JPS589785B2 - Manufacturing method of silicon carbide sintered body - Google Patents

Manufacturing method of silicon carbide sintered body

Info

Publication number
JPS589785B2
JPS589785B2 JP53093328A JP9332878A JPS589785B2 JP S589785 B2 JPS589785 B2 JP S589785B2 JP 53093328 A JP53093328 A JP 53093328A JP 9332878 A JP9332878 A JP 9332878A JP S589785 B2 JPS589785 B2 JP S589785B2
Authority
JP
Japan
Prior art keywords
silicon carbide
sintering
sintered body
carbon
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53093328A
Other languages
Japanese (ja)
Other versions
JPS5520269A (en
Inventor
猪股吉三
田中英彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KAGAKU GIJUTSUCHO MUKIZAISHITSU KENKYUSHOCHO
Original Assignee
KAGAKU GIJUTSUCHO MUKIZAISHITSU KENKYUSHOCHO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KAGAKU GIJUTSUCHO MUKIZAISHITSU KENKYUSHOCHO filed Critical KAGAKU GIJUTSUCHO MUKIZAISHITSU KENKYUSHOCHO
Priority to JP53093328A priority Critical patent/JPS589785B2/en
Publication of JPS5520269A publication Critical patent/JPS5520269A/en
Publication of JPS589785B2 publication Critical patent/JPS589785B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳細な説明】 本発明は炭化珪素焼結体の製造法の改良に関する。[Detailed description of the invention] The present invention relates to an improvement in the manufacturing method of silicon carbide sintered bodies.

炭化珪素焼結体は耐熱性に優れ、熱膨張率が小さく、高
密度焼結体は高温で高強度であることなどから、高温用
構造材料として注目されている。
Silicon carbide sintered bodies have excellent heat resistance and a low coefficient of thermal expansion, and high-density sintered bodies have high strength at high temperatures, so they are attracting attention as structural materials for high temperatures.

従来、炭化珪素焼結体の製造法として、(1)10ミク
ロン以下の炭化珪素粉末に、0.5〜5重量%のアルミ
ニウムまたはアルミニウム化合物を加え不活性雰囲気中
で1950℃以上で加圧焼結する方法(特開昭52−6
716号公報)、(2)、β形炭化珪素粉末に、0.3
〜3.0重量%の硼素に相当する硼素添加物および0.
1〜1.0重量%の炭素に相当する炭素添加物を加えて
、1950〜2300℃で不活性雰囲気中で焼結する方
法(特開昭52−6716号公報)が知られている。
Conventionally, as a manufacturing method for silicon carbide sintered bodies, (1) 0.5 to 5% by weight of aluminum or an aluminum compound is added to silicon carbide powder of 10 microns or less and sintered under pressure at 1950°C or higher in an inert atmosphere. Method of tying (Japanese Unexamined Patent Publication No. 52-6
716), (2), β-type silicon carbide powder, 0.3
A boron additive corresponding to ~3.0 wt% boron and 0.
A method is known in which a carbon additive equivalent to 1 to 1.0% by weight of carbon is added and sintered at 1950 to 2300° C. in an inert atmosphere (Japanese Unexamined Patent Publication No. 1983-6716).

本発明者らは前記両系の焼結促進剤について研究の結果
、(1)アルミニウム系焼結促進剤を単独使用して炭化
珪素を焼結させる場合には、Alの添加量は0.5重量
%以上、望ましくは1重量%を必要とする。
As a result of research on both types of sintering accelerators, the present inventors found that (1) when using an aluminum-based sintering accelerator alone to sinter silicon carbide, the amount of Al added is 0.5 It requires at least 1% by weight, preferably 1% by weight.

このように多量のAlを加えると得られる炭化珪素焼結
体の高温強度が低下する。
When such a large amount of Al is added, the high-temperature strength of the resulting silicon carbide sintered body decreases.

しかし、硼素系焼結促進剤を同時に加えると、微量の添
加で、両者の相乗効果により、Alの添加量を大幅に減
少させることができ、総添加量が少量ですむこと。
However, if a boron-based sintering accelerator is added at the same time, the amount of Al added can be significantly reduced due to the synergistic effect of the two, and the total amount added can be reduced to a small amount.

(2)Alは得られる焼結体に靭性を付与し得られるが
高温強度は常温強度より低下する。
(2) Al imparts toughness to the resulting sintered body, but the high temperature strength is lower than the room temperature strength.

他方Bは多少脆性は大きくなるが、高温強度は常温強度
と同等かあるいは高くなる。
On the other hand, B has somewhat increased brittleness, but the high temperature strength is equal to or higher than the room temperature strength.

従ってAlとBとを特定比にすると常温でも高強度で高
温でもその強度を低下しない炭化珪素焼結体が得られる
ことを知見した。
Therefore, it has been found that by setting a specific ratio of Al and B, a silicon carbide sintered body can be obtained that has high strength even at room temperature and does not lose its strength even at high temperatures.

この知見に基づいて本発明を完成した。The present invention was completed based on this knowledge.

本発明の要旨は炭化珪素粉末に焼結体内において総量で
0.15〜0.60重量%で、B/Alの原子比が0.
15≦B/Al<2範囲の量の硼素系およびアルミニ
ウム系の両焼結促進剤と、原料および添加物が随伴する
酸素を一酸化炭素とし、硼素、アルミニウムおよび反応
によって生成する珪素を炭化物として固定するに必要な
炭素ならびに炭化珪素の0.1〜0.5重量%の炭素を
供給する炭素系添加物を混合し、不活性雰囲気下で18
50〜2200℃で焼結することを特徴とする炭化珪素
焼結体の製造法にある。
The gist of the present invention is that the total amount of silicon carbide powder in the sintered body is 0.15 to 0.60% by weight, and the atomic ratio of B/Al is 0.
Boron-based and aluminum-based sintering accelerators in amounts in the range of 15≦B/Al<2, oxygen accompanying the raw materials and additives as carbon monoxide, and boron, aluminum, and silicon produced by the reaction as carbide. The carbon necessary for fixation as well as a carbon-based additive that provides 0.1-0.5% by weight of the silicon carbide are mixed and heated under an inert atmosphere to 18
A method for producing a sintered silicon carbide body characterized by sintering at a temperature of 50 to 2200°C.

原料炭化珪素には数多くの多形があるが、本発明におい
ては特定の多形であることを必要とせず、すべて使用し
得られる。
Raw material silicon carbide has many polymorphs, but the present invention does not require a specific polymorph, and all can be used.

この粉末の粒子径は5ミクロン以下特に2ミクロン以下
であることが好ましい。
The particle size of this powder is preferably 5 microns or less, particularly 2 microns or less.

それは焼結条件が同じであれば、粒子径が小さく、比表
面積が大きい程、速やかに密度が上昇し得られるからで
ある。
This is because, if the sintering conditions are the same, the smaller the particle size and the larger the specific surface area, the faster the density can be obtained.

また、不純物金属元素の含有量は0.5重量%以下、特
に0.4重量%以下であることが好ましい。
Further, the content of impurity metal elements is preferably 0.5% by weight or less, particularly preferably 0.4% by weight or less.

硼素系焼結促進剤としては、例えば、硼素、炭化硼素(
代表的組成B4C)、硼化珪素(SiB4あるいはSi
B6)が挙げられ、アルミニウム焼結促進剤としては、
例えば、アルミニウム、アルミナ水酸化アルミニウム、
炭化アルミニウムが挙げられる。
Examples of boron-based sintering accelerators include boron, boron carbide (
Typical composition B4C), silicon boride (SiB4 or Si
B6), and examples of aluminum sintering accelerators include:
For example, aluminum, alumina aluminum hydroxide,
Aluminum carbide is mentioned.

これらの焼結促進剤の添加量は、焼結体中における硼素
とアルミニウムの総量が0.15〜0.60好ましくは
0.15〜0.40重量%であり、BとAlの原子比(
B/Al)が0.15≦B/Al<2である。
The amount of these sintering accelerators added is such that the total amount of boron and aluminum in the sintered body is 0.15 to 0.60% by weight, preferably 0.15 to 0.40% by weight, and the atomic ratio of B and Al (
B/Al) is 0.15≦B/Al<2.

この添加量は炭化珪素粉末が予め硼素やアルミニウムが
固溶していたり、あるいはこれらを不純物として随伴し
ている場合は、前記添加量にその含有分を加算した量で
ある。
If the silicon carbide powder contains boron or aluminum as a solid solution, or if these are present as impurities, the amount added is the amount added to the above amount.

焼結体中における硼素とアルミニウムの総量が0.60
重量%を超えると、1500〜1600℃附近で生じた
高温融液が焼結温度まで残留する傾向があり、これが異
常粒成長を助長するため、焼結体の機械的な強度を劣化
させる。
The total amount of boron and aluminum in the sintered body is 0.60
If it exceeds % by weight, the high-temperature melt generated around 1500 to 1600°C tends to remain up to the sintering temperature, which promotes abnormal grain growth and deteriorates the mechanical strength of the sintered body.

その総量が0.15重量%より少ないときは焼結が悪く
なる。
When the total amount is less than 0.15% by weight, sintering becomes poor.

また、B/Alの原子比が0.15より少くなると、B
とAlの相乗焼結効果が望めなく、2以上例えば2〜4
になると粒成長のため焼結による緻密化が困難となり、
得られる炭化珪素焼結体は常温強度に比べて高温(例え
ば1300℃)強度が低下するようになる。
Moreover, when the atomic ratio of B/Al becomes less than 0.15, B
A synergistic sintering effect of Al and Al cannot be expected, and 2 or more, for example 2 to 4
When this happens, it becomes difficult to densify by sintering due to grain growth.
The resulting silicon carbide sintered body has lower strength at high temperatures (for example, 1300° C.) than at room temperature.

本発明において、硼素系およびアルミニウム系の焼結促
進剤を前記比で同時に添加すると、1500〜1600
゜C附近で高温融液が形成される。
In the present invention, when boron-based and aluminum-based sintering accelerators are added at the same time in the above ratio,
A high temperature melt is formed near °C.

これは両焼結促進剤を同時添加の場合において起る特殊
な現象であって、硼素、あるいはアルミニウムの単独添
加では全く見られない現象である。
This is a special phenomenon that occurs when both sintering accelerators are added at the same time, and is a phenomenon that cannot be observed when boron or aluminum is added alone.

このような高温融液の形成は、これが多量に存在した場
合には焼結に害を及ぼすが、本発明における添加量であ
るときは、焼結に際しての昇温下での助剤の均一分散に
寄与し、従来法における焼結促進剤の添加量よりも少量
で焼結を可能ならしめたものと考えられる。
The formation of such a high-temperature melt will harm sintering if it exists in large amounts, but if it is added in the amount specified in the present invention, it will result in uniform dispersion of the auxiliary agent at elevated temperatures during sintering. It is thought that this contributes to the sintering process, making it possible to perform sintering with a smaller amount of sintering accelerator than in the conventional method.

本発明において添加する炭素系添加物は大体次の3つの
作用をする。
The carbon-based additive added in the present invention generally has the following three functions.

(1)炭化珪素粉末が表面酸化により随伴する酸素分お
よび添加物が随伴する酸素分の内、高温で水蒸気等の形
で逸散し得ない分を主として一酸化炭素として系外に除
去する。
(1) Of the oxygen content accompanying the silicon carbide powder due to surface oxidation and the oxygen content accompanying the additives, the oxygen content that cannot be dissipated in the form of water vapor or the like at high temperatures is removed from the system mainly as carbon monoxide.

(2)予め炭化珪素中に存在していた遊離珪素、前記(
1)の過程で生成した遊離珪素、一酸化珪素蒸気および
添加物の固溶過程で生成することのある遊離珪素等の珪
素ならびに硼素およびアルミニウムと化合してこれらを
炭化物として固定する。
(2) Free silicon that previously existed in silicon carbide, the above (
Free silicon produced in the process of 1), silicon monoxide vapor, and silicon such as free silicon that may be produced in the solid solution process of additives, as well as boron and aluminum are combined and fixed as carbides.

(3)焼結時に残存したものの一部は、粒界に残存し、
粒界の移動、あるいは粒成長を抑制する。
(3) Some of what remained during sintering remains at the grain boundaries,
Suppress grain boundary movement or grain growth.

炭素系添加物としては、例えば黒鉛あるいは炭素の微粉
末が挙げられる。
Examples of carbon-based additives include graphite or fine carbon powder.

しかしながら、炭素を均一に分散させるためには、糖類
、フルフリールアルコールとフォルムアルデヒドの縮合
物、あるいはフェノールとフォルムアルデヒドの縮合物
等の水あるいは有機溶媒に可溶で、400〜1000℃
で、非酸化性雰囲気下で加熱することにより、分散して
遊離炭素を生成する有機化合物の形で添加することが好
ましい。
However, in order to uniformly disperse carbon, it is necessary to use sugars, condensates of furfuryl alcohol and formaldehyde, or condensates of phenol and formaldehyde, etc., which are soluble in water or organic solvents, and heated at 400 to 1000°C.
It is preferable to add the organic compound in the form of an organic compound that disperses and generates free carbon when heated in a non-oxidizing atmosphere.

その添加量は、炭化珪素粉末と他の添加物が随伴する酸
素分を一酸化炭素として除去し、硼素、アルミニウムお
よび反応によって生成する珪素を炭化物として固定する
に必要な炭素と、更に炭化珪素の0.1〜1.0重量%
、好ましくは0.1〜0.55重量%の炭素を供給する
に足る量との合計量が適当である。
The amount of addition is determined by removing the oxygen content accompanying the silicon carbide powder and other additives as carbon monoxide, fixing boron, aluminum, and silicon produced by the reaction as carbide, and the carbon necessary to fix silicon carbide. 0.1-1.0% by weight
, preferably 0.1 to 0.55% by weight of carbon.

炭化珪素の1.0重量%を超える量の添加は、焼結体内
に必要以上の炭素分が残留し、焼結体の機械的な性質、
耐酸化性を劣化させるので好ましくない。
Addition of silicon carbide in an amount exceeding 1.0% by weight may cause more carbon than necessary to remain in the sintered body, which may deteriorate the mechanical properties of the sintered body.
This is not preferable because it deteriorates oxidation resistance.

また、0.1重量%より少ないときは焼結の円滑な進行
が阻害される。
Moreover, when it is less than 0.1% by weight, smooth progress of sintering is inhibited.

これらの炭化珪素および添加物は、不純物の混入を防ぐ
ために、炭化珪素焼結体で主要通路をライニングしたジ
ェットミル、炭化珪素焼結体で内部をライニングしたボ
ールミルと炭化珪素焼結体ボールよりなる粉砕混合機ま
たはゴムあるいは樹脂で内張した混合機等で混合粉砕す
る。
These silicon carbide and additives are manufactured using jet mills whose main passages are lined with silicon carbide sintered bodies, ball mills whose interior is lined with silicon carbide sintered bodies, and silicon carbide sintered balls to prevent contamination with impurities. Mix and grind using a grinding mixer or a mixer lined with rubber or resin.

炭素系添加物が前記のような有機化合物を用いる場合は
、これ以外のものを前記したようにして得た粉砕混合物
に、有機化合物の水溶液あるいは有機溶剤溶液を混合し
、均一な分散となし乾燥してもよい。
When using an organic compound as described above as a carbon-based additive, mix an aqueous solution or an organic solvent solution of the organic compound with the pulverized mixture obtained as described above to homogeneously disperse it, and then dry. You may.

この場合、得られた混合物を、非酸化性雰囲気下で、4
00〜1000℃に加熱して有機化合物を分解して遊離
炭素を生ぜしめた後、焼結してもよい。
In this case, the resulting mixture was heated under a non-oxidizing atmosphere for 4 hours.
After heating to 00 to 1000°C to decompose the organic compound and generate free carbon, sintering may be performed.

あるいは、焼結時のアルゴン、ヘリウム等の大気圧ある
いは大気圧以下の不活性雰囲気を利用して前記有機化合
物の分解を行い、引続いて焼結を行ってもよい。
Alternatively, the organic compound may be decomposed using an inert atmosphere such as argon or helium at atmospheric pressure or below atmospheric pressure during sintering, and then sintering may be performed.

この場合、遊離炭素を形成する有機化合物の外、必要に
応じ有機質結合剤、例えばポリビニルブチラール、ポリ
ビニルアクリレート等を(必要に応じ可塑剤と共に)用
いて成形すると冷間で容易に成形し得られる。
In this case, in addition to the organic compound that forms free carbon, if necessary, an organic binder such as polyvinyl butyral, polyvinyl acrylate, etc. (along with a plasticizer if necessary) is used to facilitate cold molding.

本発明の方法によると、AlとBとの両焼結促進剤を添
加するので、B/Alの原子比を0.15≦B/Al<
2の範囲内で所望の比率に調整し得られ、特に炭化珪素
原料粉末は高純度のものが得難く、通常アルミニウムが
不純物として含まれている。
According to the method of the present invention, since both Al and B sintering accelerators are added, the atomic ratio of B/Al is set to 0.15≦B/Al<
In particular, silicon carbide raw material powder is difficult to obtain with high purity, and usually contains aluminum as an impurity.

このような炭化珪素原料を使用する際AlB2等の単一
化合物を使用すると、B/Alの原子比を調整し得られ
ないが、本発明によると、このような原料を使用する場
合もその調整が容易である。
When using such a silicon carbide raw material, if a single compound such as AlB2 is used, the atomic ratio of B/Al cannot be adjusted, but according to the present invention, it is possible to adjust the atomic ratio even when such a raw material is used. is easy.

また、B/Alの原子比を特定比(0.15≦B/Al
<2)にすることによって、少量の焼結促進剤の使用に
よって、常温でも高強度で、高温においてもその強度を
低下しない炭化珪素焼結体が得られる。
In addition, the atomic ratio of B/Al is set to a specific ratio (0.15≦B/Al
<2), by using a small amount of sintering accelerator, it is possible to obtain a silicon carbide sintered body that has high strength even at room temperature and does not lose its strength even at high temperatures.

且つ、炭素系の添加物の適量の添加により焼結体内の酸
素分を除去し得、これにより焼結促進剤が焼結体内で異
相を形成することなく、このため、高温でも高強度で、
耐酸化性も優れた物性を有する炭化珪素焼結体が得られ
る効果を有する。
In addition, by adding an appropriate amount of carbon-based additives, the oxygen content in the sintered body can be removed, thereby preventing the sintering accelerator from forming a foreign phase within the sintered body, resulting in high strength even at high temperatures.
This has the effect that a silicon carbide sintered body having physical properties with excellent oxidation resistance can be obtained.

実施例 1 工業用炭化珪素市販品二種グリーンおよびブラック(い
ずれも200メッシュ以下)を鋼鉄で粉体流路を構成さ
せたジエツトミルで、製品を空気流で分級しながらくり
返し粉砕し、水篩して粒径1.5ミクロン以下の微粉末
を得た。
Example 1 Two types of commercially available industrial silicon carbide products, green and black (both 200 mesh or less), were ground repeatedly in a jet mill with a powder flow path made of steel, while being classified with an air flow, and then sieved with water. A fine powder with a particle size of 1.5 microns or less was obtained.

この微粉末を600℃の酸素気流中で酸化し、塩酸およ
び硝弗酸で処理した。
This fine powder was oxidized in an oxygen stream at 600°C and treated with hydrochloric acid and nitric-fluoric acid.

その分析結果は次の通りであった。The analysis results were as follows.

これらの微粉末を、下記に示す条件で硼素系およびアル
ミニウム系の焼結促進剤ならびに炭素系添加剤を加え、
下記に示す条件で仮焼および焼結した。
Boron-based and aluminum-based sintering accelerators and carbon-based additives are added to these fine powders under the conditions shown below.
Calcining and sintering were performed under the conditions shown below.

焼結体の性質は下記の通りである。なお、本発明の上記
焼結体を電子線照射X線マイクロアナライザーにより調
べたところ、焼結体中にアルミニウムおよび硼素の偏析
は認められない。
The properties of the sintered body are as follows. In addition, when the above-mentioned sintered body of the present invention was examined using an electron beam irradiation X-ray microanalyzer, no segregation of aluminum and boron was observed in the sintered body.

なお原料、ブラックは既に原料の段階で0.22重量パ
ーセントのアルミニウムを含んでいたのでこのものには
アルミニウム系添加物は加えなかった。
Note that since the raw material black already contained 0.22% by weight of aluminum at the raw material stage, no aluminum-based additives were added to this material.

実施例 2 高純度無定形シリカ微粉末とカーボンブラックとを、メ
ノー製ボールミルを用いて1:4のモル比で混合し、こ
れを大気圧のアルゴン雰囲気下で、1900℃で30分
間加熱し、続いて2300℃に10時間保持して冷却し
た後、遊離炭素を酸化して除去した。
Example 2 High-purity amorphous silica fine powder and carbon black were mixed at a molar ratio of 1:4 using an agate ball mill, and this was heated at 1900° C. for 30 minutes under an argon atmosphere at atmospheric pressure. Subsequently, the temperature was maintained at 2300° C. for 10 hours and cooled, and then free carbon was oxidized and removed.

次いで、実施例1と同様にしてジエットミルで粉砕、精
製して炭化珪素微粉末を得た。
Next, in the same manner as in Example 1, the mixture was crushed and purified using a jet mill to obtain a fine silicon carbide powder.

その組成ならびに分析結果は次の通りのものであった。Its composition and analysis results were as follows.

この粉末を下記に示す条件で硼素およびアルミニウム系
の焼結促進剤ならびに炭素系添加物を加え、下記の条件
で仮焼および焼結を行った。
A boron- and aluminum-based sintering accelerator and a carbon-based additive were added to this powder under the conditions shown below, and calcination and sintering were performed under the conditions shown below.

焼結体の性質は下記の通りであった。The properties of the sintered body were as follows.

なお、焼結体を電子線照射X線マイクロアナラライザー
により調べたところ、焼結体中に硼素およびアルミニウ
ムの偏析は認められなかった。
When the sintered body was examined using an electron beam irradiation X-ray microanalyzer, no segregation of boron or aluminum was observed in the sintered body.

実施例 3 実施例で示した工業用炭化珪素微粉末のブラックを沈降
法によって1ミクロン以上の粗大粒子を除去し、懸濁液
から遠心分離により微粒子を得、これを硝弗酸で処理し
て比表面積8m2/gの微粒粉末を得た。
Example 3 Coarse particles of 1 micron or more were removed from the black industrial silicon carbide fine powder shown in Example by a sedimentation method, and fine particles were obtained from the suspension by centrifugation, which was then treated with nitric hydrofluoric acid. A fine powder with a specific surface area of 8 m2/g was obtained.

この微粒粉末の酸素含量は0.24重量%であった。The oxygen content of this fine powder was 0.24% by weight.

その他の分析結果は実施例1におけるとほぼ同様であっ
た。
Other analysis results were almost the same as in Example 1.

この微粒粉末に、0.15重量%の硼素微粉末と2.5
重量%のフルフリールアルコールとフォルムアルデヒド
の縮合体、3重量%のポリビニルブチラール(結合剤)
および40重量部のアセトン(分散媒)を加え、ポリエ
チレン製の混合用ボールミルで混合、乾燥して冷開成形
用粉末を得た。
To this fine powder, add 0.15% by weight of boron fine powder and 2.5% by weight of boron fine powder.
% by weight of a condensate of furfuryl alcohol and formaldehyde, 3% by weight of polyvinyl butyral (binder)
and 40 parts by weight of acetone (dispersion medium) were added, mixed in a polyethylene mixing ball mill, and dried to obtain a powder for cold-open molding.

この粉末をラバープレスして炭化珪素に換算して48重
量%の円柱状成形体(約10φ×10)を得た。
This powder was rubber pressed to obtain a cylindrical molded body (approximately 10φ×10) containing 48% by weight in terms of silicon carbide.

この成形体を黒鉛容器に入れ、アルゴン気流中で400
℃まで50℃/minでゆっくり昇温して結合剤を飛散
させた後、200℃/minで2050℃まで昇温して
、この温度で30分間保持した。
This molded body was placed in a graphite container and heated to 400°C in an argon stream.
After slowly raising the temperature to 50° C./min to scatter the binder, the temperature was raised to 2050° C. at 200° C./min and held at this temperature for 30 minutes.

気孔率約12%の焼結体を得た。A sintered body with a porosity of about 12% was obtained.

この焼結過程で約18%の焼成収縮を示したが、その収
縮は一様に収縮し亀裂の発生は認められなかった。
During this sintering process, sintering shrinkage of about 18% was exhibited, but the shrinkage was uniform and no cracks were observed.

曲げ強度は室温で約30kg/mm2程度であった。The bending strength was about 30 kg/mm2 at room temperature.

焼結体内の硼素、アルミニウムおよび鉄の分布は均一で
、粒界への偏析はX線マイクロアナライザーで認められ
なかった。
The distribution of boron, aluminum, and iron within the sintered body was uniform, and no segregation to grain boundaries was observed using an X-ray microanalyzer.

Claims (1)

【特許請求の範囲】[Claims] 1 炭化珪素粉末に焼結体内において総量で0.15〜
0.60重量%で、B/Alの原子比が0.15≦B/
Al<2範囲の量の硼素系およびアルミニウム系の両焼
結促進剤と、原料および添加物が随伴する酸素を一酸化
炭素とし、硼素、アルミニウムおよび反応によって生成
する珪素を炭化物として固定するに必要な炭素ならびに
炭化珪素の0.1〜0.5重量%の炭素を供給する炭素
系添加物を混合し、不活性雰囲気下で1850〜220
0℃で焼結することを特徴とする炭化珪素焼結体の製造
法。
1 Silicon carbide powder contains a total amount of 0.15 to 0.15 in the sintered body.
At 0.60% by weight, the atomic ratio of B/Al is 0.15≦B/
Both boron-based and aluminum-based sintering accelerators in an amount in the range of Al<2, and the oxygen accompanying the raw materials and additives are converted into carbon monoxide, which is necessary to fix boron, aluminum, and silicon produced by the reaction as carbide. carbon and a carbon-based additive that provides 0.1 to 0.5% carbon by weight of silicon carbide, and 1850 to 220
A method for producing a silicon carbide sintered body, characterized by sintering at 0°C.
JP53093328A 1978-07-31 1978-07-31 Manufacturing method of silicon carbide sintered body Expired JPS589785B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53093328A JPS589785B2 (en) 1978-07-31 1978-07-31 Manufacturing method of silicon carbide sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53093328A JPS589785B2 (en) 1978-07-31 1978-07-31 Manufacturing method of silicon carbide sintered body

Publications (2)

Publication Number Publication Date
JPS5520269A JPS5520269A (en) 1980-02-13
JPS589785B2 true JPS589785B2 (en) 1983-02-22

Family

ID=14079199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53093328A Expired JPS589785B2 (en) 1978-07-31 1978-07-31 Manufacturing method of silicon carbide sintered body

Country Status (1)

Country Link
JP (1) JPS589785B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5727968A (en) * 1980-07-17 1982-02-15 Kurosaki Refractories Co Plate brick for sliding nozzle
JPS60246267A (en) * 1985-04-22 1985-12-05 旭硝子株式会社 Silicon carbide base sintered body
JPS61200216U (en) * 1985-06-03 1986-12-15
JPS62167253A (en) * 1986-01-17 1987-07-23 昭和電工株式会社 High electric resistivity sic sintered body
US4767728A (en) * 1986-07-30 1988-08-30 The United States Of America As Represented By The United States National Aeronautics And Space Administration Boron-containing organosilane polymers and ceramic materials thereof
WO2006038677A1 (en) 2004-10-06 2006-04-13 Rie Usui Fryer

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53127512A (en) * 1977-03-31 1978-11-07 Carborundum Co High density * heat shockkresistant silicon carbide made by hot press molding

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53127512A (en) * 1977-03-31 1978-11-07 Carborundum Co High density * heat shockkresistant silicon carbide made by hot press molding

Also Published As

Publication number Publication date
JPS5520269A (en) 1980-02-13

Similar Documents

Publication Publication Date Title
US4123286A (en) Silicon carbide powder compositions
US3853566A (en) Hot pressed silicon carbide
JPS6228109B2 (en)
CA1334677C (en) Silicon carbide sintered body
US20120172193A1 (en) Method for producing pressurelessly sintered zirconium diboride/silicon carbide composite bodies
JPS5852948B2 (en) Sintered body of silicon carbide and carbon-fired boron
Dole et al. Densification and microstructure development in boron carbide
JPS5850929B2 (en) Method for manufacturing silicon carbide powder
EP0159186B1 (en) Method manufacturing high-strength sintered silicon carbide articles
US4455385A (en) Silicon carbide sintered body
US4326039A (en) Dense shaped articles of polycrystalline β-silicon carbide and process for the manufacture thereof by hot-pressing
JPS589785B2 (en) Manufacturing method of silicon carbide sintered body
US4486543A (en) Polycrystalline shaped body of silicon carbide and method for its production
JPH0228539B2 (en)
US4495122A (en) Method for the production of a polycrystalline shaped body of silicon carbide
US7314593B2 (en) Process for preparing improved silicon carbide powder
JPS6152106B2 (en)
US5665661A (en) Crystallization of grain boundery phases in silicon carbide ceramics
US5925584A (en) Boron nitride-toughened single phase silicon aluminum oxynitride composite, article and method of making same
JP3297740B2 (en) Low temperature sintering method of silicon carbide powder.
JPH04270173A (en) Sintered sic
JP3979680B2 (en) Silicon nitride powder for silicon nitride sintered body, silicon nitride sintered body and method for producing the same
JP2531871B2 (en) Method for manufacturing high-density boron nitride pressureless sintered body
JPH0463028B2 (en)
JPS5834427B2 (en) Manufacturing method of silicon nitride sintered body