JPH09278524A - Production of silicon carbide sintered compact - Google Patents

Production of silicon carbide sintered compact

Info

Publication number
JPH09278524A
JPH09278524A JP8118235A JP11823596A JPH09278524A JP H09278524 A JPH09278524 A JP H09278524A JP 8118235 A JP8118235 A JP 8118235A JP 11823596 A JP11823596 A JP 11823596A JP H09278524 A JPH09278524 A JP H09278524A
Authority
JP
Japan
Prior art keywords
powder
sic
temperature
silicon carbide
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP8118235A
Other languages
Japanese (ja)
Inventor
Yoshiji Nishi
芳次 西
Tatsuya Shiogai
達也 塩貝
Noboru Miyata
昇 宮田
Yoichi Ishida
陽一 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Cement Co Ltd
Original Assignee
Nihon Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Cement Co Ltd filed Critical Nihon Cement Co Ltd
Priority to JP8118235A priority Critical patent/JPH09278524A/en
Publication of JPH09278524A publication Critical patent/JPH09278524A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6587Influencing the atmosphere by vaporising a solid material, e.g. by using a burying of sacrificial powder

Landscapes

  • Ceramic Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for obtaining SiC ceramics sintered with addition of sintering auxiliaries that have ground surfaces of extremely low porosity even after being subjected to a further HIP process. SOLUTION: This SiC sintered compact is obtained by a method that molds SiC powder to which sintering auxiliaries have been added, and sinters the molding in an inert-gas atmosphere under normal or higher pressure, on conditions that the sintering auxiliaries are MgAl2 O4 and Y2 O3 powder, respectively, in a quantity of 2-15wt.%; that the molding is buried in SiC powder or its powdery mixture with MgAl2 O4 and/or Y2 O3 powder, or that the SiC powder mixed with MgAl2 O4 and/or Y2 O3 powder is arranged around the molding; that the molding is sintered at temperature of 1600-1900 deg.C; and that the sintered compact is subjected to the HIP process at temperature of 1500-1800 deg.C under pressure of at least 1600kg/cm<2> .

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、炭化けい素焼結体
の製造方法に関し、特に焼結体表面の研磨面が極めてポ
アの少ない炭化けい素焼結体の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a silicon carbide sintered body, and more particularly to a method for producing a silicon carbide sintered body having a ground surface with extremely few pores.

【0002】[0002]

【従来の技術】炭化けい素(SiC)セラミックスは、
熱伝導性、耐酸化性、耐薬品性に優れるため、種々の用
途に応用されている。このSiCセラミックスは難焼結
性であるため、一般に焼結助剤としてB、C等を添加し
2000℃以上の極めて高い温度で焼成される。そのた
め、焼成温度を下げるべく、比較的低温で焼結できるM
gAl24、Y23を焼結助剤として用いる方法が提案
されている。
2. Description of the Related Art Silicon carbide (SiC) ceramics are
Since it has excellent thermal conductivity, oxidation resistance and chemical resistance, it has been applied to various applications. Since this SiC ceramic is difficult to sinter, it is generally sintered at an extremely high temperature of 2000 ° C. or higher with the addition of B, C or the like as a sintering aid. Therefore, M can be sintered at a relatively low temperature in order to lower the firing temperature.
A method using gAl 2 O 4 or Y 2 O 3 as a sintering aid has been proposed.

【0003】一方、上記用途の内、半導体分野の用途に
おいては、製造設備に組み込まれている各種部品から脱
着するパーティクル、水分等による汚染を防ぐため、表
面のポアが極めて少ないSiCセラミックスが要求され
ている。
On the other hand, among the above-mentioned applications, in the field of semiconductors, SiC ceramics having extremely few surface pores are required in order to prevent contamination by particles, moisture, etc. desorbed from various parts incorporated in manufacturing equipment. ing.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上述し
た焼結助剤を添加し焼成するSiCセラミックスでは、
作製した焼結体をさらにHIP処理してもその表面のポ
アがいずれもこの要求に応えられるほど少なくすること
はできないという問題があった。そのため、CVD等を
利用し焼結体表面にSiC膜を形成して表面だけポアを
少なくするコーティング法が採られているが、これらの
方法では非常に高価なものとなっている。
However, in the SiC ceramics to which the above-mentioned sintering aid is added and fired,
There was a problem that even if the produced sintered body was further subjected to HIP treatment, the pores on the surface could not be reduced so much as to meet this requirement. Therefore, a coating method has been adopted in which a SiC film is formed on the surface of the sintered body by using CVD or the like to reduce pores only on the surface, but these methods are very expensive.

【0005】本発明は、上述した従来の炭化けい素焼結
体の製造方法が有する課題に鑑みなされたものであっ
て、その目的は、焼結助剤を添加し焼成する製造方法で
あって、極めてポアの少ない研磨面を有する炭化けい素
焼結体の製造方法を提供することにある。
The present invention has been made in view of the problems of the above-described conventional method for producing a silicon carbide sintered body, and an object thereof is a production method in which a sintering aid is added and fired. It is an object of the present invention to provide a method for producing a silicon carbide sintered body having a polished surface with extremely few pores.

【0006】[0006]

【課題を解決するための手段】本発明者等は、上記目的
を達成するため鋭意研究した結果、焼結助剤をMgAl
24及びY23粉末とし、これらの粉末を添加した成形
体の周囲にSiC粉末又はSiC粉末にMgAl24
び/又はY23粉末を添加した粉末を雰囲気粉末として
配設して焼成した後さらにHIP処理すれば、極めてポ
アの少ない研磨面を有する炭化けい素焼結体が得られる
との知見を得て本発明を完成した。
Means for Solving the Problems As a result of earnest studies for achieving the above-mentioned object, the present inventors have found that a sintering aid is MgAl.
2 O 4 and Y 2 O 3 powder, and a powder obtained by adding SiC powder or MgAl 2 O 4 and / or Y 2 O 3 powder to SiC powder is provided as an atmosphere powder around a molded body to which these powders are added. The present invention was completed with the finding that a silicon carbide sintered body having a polished surface with extremely few pores can be obtained by further HIP treatment after firing.

【0007】即ち本発明は、SiC粉末に焼結助剤を添
加した粉末を成形し、その成形体を常圧又は加圧不活性
ガス中で焼成する炭化けい素焼結体の製造方法におい
て、該焼結助剤をMgAl24及びY23粉末とし、か
つその添加量をそれぞれ2〜15wt%とし、該焼成す
る方法をSiC粉末又はSiC粉末にMgAl24及び
/又はY23粉末を添加した粉末に成形体を埋設して、
あるいはSiC粉末にMgAl24及び/又はY23
末を添加した粉末を成形体の周囲に配設して1600〜
1900℃の温度で焼成した後、さらにその焼結体を1
600Kg/cm2以上の圧力下で1500〜1800
℃の温度でHIP処理することを特徴とする炭化けい素
焼結体の製造方法とすることを要旨とする。以下、さら
に詳細に説明する。
That is, the present invention relates to a method for producing a silicon carbide sintered body, which comprises molding a powder obtained by adding a sintering aid to a SiC powder, and firing the molded body in a normal pressure or pressurized inert gas. The sintering aid is MgAl 2 O 4 and Y 2 O 3 powder, and the addition amounts thereof are 2 to 15 wt%, and the sintering method is SiC powder or SiC powder with MgAl 2 O 4 and / or Y 2 O. 3 Embed the molded body in the powder added with the powder,
Alternatively, a powder obtained by adding MgAl 2 O 4 and / or Y 2 O 3 powder to SiC powder is arranged around the molded body to form 1600 to 1600.
After firing at a temperature of 1900 ° C, the sintered body is further
1500-1800 under pressure of 600 kg / cm 2 or more
The gist is to provide a method for producing a silicon carbide sintered body, which is characterized in that HIP treatment is performed at a temperature of ° C. The details will be described below.

【0008】焼結助剤にMgAl24及びY23粉末を
用いたのは次の理由による。それは焼成後さらにHIP
処理するが、そのHIP処理の効果を発揮するために
は、前段の焼成段階においてはHIP処理での焼結駆動
力を残した状態にしておく必要がある。そのためにはで
きるだけ低い温度で焼結する必要があり、その必要から
より低い温度で焼結するMgAl24及びY23粉末を
焼結助剤としたものである。その添加量は、それぞれ2
〜15wt%の範囲が適当であり、少なすぎては焼結助
剤としての効果は少なく、多すぎてもSiCとしての性
状が悪くなる。
The reason why MgAl 2 O 4 and Y 2 O 3 powders are used as the sintering aid is as follows. It is HIP after firing
In order to exert the effect of the HIP treatment, it is necessary to leave the sintering driving force in the HIP treatment in the previous firing step. For that purpose, it is necessary to sinter at a temperature as low as possible, and MgAl 2 O 4 and Y 2 O 3 powder, which sinter at a lower temperature, is used as a sintering aid because of the necessity. The amount added is 2 each
The range of ˜15 wt% is appropriate. If it is too small, the effect as a sintering aid is small, and if it is too large, the properties as SiC deteriorate.

【0009】また、そのHIP処理で研磨面が極めてポ
アの少ない焼結体とするためには、前段の焼成段階での
低温焼結に加えて焼成された焼結体が相当緻密化されて
いないと達成できない。そのためには成形体をSiC粉
末又はSiC粉末にMgAl24及び/又はY23粉末
を添加した雰囲気粉末に埋設して、あるいはSiC粉末
にMgAl24及び/又はY23粉末を添加した雰囲気
粉末を成形体の周囲に配設して焼成することとした。
Further, in order to obtain a sintered body having a polishing surface with extremely few pores by the HIP treatment, the sintered body which has been sintered in addition to the low temperature sintering in the previous sintering step is not considerably densified. And I can not achieve. For that purpose, the molded body is embedded in SiC powder or an atmosphere powder in which MgAl 2 O 4 and / or Y 2 O 3 powder is added to SiC powder, or MgAl 2 O 4 and / or Y 2 O 3 powder in SiC powder. The atmosphere powder added with was placed around the compact and fired.

【0010】従来の製造方法では成形体中のSiCとM
gAl24等が反応しMg、Al等の分解ガスが発生
し、成形体外へ運びさられるため焼結助剤の効果が減少
し充分な緻密化が起こらず、その後のHIP処理を行っ
ても残留ポアが極めて小さくかつ少量で緻密な焼結体を
得がたい。そのため、この雰囲気粉末からもAl、Mg
等の分解ガスが発生することを利用して、雰囲気粉末か
ら発生したこれらのガスにより成形体周囲に存在する分
解ガスの蒸気圧を高めることによって成形体からの分解
ガスの揮散を抑え、緻密に焼結できるようにしたもので
ある。この雰囲気粉末の配置については、成形体を埋設
して配置してもよいのは勿論のこと、この粉末を成形体
の周りに配設しても充分効果がみられる。
According to the conventional manufacturing method, SiC and M in the molded body are
Since gAl 2 O 4 etc. react to generate decomposition gas such as Mg, Al etc. and are carried out of the compact, the effect of the sintering aid is reduced and sufficient densification does not occur. However, it is difficult to obtain a dense sintered body with a very small residual pore and a small amount. Therefore, Al, Mg
By utilizing the generation of decomposition gas such as, by increasing the vapor pressure of the decomposition gas existing around the molded body by these gases generated from the atmosphere powder, volatilization of the decomposition gas from the molded body is suppressed, and it is dense It is made possible to sinter. Regarding the arrangement of the atmosphere powder, it goes without saying that the molded body may be embedded and arranged, but it is sufficiently effective to dispose the powder around the molded body.

【0011】一方、焼結助剤を含まないSiC粉末が雰
囲気粉末として用いることができるのは、成形体を埋設
して用いる場合、成形体から発生した分解ガスが成形体
の周りを覆っているSiC粉末に保持されると同時に、
SiC粉末によって粉末の外に逃げるのが抑えられるこ
とにより、成形体周囲の分解ガスの蒸気圧が高まり、上
述と同様に成形体からの分解ガスの揮散が抑えられるも
のと思われる。従って、成形体周囲に配設するだけでは
充分な効果が発揮できず、また、砥粒のような粗い粉末
では埋設しても成形体から発生する分解ガスを閉じこめ
ることができないため、これも充分な効果は発揮できな
い。
On the other hand, the SiC powder containing no sintering aid can be used as the atmosphere powder because, when the molded body is embedded and used, the decomposition gas generated from the molded body covers the periphery of the molded body. While being held in SiC powder,
It is considered that since the SiC powder suppresses the escape of the powder to the outside, the vapor pressure of the decomposed gas around the molded body is increased, and the volatilization of the decomposed gas from the molded body is suppressed in the same manner as described above. Therefore, it is not possible to exert a sufficient effect only by arranging it around the molded body, and it is not possible to confine the decomposed gas generated from the molded body even if it is buried with coarse powder such as abrasive grains. Can not exert the effect.

【0012】上記雰囲気粉末を用いて焼成する温度は、
1600〜1900℃とした。これは前記した様にHI
P処理での焼結駆動力を高めるため、通常より低い温度
としたものである。1600℃より低い温度では、緻密
化が充分でなく、1900℃を超えるとSiC粉末と焼
結助剤による分解反応が激しく、焼結助剤が揮散するた
め、いずれも後段のHIP処理での緻密化が妨げられ
る。
The firing temperature using the above atmosphere powder is
It was set to 1600 to 1900 ° C. This is HI as described above
The temperature is lower than usual in order to increase the sintering driving force in the P treatment. If the temperature is lower than 1600 ° C, the densification is not sufficient, and if it exceeds 1900 ° C, the decomposition reaction between the SiC powder and the sintering aid is vigorous, and the sintering aid volatilizes. Is prevented.

【0013】また、焼成後さらにHIP処理する圧力と
しては1600Kg/cm2以上とし、処理温度として
は1500〜1800℃とした。圧力が1600Kg/
cm2より低いと圧力が不足し緻密化し難く、処理温度
も1500℃より低いと緻密化し難い。処理温度を18
00℃より高くするとHIP装置の面から制約を受け実
用的でない。
The pressure for further HIP treatment after firing was set to 1600 Kg / cm 2 or more, and the treatment temperature was set to 1500 to 1800 ° C. Pressure is 1600Kg /
If it is lower than cm 2 , the pressure is insufficient and it is difficult to densify, and if the treatment temperature is lower than 1500 ° C., it is difficult to densify. Processing temperature is 18
If the temperature is higher than 00 ° C, it is not practical because it is restricted from the viewpoint of the HIP device.

【0014】[0014]

【発明の実施の形態】本発明をさらに詳細に述べると、
先ずSiC粉末に焼結助剤であるMgAl24及びY2
3粉末を2〜15wt%添加した原料粉末を慣用の方
法、例えばボールミル、アトリッション型ミル等で湿式
混合して乾燥する。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in more detail below.
First, SiC powder is mixed with MgAl 2 O 4 and Y 2 which are sintering aids.
The raw material powder added with 2 to 15 wt% of O 3 powder is wet-mixed by a conventional method, for example, a ball mill, an attrition type mill or the like, and dried.

【0015】次いで、乾燥した原料粉末を慣用の方法、
例えばCIP成形、射出成形、押出成形法等により成形
する。用いる雰囲気粉末は、特別に調製する必要はな
く、SiC粉末、あるいはSiC粉末に焼結助材を添加
した原料粉末をそのまま用いればよいので、その雰囲気
粉末をカーボン製等のルツボに入れてSiC成形体を埋
設、あるいは成形体の周囲に配設した後、常圧又は加圧
したArなどの不活性ガス中で1600〜1900℃の
温度で焼成する。焼成した焼結体をさらに1600Kg
/cm2以上の圧力下で1500〜1800℃の温度で
HIP処理する。
Then, the dried raw material powder is subjected to a conventional method,
For example, molding is performed by CIP molding, injection molding, extrusion molding, or the like. The atmosphere powder to be used does not need to be specially prepared, and the SiC powder or the raw material powder obtained by adding the sintering aid to the SiC powder may be used as it is. Therefore, the atmosphere powder is put into a crucible made of carbon or the like to form SiC. After embedding the body or arranging it around the molded body, it is fired at a temperature of 1600 to 1900 ° C. in an inert gas such as normal pressure or pressurized Ar. 1600 Kg of fired sintered body
HIP treatment is performed at a temperature of 1500 to 1800 ° C. under a pressure of / cm 2 or more.

【0016】以上の方法で炭化けい素焼結体を製造すれ
ば、ポアの極めて少ない研磨面を有する焼結体を得るこ
とができる。
By producing a silicon carbide sintered body by the above method, a sintered body having a polished surface with extremely few pores can be obtained.

【0017】[0017]

【実施例】以下、本発明の実施例を比較例と共に挙げ、
本発明をより詳細に説明する。
EXAMPLES Examples of the present invention will be described below together with comparative examples.
The present invention will be described in more detail.

【0018】(実施例1〜9) (1)炭化けい素成形体の作製 SiC粉末(シュタルク社製、平均粒径0.4μm)
に、Y23粉末(信越化学工業社製、スタンダードタイ
プ、平均粒径3.0μm)及びMgAl24粉末(岩谷
社製、SP−12、平均粒径2.0μm)を表1に示す
割合で添加し、SiC製ボールを充填した樹脂製ポット
ミルでメタノールを溶媒として24時間混合し、乾燥し
た後乳鉢で解砕して原料粉末を作製した。この原料粉末
をφ50×10tmmにプレス成形した後、150MP
aの圧力でCIP成形した。
(Examples 1 to 9) (1) Preparation of Silicon Carbide Molded Body SiC powder (manufactured by Stark Co., average particle size 0.4 μm)
Table 1 shows Y 2 O 3 powder (Shin-Etsu Chemical Co., Ltd., standard type, average particle size 3.0 μm) and MgAl 2 O 4 powder (Iwatani Co., SP-12, average particle size 2.0 μm). It was added at the ratio shown, and was mixed with methanol in a resin pot mill filled with SiC balls for 24 hours, dried, and then crushed in a mortar to prepare a raw material powder. This raw material powder was press-molded into φ50 × 10 t mm, then 150MP
CIP molding was performed at a pressure of a.

【0019】(2)雰囲気粉末の作製 前記した原料粉末及びSiC単味の粉末を雰囲気粉末と
して用いる他に、雰囲気粉末の効果を確かめるため、S
iC粉末に特別にY23粉末又はMgAl24粉末を表
1に示す割合で添加し混合、乾燥して雰囲気粉末を作製
した。
(2) Preparation of Atmosphere Powder In addition to using the above-mentioned raw material powder and powder of SiC as an atmosphere powder, in order to confirm the effect of the atmosphere powder, S
Y 2 O 3 powder or MgAl 2 O 4 powder was added to the iC powder at a ratio shown in Table 1, mixed and dried to prepare an atmosphere powder.

【0020】(3)炭化けい素焼結体の作製 作製したSiC成形体をカーボン製のルツボに入れ、そ
のルツボ内に表1に示す雰囲気粉末を表1に示す配置で
入れて常圧のArガス中で表1に示す焼成温度で3時間
保持して焼結体を作製した。
(3) Preparation of Silicon Carbide Sintered Body The manufactured SiC compact was put in a crucible made of carbon, and the atmosphere powder shown in Table 1 was placed in the crucible in the arrangement shown in Table 1 and Ar gas under normal pressure was placed. A sintered body was prepared by holding the firing temperature shown in Table 1 for 3 hours.

【0021】(4)炭化けい素焼結体のHIP処理 得られた焼結体をカーボンルツボにいれ、Arガス中で
表1に示す温度と圧力下で3時間保持しHIP処理を行
った。 (5)評価 得られた焼結体の上下面を#600のダイヤモンド砥石
で研削後、1/2μmのダイヤモンド砥粒で研磨した。
この試験片をアルキメデス法により嵩密度を測定して相
対密度を求めた。また、研磨面を光学顕微鏡でポア観察
を行い20μm以上のポア数を測定した。それらの結果
を表1に示す。
(4) HIP Treatment of Silicon Carbide Sintered Body The obtained sintered body was put into a carbon crucible and held in Ar gas under the temperature and pressure shown in Table 1 for 3 hours to perform HIP treatment. (5) Evaluation The upper and lower surfaces of the obtained sintered body were ground with a # 600 diamond grindstone and then polished with 1/2 μm diamond abrasive grains.
The bulk density of this test piece was measured by the Archimedes method to determine the relative density. The pores on the polished surface were observed with an optical microscope to measure the number of pores of 20 μm or more. Table 1 shows the results.

【0022】(比較例1〜7)比較のために、比較例1
では雰囲気粉末を用いない他は、比較例2、3では成形
体中の焼結助剤量を本発明の範囲外にした他は、比較例
4では雰囲気粉末としてSiC単味の粉末を配設して用
いる他は、比較例5、6ではHIP処理の条件を本発明
の範囲外にした他は実施例と同じく焼結体を作製し、H
IP処理して評価した。また、比較例7では実施例で用
いたSiC粉末に、B4C粉末及び溶解したタールピッ
チをC換算で表1に示す量だけ添加し、従来通り雰囲気
粉末を用いないで焼結体を作製し、HIP処理して評価
した。それらの結果を表1に示す。
(Comparative Examples 1 to 7) For comparison, Comparative Example 1
In addition to using no atmosphere powder, in Comparative Examples 2 and 3, the amount of the sintering aid in the molded body was outside the range of the present invention, and in Comparative Example 4, a powder of SiC alone was provided as the atmosphere powder. In Comparative Examples 5 and 6, except that the conditions of the HIP treatment were out of the scope of the present invention, a sintered body was prepared in the same manner as in the example.
It was evaluated by IP treatment. Further, in Comparative Example 7, B 4 C powder and melted tar pitch were added in the amounts shown in Table 1 in terms of C to the SiC powder used in the example, and a sintered body was prepared without using atmospheric powder as in the conventional case. Then, HIP treatment was performed for evaluation. Table 1 shows the results.

【0023】[0023]

【表1】 [Table 1]

【0024】表1から明らかなように、実施例1〜9に
おいては、焼成した焼結体の相対密度がいずれも98.
0%以上の緻密体となっており、その焼結体をHIP処
理したものの相対密度はいずれも99.9%以上と極め
て緻密なものとなっている。そのため、この研磨面の2
0μm以上のポア数は10ケ/mm2以下と極めて少な
い平滑な面となっている。
As is apparent from Table 1, in Examples 1 to 9, the relative density of the sintered bodies was 98.
It is a dense body of 0% or more, and the relative density of the HIP-treated sintered body is 99.9% or more, which is extremely dense. Therefore, 2 of this polishing surface
The number of pores of 0 μm or more is 10 / mm 2 or less, which is an extremely small smooth surface.

【0025】これに対して比較例1では、雰囲気粉末を
用いていないので、比較例2、3では雰囲気粉末を用い
ているが成形体の焼結助剤量が適切でないため、比較例
4では雰囲気粉末を用いているがその粉末がSiC単味
で、かつ成形体を埋設していないので、いずれも焼成段
階で相対密度が実施例より大きく低下している。そのた
め、HIP処理してもその研磨面は問題外であった。ま
た、比較例5、6では、焼成段階までは実施例と同じで
あるが、その後のHIP処理の条件が適切でないため、
実施例のような極めてポアの少ない平滑な研磨面が得ら
れなかった。さらに、従来の焼結助剤を用いた比較例7
では、焼成段階ではかなり緻密な焼結体が得られている
が、焼成温度が2000℃以上と極めて高温であるた
め、その後HIP処理しても充分に緻密化されず、同様
にポアの少ない研磨面が得られなかった。
On the other hand, in Comparative Example 1, since no atmospheric powder is used, Comparative Examples 2 and 3 use atmospheric powder, but the amount of the sintering aid of the molded body is not appropriate. The atmosphere powder is used, but since the powder is pure SiC and the molded body is not embedded, the relative density is much lower than that of the example in the firing stage. Therefore, the polished surface was out of the problem even after the HIP treatment. Further, in Comparative Examples 5 and 6, the same as the Examples up to the firing step, but the conditions of the subsequent HIP treatment were not appropriate,
It was not possible to obtain a smooth polished surface with extremely few pores as in the example. Furthermore, Comparative Example 7 using a conventional sintering aid
In the firing stage, a considerably dense sintered body was obtained, but since the firing temperature is extremely high at 2000 ° C. or higher, it is not sufficiently densified even after the HIP treatment, and similarly polishing with few pores is performed. I didn't get a face.

【0026】[0026]

【発明の効果】本発明の方法で炭化けい素焼結体を製造
することにより、高い相対密度を有する緻密な焼結体を
得ることができた。これにより、焼結助剤を添加する製
造方法であっても、研磨面がポアの極めて少ない平滑な
面を有する炭化けい素焼結体の製造方法を提供できるよ
うになった。
By producing a silicon carbide sintered body by the method of the present invention, a dense sintered body having a high relative density could be obtained. As a result, it is possible to provide a method for producing a silicon carbide sintered body having a smooth surface with a very small number of pores even if it is a production method in which a sintering aid is added.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 SiC粉末に焼結助剤を添加した粉末を
成形し、その成形体を常圧又は加圧不活性ガス中で焼成
する炭化けい素焼結体の製造方法において、該焼結助剤
をMgAl24及びY23粉末とし、かつその添加量を
それぞれ2〜15wt%とし、該焼成する方法をSiC
粉末又はSiC粉末にMgAl24及び/又はY23
末を添加した粉末に成形体を埋設して、あるいはSiC
粉末にMgAl24及び/又はY23粉末を添加した粉
末を成形体の周囲に配設して1600〜1900℃の温
度で焼成した後、さらにその焼結体を1600Kg/c
2以上の圧力下で1500〜1800℃の温度でHI
P処理することを特徴とする炭化けい素焼結体の製造方
法。
1. A method for producing a silicon carbide sintered body, which comprises molding a powder obtained by adding a sintering aid to a SiC powder and firing the compact in an inert gas at atmospheric pressure or under pressure. The agent is MgAl 2 O 4 and Y 2 O 3 powder, and the addition amount of each is 2 to 15 wt%, and the firing method is SiC.
Powder or SiC powder to which MgAl 2 O 4 and / or Y 2 O 3 powder is added, the molded body is embedded in the powder, or SiC
A powder obtained by adding MgAl 2 O 4 and / or Y 2 O 3 powder to the powder is arranged around the compact and fired at a temperature of 1600 to 1900 ° C., and then the sintered compact is further subjected to 1600 Kg / c.
HI at a temperature of 1500 to 1800 ° C. under a pressure of m 2 or more
A method for producing a silicon carbide sintered body, which comprises performing P treatment.
JP8118235A 1996-04-17 1996-04-17 Production of silicon carbide sintered compact Withdrawn JPH09278524A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8118235A JPH09278524A (en) 1996-04-17 1996-04-17 Production of silicon carbide sintered compact

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8118235A JPH09278524A (en) 1996-04-17 1996-04-17 Production of silicon carbide sintered compact

Publications (1)

Publication Number Publication Date
JPH09278524A true JPH09278524A (en) 1997-10-28

Family

ID=14731583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8118235A Withdrawn JPH09278524A (en) 1996-04-17 1996-04-17 Production of silicon carbide sintered compact

Country Status (1)

Country Link
JP (1) JPH09278524A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005298304A (en) * 2004-04-15 2005-10-27 Nippon Steel Corp Highly dense silicon carbide ceramic and its producing method
JP2010013331A (en) * 2008-07-04 2010-01-21 Bridgestone Corp Purification method of ceramic member and manufacturing method of very pure ceramic member
CN116675538A (en) * 2023-05-30 2023-09-01 中国科学院上海硅酸盐研究所 Method for preparing SiC ceramic by combining selective laser 3D printing/precursor dipping pyrolysis/liquid phase sintering

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005298304A (en) * 2004-04-15 2005-10-27 Nippon Steel Corp Highly dense silicon carbide ceramic and its producing method
JP2010013331A (en) * 2008-07-04 2010-01-21 Bridgestone Corp Purification method of ceramic member and manufacturing method of very pure ceramic member
CN116675538A (en) * 2023-05-30 2023-09-01 中国科学院上海硅酸盐研究所 Method for preparing SiC ceramic by combining selective laser 3D printing/precursor dipping pyrolysis/liquid phase sintering
CN116675538B (en) * 2023-05-30 2023-12-22 中国科学院上海硅酸盐研究所 Method for preparing SiC ceramic by combining selective laser 3D printing/precursor dipping pyrolysis/liquid phase sintering

Similar Documents

Publication Publication Date Title
KR101160140B1 (en) Manufacturing method of zirconium diboride-silicon carbide composite
EP2636659B1 (en) High rigidity ceramic material and method for producing same
KR100494188B1 (en) Aluminium nitride ceramics, members for use in a system for producing semiconductors, corrosion resistant members and conductive members
JPH1149572A (en) Ceramic composite particles and their production
KR101178234B1 (en) Ceramic compositions containing yttrium nitrate and/or yttrium nitrate compounds for silicon carbide ceramics, silicon carbide ceramics, and its preparation method
KR20190048811A (en) Method for manufacturing silicon carbide dense bodies having excellent thermal conductivity and thermal durability
KR101620510B1 (en) Pressureless sintered silicon carbide ceramics with high fracture toughness and high hardness, compositions thereof and Process for producing the Same
KR20180120052A (en) Pressureless sintering method of alumina-silicon carbide composites
JP2507479B2 (en) SiC-Al Lower 2 O Lower 3 Composite Sintered Body and Manufacturing Method Thereof
JP2006069843A (en) Ceramic member for semiconductor manufacturing apparatus
KR101681184B1 (en) Composition for Pressureless Sintered Silicon Carbide Material Having Low-Resistivity, Sintered Body and the Producing Method of the Same
JP2507480B2 (en) SiC-Al Lower 2 O Lower 3 Composite Sintered Body and Manufacturing Method Thereof
JPH09278524A (en) Production of silicon carbide sintered compact
JP4758617B2 (en) High-density silicon carbide ceramics and method for producing the same
KR102603574B1 (en) Pressureless sintered SiC ceramics with 1~30 Ωcm electrical resistivity, its composition, and method for producing the same
JPH09227233A (en) Production of silicon carbide sintered compact
JP2007283435A (en) Silicon-carbide-based polishing plate, manufacturing method, and polishing method for semiconductor wafer
JP4542747B2 (en) Manufacturing method of high strength hexagonal boron nitride sintered body
JPH0753256A (en) Aluminous composite sintered compact and its production
JP2003002760A (en) Method for producing ceramics porous body
JPH09268062A (en) Silicon carbide sintered compact and its production
JP3570676B2 (en) Porous ceramic body and method for producing the same
JP2000026177A (en) Production of silicon-silicon carbide ceramics
JPH0431364A (en) Production of silicon carbide sintered compact
JP4330218B2 (en) Method for producing bulk Si-C-N ceramic material

Legal Events

Date Code Title Description
A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20041202