JPS63270358A - Production of sintered silicon carbide - Google Patents

Production of sintered silicon carbide

Info

Publication number
JPS63270358A
JPS63270358A JP62106758A JP10675887A JPS63270358A JP S63270358 A JPS63270358 A JP S63270358A JP 62106758 A JP62106758 A JP 62106758A JP 10675887 A JP10675887 A JP 10675887A JP S63270358 A JPS63270358 A JP S63270358A
Authority
JP
Japan
Prior art keywords
silicon carbide
carbon
phase
boron
containing compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62106758A
Other languages
Japanese (ja)
Inventor
Masahiro Sato
政宏 佐藤
Junji Oe
大江 純司
Keiji Tokito
時任 啓二
Mitsuhiro Nishida
西田 光浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP62106758A priority Critical patent/JPS63270358A/en
Publication of JPS63270358A publication Critical patent/JPS63270358A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To obtain the titled sintered material having high density and large size at a low cost, by adding boron(-containing compound) and carbon(- containing compound) to beta-phase SiC powder produced e.g. by silica reduction process, forming the obtained raw material powder and calcining in a mixed gas atmosphere of N2 and an inert gas at a specific ratio under normal pressure. CONSTITUTION:SiC powder produced by silica reduction process or direct carburization of silicon, containing >=95wt.% of beta-phase and <=0.2wt.% of N2 as an impurity, having a specific surface area of >=10m<2>/g and composed mainly of beta-phase is compounded with 0.2-3wt.% of B or a boron-containing compound (e.g. B4C or BN) and 0.5-4wt.% (in terms of C) of C or a carbon-containing compound (e.g. phenolic resin) to obtain raw material powder. The powder is formed in a prescribed form and calcined at 2,000-2,200 deg.C under normal pressure in a mixed gas atmosphere obtained by mixing N2 gas with an inert gas (e.g. He, Ne or Ar) at a ratio of 1/10-2/3 to obtain the titled dense sintered product having uniform composition and a density of >=93% of theoretical density.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は炭化珪素質焼結体の製造方法に関し、より詳細
には、特に大型形状の高密度の焼結体を得るための製造
方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing a silicon carbide sintered body, and more particularly, to a manufacturing method for obtaining a large-sized, high-density sintered body. .

〔従来技術〕[Prior art]

炭化珪素質焼結体は、耐酸化性、耐食性、耐熱衝撃性、
強度に優れた耐熱材料として注目され、各種の高温材料
、耐摩耗材料等に応用されている。
Silicon carbide sintered bodies have oxidation resistance, corrosion resistance, thermal shock resistance,
It has attracted attention as a heat-resistant material with excellent strength, and is applied to various high-temperature materials, wear-resistant materials, etc.

一般にこの炭化珪素質焼結体はα相あるいはβ相の炭化
珪素粉末に焼結助剤を加え形成後高温にて焼成して得ら
れる。具体的に焼結助剤としては特公昭57−3203
5号、特公昭57−170877号等に開示されている
ようにホウ素或いは炭化ホウ素、窒化ホウ素等のホウ素
含有化合物と、炭素或いは焼成によって炭素を生成し得
る有機化合物とを組合せて用いることが提案されている
。また、焼成方法には真空焼成法、常圧焼成法、減圧焼
成法、ホントプレス法等があり、いずれもアルゴン、ヘ
リウム、ネオン等の不活性ガス雰囲気中で2000°C
付近の温度で焼成が行われているが、上記の焼成方法の
うち、ホットプレス法では複雑形状の焼結体の製造が困
難であるため、真空焼成法、減圧焼成法、常圧焼成法が
最も一般的に採用されている。
Generally, this silicon carbide sintered body is obtained by adding a sintering aid to α-phase or β-phase silicon carbide powder, forming the powder, and then firing it at a high temperature. Specifically, as a sintering aid, Japanese Patent Publication No. 57-3203
As disclosed in Japanese Patent Publication No. 57-170877, etc., it is proposed to use boron or a boron-containing compound such as boron carbide or boron nitride in combination with carbon or an organic compound capable of producing carbon by firing. has been done. Firing methods include vacuum firing, normal pressure firing, reduced pressure firing, and true press methods, all of which are heated at 2000°C in an inert gas atmosphere such as argon, helium, or neon.
However, among the above firing methods, it is difficult to produce sintered bodies with complex shapes using the hot press method, so vacuum firing, reduced pressure firing, and normal pressure firing methods are used. Most commonly adopted.

しかし乍ら、上記の常圧焼成法によれば、用いる炭化珪
素の種類によって緻密化が異なる傾向にある。例えばα
相の炭化珪素粉末を用い、焼結助剤として硼素系、炭素
系の両者を用いて例えばアルゴン雰囲気にて常圧焼成を
行う場合では、成形体の大小にかかわらず、高緻密な焼
結体を得ることができるが、β相の炭化珪素粉末を用い
て同様に焼成を行う場合、小型品においてはある程度の
緻密化は可能であるが、大型品においてはその緻密化が
難しいと言う現象が生じる。これはβ相炭化珪素粉末自
体の生成温度がα相炭化珪素粉末と比較して低温側であ
ること、即ち、粒成長開始温度が低いことに起因すると
考えられる。即ち、β相炭化珪素粉末を用いる系で20
00℃付近の焼成温度まで昇温する過程ではβ相炭化珪
素の粒成長が激しいために、焼成温度到達時点での炭化
珪素粒が大きくなり、それによって焼成温度での緻密化
の駆動力が減退するため、高緻密度の焼結体が得難くな
る。特にその成形体が大型である場合は昇温速度が遅い
等の理由により、粒成長は特に激しいものとなり、緻密
化できない。
However, according to the above-mentioned normal pressure firing method, densification tends to vary depending on the type of silicon carbide used. For example α
When performing atmospheric pressure firing in an argon atmosphere using silicon carbide powder as a phase and both boron-based and carbon-based sintering aids, a highly dense sintered body is produced regardless of the size of the compact. However, if similar firing is performed using β-phase silicon carbide powder, there is a phenomenon in which it is possible to densify small products to some extent, but it is difficult to densify large products. arise. This is considered to be due to the fact that the production temperature of the β-phase silicon carbide powder itself is lower than that of the α-phase silicon carbide powder, that is, the grain growth initiation temperature is low. That is, in a system using β-phase silicon carbide powder, 20
In the process of raising the temperature to a firing temperature of around 00℃, the grain growth of β-phase silicon carbide is intense, so the silicon carbide grains become larger when the firing temperature is reached, which reduces the driving force for densification at the firing temperature. Therefore, it becomes difficult to obtain a highly dense sintered body. Particularly when the compact is large, the grain growth becomes particularly intense due to the slow rate of temperature rise, and densification cannot be achieved.

このような問題に対し、特公昭57−32035号には
雰囲気に窒素を導入することによってβ相炭化珪素の粒
成長を抑制することができ、大型品の製造に際し、特に
仔効であることが開示されである。
To solve this problem, Japanese Patent Publication No. 57-32035 discloses that grain growth of β-phase silicon carbide can be suppressed by introducing nitrogen into the atmosphere, which is particularly effective when manufacturing large products. It is disclosed.

特に実施例によれば気相法により製造され、硼素がドー
プされ、遊離炭素が均一に分散した高品質の炭化珪素粉
末を用い、真空、減圧窒素雰囲気、減圧アルゴン雰囲気
、あるいは大気圧窒素雰囲気にて焼成することが開示さ
れである。
In particular, according to the embodiment, high-quality silicon carbide powder manufactured by a vapor phase method, doped with boron, and with free carbon uniformly dispersed is used in a vacuum, a reduced pressure nitrogen atmosphere, a reduced pressure argon atmosphere, or an atmospheric pressure nitrogen atmosphere. It is disclosed that the material is fired in the same manner as above.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところが、ここで用いられている原料粉末は非常に高価
であることから、他の製造方法、例えばシリカ還元法や
シリコン直接炭化法によって得られた安価なβ相炭化珪
素粉末を用いることが望まれる。
However, since the raw material powder used here is very expensive, it is desirable to use inexpensive β-phase silicon carbide powder obtained by other manufacturing methods, such as silica reduction method or silicon direct carbonization method. .

そこで、シリカ還元法やシリコン直接炭化法によって得
られたβ相炭化珪素粉末に硼素系および炭素系助剤を加
え、前述した実施例開示の方法により焼成した場合、い
ずれも高緻密の焼結体が得られないという問題が生じる
Therefore, when boron-based and carbon-based auxiliary agents are added to β-phase silicon carbide powder obtained by silica reduction method or silicon direct carbonization method, and fired by the method disclosed in the above-mentioned example, both cases result in a highly dense sintered body. The problem arises that it is not possible to obtain

具体的には、これらの原料粉末は特に減圧或いは真空雰
囲気では分解を招き易いため、焼結体表面にカーボン層
が形成され易くまた大気圧窒素雰囲気では窒素原子が結
晶中にドープされ、焼結メカニズムの1つである拡散が
抑制されるため、緻密化しないという欠点を有している
Specifically, these raw material powders are particularly susceptible to decomposition in reduced pressure or vacuum atmospheres, so a carbon layer is likely to be formed on the surface of the sintered body, and nitrogen atoms are doped into the crystals in an atmospheric nitrogen atmosphere, causing sintering to deteriorate. Since diffusion, which is one of the mechanisms, is suppressed, it has the disadvantage of not being densified.

〔発明の目的〕[Purpose of the invention]

よって本発明は、シリカ還元法あるいはシリコン直接炭
化法によって製造されたβ相を主体とする炭化珪素粉末
を用いた場合の上記のような欠点を解消し、成形体の大
小にかかわらず、常に安定した焼成が可能な炭化珪素質
焼結体の製造方法を提供することを目的とするものであ
る。
Therefore, the present invention eliminates the above-mentioned drawbacks when using silicon carbide powder mainly composed of β phase produced by silica reduction method or silicon direct carbonization method, and provides stable molding regardless of its size. It is an object of the present invention to provide a method for manufacturing a silicon carbide sintered body that can be fired in a manner that allows the firing of the silicon carbide sintered body.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者等は上記の問題点に対し、研究を重ねた結果、
シリカ還元法およびシリコン直線法から製造され、窒素
含有量の少ない特定のβ相炭化珪素粉末を用い、これに
硼素および炭素系助剤を加え、窒素ガスと不活性ガスと
の混合ガスから成る大気圧雰囲気にて焼成することとこ
より、大型形状の高密度の焼結体を得ることができる。
As a result of repeated research on the above-mentioned problems, the present inventors found that
Using a specific β-phase silicon carbide powder produced by the silica reduction method and the silicon straight line method and having a low nitrogen content, boron and carbon-based auxiliary agents are added to it, and a large amount of gas consisting of a mixture of nitrogen gas and inert gas is used. By firing in an atmospheric pressure atmosphere, a large-sized, high-density sintered body can be obtained.

〔実施例〕〔Example〕

以下、本発明を詳述する。 The present invention will be explained in detail below.

本発明において用いられる炭化珪素粉末は、シリカ還元
法あるいはシリコン直接化法によって製造されたもので
ある。シリカ還元法はシリカ(Si02)粉末と炭素微
粉末を不活性雰囲気で1500〜1700°Cに加熱し
て合成し、所望により合成後、酸化による脱炭処理、お
よびフッ酸による脱シリカ処理が施される。一方、シリ
コン直接炭化法は金属シリコン粉末と炭素粉とを100
0〜1400℃の温度で加熱して反応させる方法である
。本発明ではこのような方法によって得られた原料のう
ち、β相を95重量%以上含有し、且つ原料中に合成時
の不純物として混入する窒素の含有量が0.2重量%以
下、特に0.15重量%以下のものを使用する。窒素含
有量を限定した理由は後述する実施例からも明らかな通
り、窒素含有量が0.2重量%を超えると、緻密化、特
に拡散が抑制されるために高緻密化できないためである
。また、この炭化珪素粉末は、その停止表面積が10n
+”/g以上の微粉末であって純度98%以上のものが
望ましく、不純物としてFree −Sin□、 Fr
ee−C,Δ1.Fe等が含まれることもある。
The silicon carbide powder used in the present invention is produced by a silica reduction method or a silicon direct conversion method. In the silica reduction method, silica (Si02) powder and fine carbon powder are synthesized by heating to 1500 to 1700°C in an inert atmosphere, and if desired, after synthesis, decarburization treatment by oxidation and desilica treatment with hydrofluoric acid are performed. be done. On the other hand, in the silicon direct carbonization method, metallic silicon powder and carbon powder are
This is a method of heating and reacting at a temperature of 0 to 1400°C. In the present invention, among the raw materials obtained by such a method, the content of β phase is 95% by weight or more, and the content of nitrogen mixed into the raw material as an impurity during synthesis is 0.2% by weight or less, especially 0. .15% by weight or less is used. The reason why the nitrogen content is limited is that, as will be clear from the examples described later, if the nitrogen content exceeds 0.2% by weight, densification, especially diffusion, is suppressed, making it impossible to achieve high densification. Moreover, this silicon carbide powder has a stopping surface area of 10n.
+”/g or more fine powder with a purity of 98% or more is desirable, and impurities include Free-Sin□, Fr
ee-C, Δ1. It may also contain Fe and the like.

この炭化珪素粉末に添加する助剤としてはボウ系助剤お
よび炭素系助剤が挙げられる。
Examples of the auxiliary agent added to this silicon carbide powder include a bow-based auxiliary agent and a carbon-based auxiliary agent.

ホウ素系助剤としては非晶質ホウ素、ホウ素或いは炭化
ホウ素、窒化ホウ素、ホウ化リン等のホウ素含有化合物
が用いられ、炭素系助剤としてはカーボン、カーボンブ
ラックの他、フェノール樹脂、コールタールピッチ、石
油ピッチ等の焼成時に炭素を生成し得る炭素含有化合物
が用いられる。
As boron-based auxiliaries, amorphous boron, boron, or boron-containing compounds such as boron carbide, boron nitride, and phosphorous boride are used.As carbon-based auxiliaries, in addition to carbon and carbon black, phenolic resins and coal tar pitch are used. Carbon-containing compounds that can generate carbon during firing, such as petroleum pitch, are used.

これらの焼結助剤のうち、ホウ素系助剤、炭素系助剤の
いずれかが欠けても焼結は不十分であり、ホウ素系助剤
は0.2〜3重量%の割合で、また炭素系助剤はβ相炭
化珪素粉末中に含まれるSin、の量により操作するが
、おおむね炭素換算で0.5〜4重量%の割合で配合す
るのが望ましい。
Among these sintering aids, sintering will be insufficient even if either the boron-based aid or the carbon-based aid is missing, and the boron-based aid may be used at a ratio of 0.2 to 3% by weight, or The carbon-based auxiliary agent is controlled depending on the amount of Sin contained in the β-phase silicon carbide powder, but it is preferably blended in an amount of approximately 0.5 to 4% by weight in terms of carbon.

上記の組成にて調合した混合粉末は公知の形成手段にて
成形後、焼成工程に移される。
The mixed powder prepared with the above composition is shaped by a known forming means and then transferred to a firing process.

本発明における焼成工程は常圧焼成法に基づくものであ
り、焼成雰囲気を窒素ガスとHe、Ne、^r等の不活
性ガスとの混合ガスから構成し、そのガス分圧比を(窒
素ガス/不活性ガス)比率を1710乃至2/3、特に
115乃至1/3に設定することが極めて重要である。
The firing process in the present invention is based on the normal pressure firing method, and the firing atmosphere is composed of a mixed gas of nitrogen gas and an inert gas such as He, Ne, ^r, etc., and the gas partial pressure ratio is (nitrogen gas / It is extremely important to set the inert gas) ratio between 1710 and 2/3, especially between 115 and 1/3.

即ち、ガス比がl/10より小さいと粒成長の抑制効果
が不十分であり、2/3を超えると前述したように拡散
が抑制され、いずれも緻密な焼結体を得ることができな
い。
That is, if the gas ratio is less than 1/10, the effect of suppressing grain growth will be insufficient, and if it exceeds 2/3, diffusion will be suppressed as described above, making it impossible to obtain a dense sintered body in either case.

なお、本発明において焼成温度は2000乃至2200
℃、特に2050乃至2150℃に設定するのが望まし
い。
In addition, in the present invention, the firing temperature is 2000 to 2200.
It is desirable to set the temperature to 2050 to 2150°C.

本発明の製造方法によれば、小型の成形体は勿論の事、
大型の成形体においても十分に緻密化することができ、
後述する実施例からも明らかな通り、対理論密度比93
%以上の均一な組成の緻密体を得ることができる。
According to the manufacturing method of the present invention, not only small molded objects but also
Even large molded objects can be sufficiently densified.
As is clear from the examples described later, the theoretical density ratio is 93.
% or more of uniform composition can be obtained.

以下、本発明を次の例で説明する。The invention will now be explained with the following examples.

実施例 原料としてシリカ還元法あるいはシリコン直接炭化法に
より製造された第1表の炭化珪素粉末97.5重量%、
非晶質硼素粉末1.0重量%、更に炭素源としてノボラ
ック系フェノール樹脂を炭素換算で1.5重量%をアセ
トンを溶媒として混合した。
Example raw material: 97.5% by weight of silicon carbide powder shown in Table 1 produced by silica reduction method or silicon direct carbonization method;
1.0% by weight of amorphous boron powder and 1.5% by weight of novolak phenol resin as a carbon source in terms of carbon were mixed with acetone as a solvent.

アセトンを蒸発させ、乾燥粉末とし静水圧成形法により
直径100mm 、厚み80mmの大型肉厚の成形体(
成形体重量1320g)を得た。この成形体を第1表に
示す焼成条件にて常圧(雰囲気)焼成を行った。
The acetone is evaporated and the dry powder is made into a large, thick molded body with a diameter of 100 mm and a thickness of 80 mm (
A molded product with a weight of 1320 g was obtained. This molded body was fired under normal pressure (atmosphere) under the firing conditions shown in Table 1.

第1表 得られた焼結体に対しアルキメデス法により比重(対理
論密度比)を測定した。
Table 1 The specific gravity (ratio to theoretical density) of the obtained sintered body was measured by the Archimedes method.

なお、比較例として焼成雰囲気をアルゴンのみに設定し
た場合(kl、2 )と窒素ガスのみに設定した場合(
隘7)について同様に比重を測定した。
As a comparative example, the firing atmosphere was set to argon only (kl, 2) and nitrogen gas only (kl,2).
The specific gravity of No. 7) was measured in the same manner.

結果は第2表に示した。The results are shown in Table 2.

第2表の結果によれば、従来の方法であるアルゴン雰囲
気で焼成した試料阻1.2および窒素のみの雰囲気で2
200“Cの高温で焼成したN117の試料はいずれも
緻密化が不十分であるのに対し、窒素およびアルゴンを
特定比率で混合した階3〜6.8.10はいずれも93
%以上の高緻密体を得ることができた。また、原料とし
て窒素含有量が0.2 wtχを超える原料Cを用いた
隘9の試料も緻密化は不十分であった。
According to the results in Table 2, 1.2 samples were fired using the conventional method in an argon atmosphere, and 2 samples were fired in an atmosphere containing only nitrogen.
All of the N117 samples fired at a high temperature of 200"C were insufficiently densified, while the floors 3 to 6.8.10, which were mixed with nitrogen and argon at a specific ratio,
It was possible to obtain a highly dense body with a density of more than %. Moreover, the sample of No. 9, which used raw material C with a nitrogen content exceeding 0.2 wtχ as a raw material, was also insufficiently densified.

なお、第2表11h4の試料の焼結体の結晶状態の拡大
図を第1図に示した。第1図から明らかなようにβ相炭
化珪素特有の柱状結晶がからみあった組織となっており
、アルゴンのみの雰囲気で焼成した際に顕著に観察され
るフェザ−状の異常粒成長はみられず、高緻密体となっ
ていることがわかる。
Incidentally, an enlarged view of the crystalline state of the sintered body of the sample 11h4 in Table 2 is shown in FIG. As is clear from Figure 1, it has a structure in which columnar crystals unique to β-phase silicon carbide are intertwined, and there is no feather-like abnormal grain growth that is noticeable when firing in an argon-only atmosphere. , it can be seen that it is a highly dense body.

〔発明の効果〕〔Effect of the invention〕

以上詳述した通り、本発明の炭化珪素質焼結体の製造方
法によれば、シリカ還元法あるいはシリコン直接化法に
より合成された安価なβ相炭化珪素を用いて大型品の焼
結体を製造するに当たり、焼成時の雰囲気を不活性ガス
と窒素ガスとが特定比率で混合された常圧に設定するこ
とにより、窒素ガスによる弊害を防止しつつ粒成長を抑
制しつつ、焼成させることができ、それによって粒成長
による緻密化の阻害を受けることなく、高密度の大型の
焼結体を安価に得ることがでいる。
As detailed above, according to the method for manufacturing a silicon carbide sintered body of the present invention, a large-sized sintered body can be manufactured using inexpensive β-phase silicon carbide synthesized by a silica reduction method or a silicon direct conversion method. During manufacturing, by setting the atmosphere during firing to normal pressure with a mixture of inert gas and nitrogen gas in a specific ratio, it is possible to perform firing while preventing the harmful effects of nitrogen gas and suppressing grain growth. As a result, a large, high-density sintered body can be obtained at low cost without densification being inhibited by grain growth.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明により得られた炭化珪素質焼結体の結晶
構造を示す拡大図である。
FIG. 1 is an enlarged view showing the crystal structure of a silicon carbide sintered body obtained according to the present invention.

Claims (1)

【特許請求の範囲】[Claims] (1)シリカ還元法あるいはシリコン直接炭化法によっ
て製造され、窒素含有量が0.2重量%以下で且つβ相
を95重量%以上含有する炭化珪素粉末にホウ素又はホ
ウ素含有化合物と、炭素又は炭素含有化合物とを添加し
て成る原料粉末を成形後、窒素と不活性ガスの比率が1
:10乃至2:3の混合雰囲気の常圧下において200
0乃至2200℃の温度で焼成することを特徴とする炭
化珪素質焼結体の製造方法。
(1) Boron or a boron-containing compound and carbon or carbon are added to silicon carbide powder produced by a silica reduction method or a silicon direct carbonization method and having a nitrogen content of 0.2% by weight or less and a β phase of 95% by weight or more. After molding the raw material powder made by adding the containing compound, the ratio of nitrogen and inert gas is 1.
:200 under normal pressure in a mixed atmosphere of 10 to 2:3.
A method for producing a silicon carbide sintered body, the method comprising firing at a temperature of 0 to 2200°C.
JP62106758A 1987-04-30 1987-04-30 Production of sintered silicon carbide Pending JPS63270358A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62106758A JPS63270358A (en) 1987-04-30 1987-04-30 Production of sintered silicon carbide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62106758A JPS63270358A (en) 1987-04-30 1987-04-30 Production of sintered silicon carbide

Publications (1)

Publication Number Publication Date
JPS63270358A true JPS63270358A (en) 1988-11-08

Family

ID=14441812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62106758A Pending JPS63270358A (en) 1987-04-30 1987-04-30 Production of sintered silicon carbide

Country Status (1)

Country Link
JP (1) JPS63270358A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013230948A (en) * 2012-04-27 2013-11-14 Kyocera Corp Silicon carbide-based sintered body, and electrostatic adsorption member and semiconductor manufacturing apparatus member made of the silicon carbide-based sintered body

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013230948A (en) * 2012-04-27 2013-11-14 Kyocera Corp Silicon carbide-based sintered body, and electrostatic adsorption member and semiconductor manufacturing apparatus member made of the silicon carbide-based sintered body

Similar Documents

Publication Publication Date Title
US7723247B2 (en) Method for pressurelessly sintering zirconium diboride/silicon carbide composite bodies to high densities
JPH0131471B2 (en)
JPH1149572A (en) Ceramic composite particles and their production
JPH0228539B2 (en)
JPS63270358A (en) Production of sintered silicon carbide
JPS6152106B2 (en)
JP4758617B2 (en) High-density silicon carbide ceramics and method for producing the same
JPH04500497A (en) Improving thermal conductivity of aluminum nitride through pre-densification treatment
JP2649220B2 (en) Silicon nitride / silicon carbide composite powder, composite compact, method for producing them, and method for producing silicon nitride / silicon carbide composite sintered body
JPS589785B2 (en) Manufacturing method of silicon carbide sintered body
JPS61143686A (en) Silicon carbide sintered body for heat-resistant jig having excellent dimensional accuracy
JPH01242465A (en) Production of silicon carbide sintered body and sliding member thereof
JPH0224782B2 (en)
JPS5921577A (en) Method of sintering silicon carbide powder molded body
JPH0138075B2 (en)
JP2691283B2 (en) Silicon carbide whisker and method for manufacturing the same
JPH0431364A (en) Production of silicon carbide sintered compact
JPS6337069B2 (en)
JPH013075A (en) Method for manufacturing aluminum nitride sintered body
JPH0463028B2 (en)
JPH0761900B2 (en) Method for manufacturing silicon carbide sintered body
JP3008415B2 (en) Sialon-boron nitride-based composite sintered body and method for producing the same
WO1989000984A1 (en) SINTERED CERAMIC PRODUCT COMPRISING SILICON CARBIDE AND SiAlON POLYTYPOID
JPH0559073B2 (en)
JPS5891060A (en) Manufacture of silicon carbide sintered body