JPH0431364A - Production of silicon carbide sintered compact - Google Patents

Production of silicon carbide sintered compact

Info

Publication number
JPH0431364A
JPH0431364A JP2134002A JP13400290A JPH0431364A JP H0431364 A JPH0431364 A JP H0431364A JP 2134002 A JP2134002 A JP 2134002A JP 13400290 A JP13400290 A JP 13400290A JP H0431364 A JPH0431364 A JP H0431364A
Authority
JP
Japan
Prior art keywords
sintering
silicon carbide
oxygen
sic
aluminum nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2134002A
Other languages
Japanese (ja)
Inventor
Masahiro Asayama
雅弘 浅山
Michiyasu Komatsu
通泰 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2134002A priority Critical patent/JPH0431364A/en
Publication of JPH0431364A publication Critical patent/JPH0431364A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To sufficiently remove an impurity oxygen in SiC and improve sinterability by arranging deoxygenated members around a formed compact of SiC, temporarily sintering the compact in a vacuum, adsorbing the oxygen in the SiC on the deoxygenated members and carrying out normal sintering. CONSTITUTION:For example, a formed compact 1 of SiC and formed compacts 2 of aluminum nitride as deoxygenated members surrounding the formed compact 1 so as not to mutually contact are arranged in a sheath 3 made of carbon to carry out temporary sintering at 1650 deg.C in a vacuum. The formed compacts 2 are then removed from the interior of the sheath 3 to perform normal sintering at 2050-2150 deg.C. Thereby, silicon oxide in the SiC is released to the atmosphere by heating in the vacuum, adsorbed on the aluminum nitride and converted into aluminum oxide. Since the SiC raw material is purified to a high purity by releasing of the oxygen, sinterability is improved to enable reduction in the amount of a sintering assistant and sintering temperature. As a result, growth of grains following phase transition at high temperatures is reduced to provide the objective dense and high-strength sintered compact.

Description

【発明の詳細な説明】 [発明の目的コ (産業上の利用分野) 本発明は炭化ケイ素焼結体の製造方法に関する。[Detailed description of the invention] [Purpose of the invention] (Industrial application field) The present invention relates to a method for manufacturing a silicon carbide sintered body.

(従来の技術) 炭化ケイ素は窒化ケイ素とともに難焼結性材料の一つで
ある。
(Prior Art) Silicon carbide, along with silicon nitride, is one of the materials that are difficult to sinter.

これは炭化ケイ素や窒化ケイ素は共有結合性が高く、粉
末系の表面エネルギーの総和から粒界形成に伴う粒界エ
ネルギーの総和を差し引いた焼結の駆動力が小さいため
と考えられている。
This is thought to be because silicon carbide and silicon nitride have high covalent bonding properties, and the driving force for sintering, which is calculated by subtracting the total grain boundary energy associated with grain boundary formation from the total surface energy of the powder system, is small.

焼結性を向上させるために種々の方法が開発され、ホッ
トプレス法、常圧焼結法、反応焼結法の3種の方法が一
般的に用いられるようになっている。
Various methods have been developed to improve sinterability, and three methods are commonly used: hot press method, pressureless sintering method, and reaction sintering method.

ホットプレス法は、外部から機械的圧力を印加する加圧
焼結法であり、通常0,01〜0.05 GPa(約1
02〜510kg/ c()程度の圧力で、高周波誘導
式や抵抗式の加熱方式により焼結を行う。
The hot press method is a pressure sintering method that applies external mechanical pressure, usually 0.01 to 0.05 GPa (approximately 1
Sintering is performed using a high frequency induction type or resistance type heating method at a pressure of about 0.02 to 510 kg/c ().

常圧焼結法は、機械的圧力を加えないもので、種々の焼
結助剤が添加された成形体を大気圧下で焼結する。また
、真空あるいは不活性ガス中で焼結を行うこともある。
The pressureless sintering method does not apply mechanical pressure, and a molded body to which various sintering aids have been added is sintered under atmospheric pressure. Sintering may also be performed in vacuum or inert gas.

反応焼結法は、Sl、N2、Cその他を出発物質として
、加熱中にSiCあるいは5i3N4を反応合成し、同
時に自己焼結させる方法である。
The reaction sintering method is a method in which SiC or 5i3N4 is reaction-synthesized using Sl, N2, C, etc. as starting materials during heating, and self-sintering is performed at the same time.

(発明か解決しようとする課題) このような難焼結性の材料では、焼結の駆動力を与える
ため、焼結助剤の添加が必要である。
(Problems to be Solved by the Invention) With such materials that are difficult to sinter, it is necessary to add a sintering aid in order to provide driving force for sintering.

しかし、炭化ケイ素の原料粉末には、不可避的に酸素が
含まれており、この不純物酸素を除去するために焼結助
剤として添加したカーボン等の一部を脱酸剤として使用
する必要があった。
However, silicon carbide raw material powder inevitably contains oxygen, and in order to remove this impurity oxygen, it is necessary to use some of the carbon added as a sintering aid as a deoxidizing agent. Ta.

このような添加剤を多量に添加することは、焼結体の機
械的強度を低下させる原因ともなるため、できるだけ添
加剤量は少ない方が好ましいのであるが、原料粉末の純
度によってはかなりの脱酸剤を必要とし、炭化ケイ素中
の酸素を除去して焼結性を向上させる反面、得られた焼
結体の強度か充分でないという問題が生じていた。
Adding a large amount of such additives may cause a decrease in the mechanical strength of the sintered body, so it is preferable to use as little additive as possible, but depending on the purity of the raw material powder, a considerable amount of depletion may occur. Although this method requires an acid agent and improves sinterability by removing oxygen from silicon carbide, there is a problem in that the strength of the obtained sintered body is insufficient.

また、出発原料とし°τβ型炭化炭化ケイ素用した場合
、焼結にかなり高い温度を必要とするため、焼結温度に
達する前に炭化ケイ素成形体において表面拡散が起こり
、粒子の粗大化か進んで、緻密化の進行が妨げられると
いう問題がある。
In addition, when °τβ type silicon carbide is used as the starting material, a considerably high temperature is required for sintering, so surface diffusion occurs in the silicon carbide compact before the sintering temperature is reached, causing coarsening of the particles. Therefore, there is a problem that the progress of densification is hindered.

炭化ケイ素のこのような焼結性の問題は、製造効率向上
の妨げとなり、いかに効率良く高品質の炭化ケイ素焼結
体を得るかということか重要課題となっている。
Such problems with the sinterability of silicon carbide hinder the improvement of manufacturing efficiency, and how to efficiently obtain high-quality silicon carbide sintered bodies has become an important issue.

本発明はこのような課題を解決するためになされたもの
で、炭化ケイ素中の不純物酸素を充分に除去し、焼結助
剤添加量の低減、焼結温度の低減を図り、焼結性を向上
させるとともに高い強度を付与することのできる炭化ケ
イ素焼結体の製造方法を提供することを目的とする。
The present invention was made to solve these problems, and aims to sufficiently remove impurity oxygen from silicon carbide, reduce the amount of sintering aid added, and reduce the sintering temperature, thereby improving sinterability. It is an object of the present invention to provide a method for manufacturing a silicon carbide sintered body that can improve strength and provide high strength.

[発明の構成] (課題を解決するための手段) 本発明の炭化ケイ素焼結体の製造方法は、炭化ケイ素成
形体の周囲に脱酸素部材を配置し、真空中において仮焼
結を行い、前記炭化ケイ素中に含まれる酸素を前記脱酸
素部材に吸着させ、その後、炭化ケイ素が緻密化温度で
本焼結を行うことを特徴としている。
[Structure of the Invention] (Means for Solving the Problems) The method for manufacturing a silicon carbide sintered body of the present invention includes arranging an oxygen removing member around a silicon carbide molded body, performing temporary sintering in a vacuum, The method is characterized in that oxygen contained in the silicon carbide is adsorbed by the oxygen removing member, and then main sintering is performed at a temperature at which the silicon carbide is densified.

本発明において、脱酸素部材は窒化アルミニウムを主成
分とするものが好ましく、成形体または粉末状など種々
の形態で用いることができる。
In the present invention, the deoxidizing member preferably has aluminum nitride as its main component, and can be used in various forms such as a compact or powder.

たたし、この窒化アルミニウムは炭化ケイ素と接触しな
いように加熱炉内に配置し、炭化ケイ素の含有する酸素
を吸着させる。
However, this aluminum nitride is placed in a heating furnace so as not to come into contact with silicon carbide, and the oxygen contained in silicon carbide is adsorbed.

炭化ケイ素と窒化アルミニウムとが接触すると炭化ケイ
素側に酸化アルミニウムが移動して混入するおそれかあ
るからである。
This is because if silicon carbide and aluminum nitride come into contact, there is a risk that aluminum oxide will move to the silicon carbide side and become mixed therein.

脱酸素部材として窒化アルミニウム以外に、炭化物、窒
化物、ホウ化物等、金属の非酸化物を適用することもで
きる。たとえば、炭化アルミニウム、ホウ化アルミニウ
ム等である。
In addition to aluminum nitride, metal non-oxides such as carbides, nitrides, and borides can also be used as the oxygen-removing member. For example, aluminum carbide, aluminum boride, etc.

また、本発明における仮焼結は、真空中、1350〜1
950℃の範囲の温度で行う。この温度があまり低いと
窒化アルミニウムへの酸素の吸着が起こりに<<、高す
ぎると窒化アルミニウムが分解して、雰囲気中のAIや
Nの分圧が上昇するため好ましくない。より効果的な仮
焼結温度は1500”C前後である。
Further, the preliminary sintering in the present invention is performed in a vacuum at a temperature of 1350 to 1
It is carried out at a temperature in the range of 950°C. If this temperature is too low, oxygen adsorption to aluminum nitride occurs, and if it is too high, aluminum nitride decomposes and the partial pressure of AI and N in the atmosphere increases, which is not preferable. A more effective pre-sintering temperature is around 1500''C.

また、雰囲気中の酸素分圧が高いと炭化ケイ素中の酸素
が抜けにくくなるため真空中で処理することか好ましい
Furthermore, if the oxygen partial pressure in the atmosphere is high, it becomes difficult for oxygen to escape from silicon carbide, so it is preferable to perform the treatment in a vacuum.

その後、窒化アルミニウム脱酸素剤を加熱炉から除去し
、1950〜2300℃の範囲の温度で本焼結を行うこ
とで高い強度を有する炭化ケイ素焼結体か作製される。
Thereafter, the aluminum nitride oxygen scavenger is removed from the heating furnace, and main sintering is performed at a temperature in the range of 1950 to 2300°C, thereby producing a silicon carbide sintered body having high strength.

(作 用) 炭化ケイ素中には酸化ケイ素の形で酸素が含まれている
(Function) Silicon carbide contains oxygen in the form of silicon oxide.

この酸化ケイ素は真空中で加熱することにより、雰囲気
中に放出され、脱酸素部材の窒化アルミニウムに吸着さ
れて酸化アルミニウムとなる。
By heating this silicon oxide in a vacuum, it is released into the atmosphere, and is adsorbed by the aluminum nitride of the oxygen removing member to become aluminum oxide.

すなわち、雰囲気中の酸素分圧は常に低い状態となるた
め炭化ケイ素中の酸素は無理なく速やかに放出されるの
である。
That is, since the oxygen partial pressure in the atmosphere is always low, the oxygen in silicon carbide is easily and quickly released.

そして、酸素の放出によって炭化ケイ素原料が高純度化
されるため焼結性が向上し、焼結温度を下げることか可
能となる。
Since the silicon carbide raw material is highly purified by the release of oxygen, sinterability is improved and it becomes possible to lower the sintering temperature.

これによって高温での相転移に伴う粒子の成長が低減さ
れ、緻密で強度の高い焼結体が作製される。
This reduces the growth of particles due to phase transition at high temperatures, producing a dense and strong sintered body.

(実施例) 次に、本発明の実施例について説明する。(Example) Next, examples of the present invention will be described.

実施例1〜6 まずはじめに、平均粒径0.5μmのα−8iC原料粉
末にホウ素および炭素を所定量添加混合し、50a+m
X 50ssX 4mmの成形体を作製した。
Examples 1 to 6 First, a predetermined amount of boron and carbon were added and mixed to α-8iC raw material powder with an average particle size of 0.5 μm, and 50a+m
A molded body with dimensions of 50ss and 4mm was produced.

一方、窒化アルミニウム粉末を250kgf/ca+ 
”の圧力でプレス成形し、脱酸素部材として30nn+
X 30imX 10mmの窒化アルミニウム成形体を
作製した。
On the other hand, aluminum nitride powder was used at 250 kgf/ca+
Press molded at a pressure of 30nn+ as an oxygen absorbing member.
An aluminum nitride molded body with dimensions of 30 mm and 10 mm was produced.

その後、これら炭化ケイ素成形体と窒化アルミニウム成
形体とを、たとえば第1図に示すように炭化ケイ素成形
体1を中心にしてその周囲を取り囲むように窒化アルミ
ニウム成形体2を炭素製のサヤ3の中に互いに接触しな
いよう配置し、真空中、1650℃で仮焼結を行った。
Thereafter, the silicon carbide molded body and the aluminum nitride molded body are combined, for example, as shown in FIG. They were placed in a vacuum chamber so as not to come into contact with each other, and pre-sintering was performed at 1650° C. in a vacuum.

その後、窒化アルミニウム成形体2をサヤ3内から除去
し、2050℃から2150℃の範囲で本焼結を行った
Thereafter, the aluminum nitride molded body 2 was removed from the inside of the sheath 3, and main sintering was performed at a temperature in the range of 2050°C to 2150°C.

得られた炭化ケイ素焼結体について、密度および機械的
強度を測定した。機械的強度の測定は、J I S  
R−1601に準じた3点曲げ試験により行った。これ
らの結果を第1表に示す。
The density and mechanical strength of the obtained silicon carbide sintered body were measured. Measurement of mechanical strength is carried out by JIS
A three-point bending test was conducted according to R-1601. These results are shown in Table 1.

実施例7〜12 実施例1と同じくα−8IC原料粉末にホウ素および炭
素を所定量添加混合し、5(1wmX 50m5X 4
+mの成形体を作製した。
Examples 7 to 12 As in Example 1, predetermined amounts of boron and carbon were added and mixed to α-8IC raw material powder, and 5 (1wm×50m5×4
A molded body of +m was produced.

一方、脱酸素部材として窒化アルミニウム粉末を炭化ケ
イ素の周囲に敷設し、実施例]、と同一条件で仮焼結、
次いで窒化アルミニウム粉末を除去して本焼結を行った
。また、密度、強度の測定も同様に行った。これらの結
果を第1表に示す。
On the other hand, aluminum nitride powder was placed around silicon carbide as an oxygen absorbing member, and pre-sintered under the same conditions as in Example].
Next, the aluminum nitride powder was removed and main sintering was performed. In addition, measurements of density and strength were performed in the same manner. These results are shown in Table 1.

比較例1〜6 実施例1と同じくα−8IC原料粉末にホウ素および炭
素を所定量添加混合し、50+*aX 50sa+X 
4ataの成形体を作製した。
Comparative Examples 1 to 6 Same as Example 1, predetermined amounts of boron and carbon were added and mixed to α-8IC raw material powder, and 50+*aX 50sa+X
A molded body of 4ata was produced.

そして、脱酸素部材を使用せず、真空中、2050℃〜
2150℃の範囲で焼結を行った。
Then, without using an oxygen absorbing member, in a vacuum at 2050°C ~
Sintering was performed at a temperature of 2150°C.

こうして得られた炭化ケイ素焼結体についても密度およ
び機械的強度を測定した。
The density and mechanical strength of the silicon carbide sintered body thus obtained were also measured.

これらの結果を実施例の結果と併せて第1表に示す。These results are shown in Table 1 together with the results of Examples.

第1表 第1表の結果から明らかなように、窒化アルミニウムに
よる脱酸素部材を使用した実施例では、緻密で高強度の
炭化ケイ素焼結体が得られた。
As is clear from the results shown in Table 1, in the example using the oxygen scavenging member made of aluminum nitride, a dense and high-strength silicon carbide sintered body was obtained.

また、比較例の焼結体は、焼結温度が2050℃の場合
と2150℃の場合とを比べると2150℃まで温度を
上げないと得られるべき強度に達しないのに対し、実施
例の焼結体は2050℃でも充分に焼結か進み、焼結温
度を従来より下げることかできた。
In addition, when comparing the sintering temperature of 2050°C and 2150°C, the sintered body of the comparative example does not reach the required strength unless the temperature is raised to 2150°C, whereas the sintered body of the example The sintering of the compact proceeded satisfactorily even at 2050°C, making it possible to lower the sintering temperature than before.

実施例13〜18 まずはじめに、平均粒径0.15μ謬のβ−3iC原料
粉末にホウ素および炭素を所定量添加混合し、50m+
a X 50mm X 4mmの成形体を作製した。
Examples 13 to 18 First, a predetermined amount of boron and carbon was added and mixed to β-3iC raw material powder with an average particle size of 0.15μ, and 50m+
A molded body measuring a x 50 mm x 4 mm was produced.

一方、窒化アルミニウム粉末を250kgf/cm 2
の圧力でプレス成形し、脱酸素部材として30m1ll
X 30mwX10■の窒化アルミニウム成形体を作製
した。
On the other hand, aluminum nitride powder was used at 250 kgf/cm 2
Press molded at a pressure of 30ml as an oxygen absorbing member.
An aluminum nitride molded body having a size of 30 mw and 10 cm was prepared.

その後、これら炭化ケイ素成形体と窒化アルミニウム成
形体とを炭素製のサヤの中に互いに接触しないよう配置
し、真空中、1650℃で仮焼結を行った。
Thereafter, the silicon carbide molded body and the aluminum nitride molded body were placed in a carbon pod so as not to contact each other, and pre-sintered at 1650° C. in a vacuum.

その後、窒化アルミニウム成形体をサヤ内から除去し、
2050℃から2150℃の範囲で本焼結を行った。
After that, the aluminum nitride molded body was removed from inside the pod,
Main sintering was performed in the range of 2050°C to 2150°C.

得られた炭化ケイ素焼結体について、密度および機械的
強度をυj定した。これらの結果を第2表に示す。
The density and mechanical strength of the obtained silicon carbide sintered body were determined. These results are shown in Table 2.

実施例19〜24 実施例13と同じくβ−8iC原料粉末にホウ素および
炭素を所定量添加混合し50■×50■×4■の成形体
を作製した。
Examples 19 to 24 As in Example 13, predetermined amounts of boron and carbon were added and mixed to the β-8iC raw material powder to produce molded bodies of 50 cm x 50 cm x 4 cm.

一方、脱酸素部材として窒化アルミニウム粉末を詰め粉
として使用し、実施例13と同一条件で仮焼結、次いで
窒化アルミニウム詰め粉を除去して本焼結を行った。
On the other hand, as an oxygen absorbing member, aluminum nitride powder was used as a packing powder, preliminary sintering was performed under the same conditions as in Example 13, and then main sintering was performed after removing the aluminum nitride packing powder.

また、密度、強度の測定も同様に行った。これらの結果
を第2表に示す。
In addition, measurements of density and strength were performed in the same manner. These results are shown in Table 2.

比較例7〜12 実施例13と同じくβ−5iC原料粉末にホウ素および
炭素を所定量添加混合し5Dtsta×50+*sX 
4tpmの成形体を作製した。
Comparative Examples 7 to 12 Same as Example 13, a predetermined amount of boron and carbon was added and mixed to β-5iC raw material powder, and 5Dtsta×50+*sX
A 4 tpm molded body was produced.

そして、脱酸素部材を使用せず、真空中、2050℃〜
2150℃の範囲で焼結を行った。
Then, without using an oxygen absorbing member, in a vacuum at 2050°C ~
Sintering was performed at a temperature of 2150°C.

こうして得られた炭化ケイ素焼結体についても密度およ
び機械的強度を測定した。
The density and mechanical strength of the silicon carbide sintered body thus obtained were also measured.

これらの結果を実施例の結果と併せて第2表に示す。These results are shown in Table 2 together with the results of Examples.

(以下余白) 第2表の結果から明らかなように、窒化アルミニウムに
よる脱酸素部材を使用した実施例では、緻密で高強度の
炭化ケイ素焼結体が得られた。
(The following is a blank space) As is clear from the results in Table 2, in the example using the oxygen scavenging member made of aluminum nitride, a dense and high-strength silicon carbide sintered body was obtained.

また、比較例の焼結体は、焼結温度が2050℃の場合
と2150℃の場合とを比べると2150℃まで温度を
上げないと得られるべき強度に達しないのに対し、実施
例の焼結体は2050℃でも充分に焼結が進み、焼結温
度を従来より下げることかできた。
In addition, when comparing the sintering temperature of 2050°C and 2150°C, the sintered body of the comparative example does not reach the required strength unless the temperature is raised to 2150°C, whereas the sintered body of the example The sintering of the compact proceeded satisfactorily even at 2050°C, making it possible to lower the sintering temperature than before.

[発明の効果] 以上説明したように、本発明の炭化ケイ素の製造方法で
は、金属の非酸化物を脱酸素部材として炭化ケイ素と共
に配置して仮焼結を行い、炭化ケイ素中の酸素を金属の
非酸化物に吸着させているので、焼結助剤の添加量を増
やすことなく、不要な酸素を除去することができ、緻密
性および強度の向上を図ることができる。
[Effects of the Invention] As explained above, in the method for producing silicon carbide of the present invention, a metal non-oxide is placed together with silicon carbide as an oxygen scavenging member and pre-sintered, and the oxygen in the silicon carbide is removed from the metal. Since the sintering agent is adsorbed on the non-oxide, unnecessary oxygen can be removed without increasing the amount of sintering aid added, and denseness and strength can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の炭化ケイ素焼結体の製造方法におけ
る仮焼結時の一配置例を示す図である。 1・・・・・・炭化ケイ素成形体 2・・・・・・窒化アルミニウム成形体3・・・・・・
サヤ
FIG. 1 is a diagram showing an example of the arrangement during preliminary sintering in the method for manufacturing a silicon carbide sintered body of the present invention. 1...Silicon carbide molded body 2...Aluminum nitride molded body 3...
Saya

Claims (2)

【特許請求の範囲】[Claims] (1)炭化ケイ素成形体の周囲に脱酸素部材を配置し、 真空中において仮焼結を行い、前記炭化ケイ素中に含ま
れる酸素を前記脱酸素部材に吸着させ、その後、炭化ケ
イ素が緻密化温度で本焼結を行うことを特徴とする炭化
ケイ素焼結体の製造方法。
(1) Arrange a deoxidizing member around the silicon carbide molded body, perform temporary sintering in a vacuum, allow the oxygen contained in the silicon carbide to be adsorbed to the deoxidizing member, and then the silicon carbide becomes densified. A method for producing a silicon carbide sintered body, characterized by performing main sintering at a high temperature.
(2)脱酸素部材は、窒化アルミニウムを用いるもので
ある請求項1記載の炭化ケイ素焼結体の製造方法。
(2) The method for manufacturing a silicon carbide sintered body according to claim 1, wherein the oxygen removing member uses aluminum nitride.
JP2134002A 1990-05-25 1990-05-25 Production of silicon carbide sintered compact Pending JPH0431364A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2134002A JPH0431364A (en) 1990-05-25 1990-05-25 Production of silicon carbide sintered compact

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2134002A JPH0431364A (en) 1990-05-25 1990-05-25 Production of silicon carbide sintered compact

Publications (1)

Publication Number Publication Date
JPH0431364A true JPH0431364A (en) 1992-02-03

Family

ID=15118086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2134002A Pending JPH0431364A (en) 1990-05-25 1990-05-25 Production of silicon carbide sintered compact

Country Status (1)

Country Link
JP (1) JPH0431364A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62168104A (en) * 1986-01-20 1987-07-24 Sumitomo Electric Ind Ltd Spacer for housing optical fiber and its production
KR100426804B1 (en) * 2001-03-10 2004-04-08 한국과학기술연구원 Silicon Carbide Ceramics with Improved Oxidation Resistance and Process Therefor
CN103102158A (en) * 2011-11-09 2013-05-15 中国科学院上海硅酸盐研究所 Preparation method of solid-phase sintered silicon carbide ceramics with improved surface quality

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62168104A (en) * 1986-01-20 1987-07-24 Sumitomo Electric Ind Ltd Spacer for housing optical fiber and its production
JPH0476448B2 (en) * 1986-01-20 1992-12-03 Sumitomo Electric Industries
KR100426804B1 (en) * 2001-03-10 2004-04-08 한국과학기술연구원 Silicon Carbide Ceramics with Improved Oxidation Resistance and Process Therefor
CN103102158A (en) * 2011-11-09 2013-05-15 中国科学院上海硅酸盐研究所 Preparation method of solid-phase sintered silicon carbide ceramics with improved surface quality

Similar Documents

Publication Publication Date Title
JPS623113B2 (en)
JPS6138149B2 (en)
JPH0432030B2 (en)
JP3667121B2 (en) Boron carbide sintered body and manufacturing method thereof
JPH0431364A (en) Production of silicon carbide sintered compact
JP4758617B2 (en) High-density silicon carbide ceramics and method for producing the same
JPH0359033B2 (en)
JP2585506B2 (en) Silicon carbide sintered body and method for producing the same
JPS6146431B2 (en)
JPH1179848A (en) Silicon carbide sintered compact
JPH09227233A (en) Production of silicon carbide sintered compact
JP3036207B2 (en) Method for producing silicon nitride sintered body
JPS5921577A (en) Method of sintering silicon carbide powder molded body
JPS631273B2 (en)
JP2910359B2 (en) Method for producing silicon nitride based sintered body
JP3194761B2 (en) Silicon nitride powder and method for producing the same
JPH09278524A (en) Production of silicon carbide sintered compact
JPH0733528A (en) Composite sintered ceramic, its production and semiconductor production jig made therefrom
JPH0463030B2 (en)
JP2916934B2 (en) Method for producing sialon-based sintered body
JPH0788255B2 (en) Silicon carbide sintered body and method for producing the same
JPH0451511B2 (en)
JPH01242468A (en) Production of sintered body of aluminum nitride
JPS63270358A (en) Production of sintered silicon carbide
JPH05330917A (en) Production of highly heat conductive silicon carbide sintered compact