of bonded metal. However, on the other hand, the sinterability decreases,
To produce dense sintered materials, it is necessary to use a hot pressing method. However, when using the hot press method, the sintered material must be cut in order to manufacture final products that require various shapes, and the above materials are difficult to grind, making it difficult to manufacture industrially. Mass production is extremely difficult. Therefore, from the above-mentioned point of view, the present inventors have developed a method to ensure high wear resistance without using the hot press method and with an extremely small amount of bonding metal, in order to enable efficient industrial production. However, as a result of conducting research to obtain a hard sintered material with a finer hard dispersed phase and excellent toughness, we found that titanium carbonitride powder contains 1 to 40% by weight of molybdenum carbide powder.
A mixed powder obtained by blending 0.1 to 5% by weight of one or more of iron powder, nickel powder, and cobalt powder is molded, and the molded body is heated for 1500 to 500 ml in an atmosphere containing nitrogen. We have discovered that when sintered at a relatively high temperature of 1900°C, a cermet sintered material with excellent toughness and wear resistance, with pores of A-3 or less (ASTM standard), can be obtained with an extremely small amount of binding metal. Ta. This invention was made based on the above knowledge, and includes molybdenum carbide powder: 1 to 40% by weight,
Contains 0.1 to 5% by weight of one or more of iron powder, nickel powder, and cobalt powder,
A mixed powder having a composition in which the remainder is titanium carbonitride is molded into a powder compact of a predetermined shape, and then heated in a nitrogen-containing atmosphere (preferably N2 of 10 torr or more).
sintered at a temperature of 1500-1900℃ under partial pressure),
The present invention is characterized by a method for producing a titanium carbonitride-based cermet sintered material with pores of A-3 or less (ASTM standard) and excellent toughness and wear resistance. Next, the reason why the mixing ratio of the mixed powder and the sintering temperature are limited as described above in the method of the present invention will be explained. (a) Molybdenum carbide powder Molybdenum carbide (hereinafter referred to as Mo 2 C) is
Titanium carbonitride (hereinafter referred to as TiCN) particles, which are the main component of the cermet of the present invention, are surrounded by (Ti,
Forming a surrounding tissue consisting of Mo)・(C,N),
It has the effect of increasing the bonding strength of crystal particles and, as a result, increasing the toughness of the cermet, but if the content is less than 1% by weight, the desired effect cannot be obtained;
If it exceeds 1% by weight, the abrasion resistance of the cermet becomes poor, so the blending ratio was set at 1 to 40% by weight. (b) Iron group metal powder Iron, nickel and cobalt have the effect of improving the sinterability of the cermet of the present invention and, as a result, increasing the toughness of the cermet, but if their content is less than 0.1% by weight, the desired If the amount exceeds 5% by weight, the abrasion resistance of the cermet becomes poor, so the blending ratio of these powders was determined to be 0.1 to 5% by weight. (c) Sintering temperature If the sintering temperature is less than 1500℃, the cermet will not be densified due to the presence of cavities and pores, resulting in a decrease in the toughness of the cermet.On the other hand, if the sintering temperature exceeds 1900℃, grain growth will occur. The sintering temperature was set at 1,500 to 1,900°C since toughness decreased. As is clear from the above, this invention provides excellent toughness and wear resistance by specifying the raw material components and their blending ratios as described above, and by limiting the sintering temperature as described above. This has the effect that it is possible to manufacture a cermet having the following properties. The invention can be carried out according to conventional powder metallurgy methods, as explained in detail in the following examples. Example 1 As raw material powders, five types of TiCN powder each having an average particle size of 1.2 μm, a Mo 2 C powder with an average particle size of 1.0 μm, and an iron group metal powder with an average particle size of 2.2 μm were prepared, and these were shown in Table 1. Table 1 shows the composition shown in Table 1. Cermet sintered materials 1 to 18 of the present invention were manufactured by sintering under the following conditions. For comparison, comparative cermet sintered materials 1 to 3 each have a composition in which the content of one of the constituent components (those marked with * in Table 1) is outside the scope of the present invention. Comparative cermet sintered materials 4 to 7 were also produced under conditions outside the scope of the present invention (marked with * in Table 1). Next, the resulting cermet sintered materials 1 to 18 of the present invention and comparative cermet sintered material 1 were prepared.

【表】【table】

【表】 〜7について、耐摩耗性を評価する目的でビツカ
ース硬さを、また靭性を評価する目的で抗折力を
測定すると共に、ASTM規格に則したポア発生
状態を観察した。これらの結果を第1表に合せて
示した。 第1表に示された結果から、本発明サーメツト
焼結材料1〜18は、いずれも緻密化が十分で、硬
さ(耐摩耗性)および抗折力(靭性)とも高い値
を示しているのに対して、比較サーメツト焼結材
料1〜7は、緻密化が十分でなく、硬さ、抗折力
の低いもの、あるいは緻密化していても、抗折力
が低いものになつていることがわかる。 実施例 2 実施例1において製造した本発明サーメツト焼
結材料3,4,5,6,14,15,16および比較サ
ーメツト焼結材料1〜7のそれぞれから、
SNP432の形状をもつた切削チツプを作製し、下
に示す条件の下で切削試験を行ない、切刃の逃げ
面摩耗巾とすくい面摩耗深さを測定した。 切削条件 被削材:SNCM8(HB220)
[Table] Regarding samples 7 to 7, the Vickers hardness was measured for the purpose of evaluating wear resistance, the transverse rupture strength was measured for the purpose of evaluating toughness, and the state of pore generation was observed in accordance with ASTM standards. These results are also shown in Table 1. From the results shown in Table 1, the cermet sintered materials 1 to 18 of the present invention are all sufficiently densified and exhibit high values of hardness (wear resistance) and transverse rupture strength (toughness). On the other hand, Comparative Cermet Sintered Materials 1 to 7 were not sufficiently densified and had low hardness and transverse rupture strength, or even though they were densified, they had low transverse rupture strength. I understand. Example 2 From each of the cermet sintered materials 3, 4, 5, 6, 14, 15, and 16 of the present invention produced in Example 1 and comparative cermet sintered materials 1 to 7,
A cutting chip with the shape of SNP432 was prepared and a cutting test was conducted under the conditions shown below, and the flank wear width and rake face wear depth of the cutting edge were measured. Cutting conditions Work material: SNCM8 (H B 220)

【表】 切削速度:200m/分 送り:0.36mm/rev. 切込み:1.5mm 切削時間:10分 なお、比較の目的で、市販のP10のWC基超硬
合金、TiC基サーメツト焼結材料およびAl2O3
セラミツクス焼結材料からなる切削チツプ(それ
ぞれ従来切削チツプ1,2,3で表わす)を同一
条件にて試験して上記の特性値を測定した。これ
らの結果を合せて第2表に示す。 第2表に示される結果から、本発明方法によつ
て製造されたサーメツト焼結材料の切削チツプ
(本発明切削チツプ)は、比較方法によつて製造
されたサーメツト焼結材料の切削チツプ(比較切
削チツプ)および従来切削チツプと比べて、すぐ
れた耐摩耗性と靭性を有することがわかる。 上述のように、この発明の方法によれば、結合
金属を極く僅か含有し、すぐれた耐摩耗性(硬
さ)と靭性(抗折力)とを兼ね備えたサーメツト
焼結材料を、通常の粉末治金法により、高い生産
性で安価に製造することができるものであり、こ
の発明によつて製造されたサーメツト焼結材料
は、特に上記特性が要求される切削工具や耐摩耗
工具として使用する場合には、著しくすぐれた性
能を発揮するなど、工業上有用な効果がもたらさ
れるものである。
[Table] Cutting speed: 200 m/min Feed: 0.36 mm/rev. Depth of cut: 1.5 mm Cutting time: 10 minutes For comparison purposes, commercially available P10 WC-based cemented carbide, TiC-based cermet sintered material, and Al Cutting chips made of sintered 2 O 3 ceramic materials (represented by conventional cutting chips 1, 2, and 3) were tested under the same conditions to measure the above characteristic values. These results are shown in Table 2. From the results shown in Table 2, cutting chips made of cermet sintered material manufactured by the method of the present invention (cutting chips of the present invention) are superior to cutting chips made of cermet sintered material manufactured by the comparative method (comparison). It can be seen that this material has superior wear resistance and toughness compared to conventional cutting chips. As described above, according to the method of the present invention, a cermet sintered material containing a very small amount of bonding metal and having excellent wear resistance (hardness) and toughness (transverse rupture strength) can be It can be manufactured at low cost with high productivity using powder metallurgy, and the cermet sintered material manufactured by this invention can be used particularly as cutting tools and wear-resistant tools that require the above characteristics. In this case, industrially useful effects such as significantly superior performance are brought about.

Claims (1)

【特許請求の範囲】[Claims] 1 炭化モリブデン粉末:1〜40重量%と、鉄粉
未、ニツケル粉末、およびコバルト粉末のうちの
1種または2種以上:0.1〜5重量%を含有し、
残りが炭窒化チタン粉末からなる配合組成を有す
る混合粉末を、所定形状の圧粉体に成形した後、
窒素を含有する雰囲気中、1500〜1900℃の温度に
おいて焼結することを特徴とする優れた靭性およ
び耐摩耗性を有する炭窒化チタン基サーメツト焼
結材料の製造法。
1 Molybdenum carbide powder: 1 to 40% by weight, and one or more of iron powder, nickel powder, and cobalt powder: 0.1 to 5% by weight,
After forming a mixed powder having a composition in which the remainder is titanium carbonitride powder into a powder compact of a predetermined shape,
A method for producing a titanium carbonitride-based cermet sintered material having excellent toughness and wear resistance, which comprises sintering at a temperature of 1500 to 1900°C in an atmosphere containing nitrogen.
JP57178889A 1982-10-12 1982-10-12 Manufacture of sintered material of titanium carbonitride-base cermet Granted JPS5967334A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57178889A JPS5967334A (en) 1982-10-12 1982-10-12 Manufacture of sintered material of titanium carbonitride-base cermet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57178889A JPS5967334A (en) 1982-10-12 1982-10-12 Manufacture of sintered material of titanium carbonitride-base cermet

Publications (2)

Publication Number Publication Date
JPS5967334A JPS5967334A (en) 1984-04-17
JPS636617B2 true JPS636617B2 (en) 1988-02-10

Family

ID=16056465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57178889A Granted JPS5967334A (en) 1982-10-12 1982-10-12 Manufacture of sintered material of titanium carbonitride-base cermet

Country Status (1)

Country Link
JP (1) JPS5967334A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03116516U (en) * 1990-03-12 1991-12-03

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03116516U (en) * 1990-03-12 1991-12-03

Also Published As

Publication number Publication date
JPS5967334A (en) 1984-04-17

Similar Documents

Publication Publication Date Title
JPH0860201A (en) Carburized carbide powder mixture based on tungsten and carburized carbide product produced therefrom
JP2769821B2 (en) TiCN-based cermet and method for producing the same
JPH05271842A (en) Cermet alloy and its production
JPS6112847A (en) Sintered hard alloy containing fine tungsten carbide particles
JP2006111947A (en) Ultra-fine particle of cermet
JPS636617B2 (en)
JPH0698540B2 (en) Method for manufacturing a cutting tool made of thermite with excellent wear resistance
JPS58213842A (en) Manufacture of high strength cermet
JPS6059195B2 (en) Manufacturing method of hard sintered material with excellent wear resistance and toughness
JPS644989B2 (en)
JP2796011B2 (en) Whisker reinforced cemented carbide
JP2002292507A (en) Cutting tool made of cermet and its manufacturing method
JPS607022B2 (en) Cubic boron nitride-based ultra-high pressure sintered material for cutting tools
JP2668977B2 (en) Cutting tool made of tungsten carbide based cemented carbide with excellent fracture resistance
JPS6046334A (en) Preparation of tungsten carbide base sintered hard alloy
JPS602379B2 (en) Cubic boron nitride-based ultra-high pressure sintered material for cutting and wear-resistant tools
JPS58189345A (en) Manufacture of tough cermet
JPS59229430A (en) Production of cermet having high hardness and high toughness
JPS6056781B2 (en) Cermets for cutting tools and hot working tools
JPS6245291B2 (en)
JPS6245290B2 (en)
JP3366696B2 (en) Manufacturing method of high strength cermet
JP3677400B2 (en) Cermet tool
JPH04300106A (en) Ultra-high pressure-sintered-material cutting tool excellent in hard phase adhesion
JPS5935644A (en) Manufacture of sintered hard material for cutting tool