JPH0143807B2 - - Google Patents

Info

Publication number
JPH0143807B2
JPH0143807B2 JP1108885A JP1108885A JPH0143807B2 JP H0143807 B2 JPH0143807 B2 JP H0143807B2 JP 1108885 A JP1108885 A JP 1108885A JP 1108885 A JP1108885 A JP 1108885A JP H0143807 B2 JPH0143807 B2 JP H0143807B2
Authority
JP
Japan
Prior art keywords
refining
basicity
slag
steel
chromium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1108885A
Other languages
Japanese (ja)
Other versions
JPS61170507A (en
Inventor
Yasumasa Ikehara
Haruki Aryoshi
Ryoichi Hidaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP1108885A priority Critical patent/JPS61170507A/en
Publication of JPS61170507A publication Critical patent/JPS61170507A/en
Publication of JPH0143807B2 publication Critical patent/JPH0143807B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/005Manufacture of stainless steel
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/068Decarburising
    • C21C7/0685Decarburising of stainless steel

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は高S含クロム鋼の精錬方法に関するも
のである。 〔従来の技術〕 含クロム鋼の精錬においては、普通鋼の精錬と
同様にスラグの塩基度(CaO/SiO2)により鋼
の脱Sの効果及び耐火物の寿命が著しく異なる。
一般に塩基度を高くすると脱Sは促進され逆に塩
基度を低くすると脱Sは抑制される。また、耐火
物に関しては塩基性耐火物を使用する炉において
は塩基度を高くした方が低くするよりも溶損が軽
減されることが知られている。 ところで高S鋼の精錬においては脱Sを抑制す
る必要があるが脱Sを抑制しようとして塩基度を
下げると耐火物が溶損するという問題が生じる。 このような問題を解決する方法としては、例え
ば特開昭54−38213号公報記載S系、快削鋼の精
錬方法が公知である。この方法は溶銑〔S〕が
0.05%の精錬において到達〔S〕が0.04%、スラ
グ中の(MgO)を6〜30%とし且つスラグ塩基
度を1.0〜3.6とするものである。 しかしながら到達〔S〕が高い場合、例えば鋼
中〔S〕が0.1〜0.5%含有するクロム鋼の精錬に
おいてはスラグ塩基度の変動により脱S作用が大
きく変動するため、〔S〕の適中を図るには、塩
基度を1.2未満にコントロールせざるを得ない。
他方含クロム鋼の精錬では塩基度を1.2以上とす
る必要がある。すなわち含クロム鋼の精錬では脱
炭の進行とともに鋼中〔Cr〕の酸化が増大して
くる。この〔Cr〕の酸化を抑制するには、CO分
圧を低くすればよい。CO分圧を低くし効率よく
脱炭する方法として真空中で脱炭したり、希釈ガ
スを酸素ガスと同時に吹込む希釈脱炭法が広く用
いられている。 しかしながら上記いずれの方法も〔Cr〕の酸
化を皆無にすることは不可能であり脱炭後、還元
剤(Fe−Si等)を投入し酸化した〔Cr〕を還元
し回収する方法が採用されている。この〔Cr〕
の回収割合(以下Cr歩留)はスラグの塩基度に
強く影響を受け、効率よく回収するにはスラグの
塩基度を1.2以上にする必要がある。 すなわち、高S含クロム鋼の精錬方法において
スラグ塩基度を1.2未満にして鋼中〔S〕の適中
を図ろうとすれば耐火物の大幅な溶損及びCr歩
留の著しい低下等の問題があり、逆にスラグ塩基
度を1.2以上にしてCr歩留の向上及び耐火物の溶
損防止を図ろうとすれば〔S〕の適中精度が低下
するという問題がある。 〔発明が解決しようとする問題点〕 本発明は高硫含クロム鋼の精錬方法における前
記の問題を解決し転炉、AOD炉等において耐火
物溶損が少なくCr歩留も良好で且つ鋼中〔S〕
の適中を精度よく達成できる精錬方法を提供する
ものである。 〔問題点を解決するための手段、作用〕 本発明は〔S〕を0.1〜0.5%含有する含クロム
鋼の精錬において、精錬中におけるスラグ中の
(S)を1.5〜6.0に調整し、かつ精錬後のスラグ
塩基度(CaO/SiO2)が1.2〜2.0となるように精
錬することを特徴とする。塩基性耐火物で内張り
された転炉又はAOD炉等で含クロム鋼を精錬す
る場合、還元終了時点(以下、精錬後という)の
スラグ塩基度と炉体耐火物の溶損量ならびにCr
歩留の関係を第1図に示す。スラグ塩基度が1.2
以下になると炉体耐火物の溶損が著しく大きくな
り、且つCr歩留も著しく低下してくる。またス
ラグ塩基度が2.0以上になるとCr歩留が低下して
くる為コスト面で不利である。これは高塩基度に
なるとスラグが固くなり還元反応の進行が阻害さ
れる為である。従つて耐火物溶損及びCr歩留の
面から精錬後のスラグ塩基度は1.2〜2.0が最適で
ある。 次に精錬後のスラグ塩基度と脱S反応との関係
を第2図に示す。 第2図において、脱S反応の指標として精錬終
了後の鋼中〔S〕とスラグ中(S)の分配比
(〔S〕/〔S〕)を示している。S分配比が大き
い程脱S反応の進行が大である。精錬後の鋼中
〔S〕が0.030%以下の場合で精錬中のスラグ中
(S)が0.5%以下の場合(図中:〇印)、塩基度
が1.2以上になるとS分配比が大きくなり脱Sが
促進されていることがわかる。 これに対し精錬後の鋼中〔S〕が0.1〜0.5%、
精錬中のスラグ中(S)が1.5〜6.0%の場合(図
中:×印)、塩基度が0.7〜2.0の範囲においては
精錬終了後のS分配比の変動は前記(図中:〇
印)に比較してスラグ塩基度との関係は顕著でな
くしかもバラツキも小さい。 一方、精錬中のスラグ中(S)が1.5%未満で
あると精錬後の塩基度が高くなつた場合分配比
(S)/〔S〕が増大するため鋼中〔S〕を目標
より低く外す可能性が生じ適中精度が悪くなる。
又精錬中のスラグ中(S)が6.0%以上であると
精錬後の塩基度が低くなつた場合、分配比
〔S〕/〔S〕が減少するため鋼中〔S〕を目標
より高く外す可能性が生じ適中精度が悪くなる。 そこで精錬開始前又は開始時にスラグ中(S)
を予め1.5〜6.0%に調整して精錬中にこの範囲を
維持すれば塩基度が高くなつても分配比(S)/
〔S〕が著しく増大することなく安定しており、
そのバラツキも低塩基度の時と同様で、鋼中
〔S〕は低塩基度のときと同等の適中精度が得ら
れる。 〔実施例〕 本発明を実施例にもとづいて説明する。 実施例 1 塩基性耐火物を使用した60Ton AOD炉による
高S含クロム鋼の精錬において精錬開始時のスラ
グ中(S)を3.5%とし脱炭を行ない、精錬後ス
ラグ塩基度を1.6にした本発明の実施例と従来法
による比較例の平均実績を第1表に示す。 第1表において本発明による実施例は比較例に
対し、AODスタート〔S〕が0.3%から0.6%に大
幅に増えていても精練後〔S〕は0.25%と同等の
値となつている。これは精錬後スラグ塩基度が
0.9から1.6へ高塩基度になつているので還元期に
脱S反応が進行したためであり、且つスラグ中
(S)が3.0%に制御されており、分配比(S)/
〔S〕が安定しているので精度よく鋼中〔S〕を
適中することが可能となつたからである。 実施例 2 60Ton電気炉で原料溶解し、60Ton AOD炉で
高S含クロム鋼の精錬を行なう場合、原料中に
〔S〕を1%配合した場合の本発明の実施例と従
来法による比較例の平均実績を第2表に示す。 第2表に示す如く本発明による実施例は比較例
に対し配合〔S〕が0.5%から1.0%に増えてお
り、電気炉においても脱S反応が進行するため電
気炉精錬後の〔S〕は0.3%から0.6%に増えてい
るが、AOD精錬後の成分は0.3%と同等の値とな
つている。 これは精錬後塩基度が0.8から1.4へと高塩基度
になつているので還元期に脱Sが進行したためで
あり、且つスラグ中(S)が3.0%に制御されて
いるので分配比(S)/〔S〕が安定しており精
度よく鋼中〔S〕を適中することが可能となつた
からである。
[Industrial Application Field] The present invention relates to a method for refining high S chromium-containing steel. [Prior Art] In the refining of chromium-containing steel, as in the refining of ordinary steel, the effect of removing S from the steel and the life of the refractory vary significantly depending on the basicity (CaO/SiO 2 ) of the slag.
In general, increasing the basicity promotes S removal, and conversely, decreasing the basicity suppresses S removal. Regarding refractories, it is known that in a furnace using basic refractories, increasing the basicity reduces melting loss more than decreasing the basicity. By the way, in the refining of high S steel, it is necessary to suppress S removal, but if the basicity is lowered in an attempt to suppress S removal, a problem arises in that the refractory is eroded. As a method for solving this problem, for example, a method for refining S-based free-cutting steel described in Japanese Patent Application Laid-Open No. 54-38213 is known. In this method, hot metal [S]
When refining to 0.05%, the [S] reached is 0.04%, the (MgO) in the slag is 6 to 30%, and the slag basicity is 1.0 to 3.6. However, when the attained [S] is high, for example in the refining of chromium steel containing 0.1 to 0.5% [S] in the steel, the desulfurization effect fluctuates greatly due to fluctuations in slag basicity, so it is necessary to aim for the right amount of [S]. Therefore, basicity must be controlled to less than 1.2.
On the other hand, when refining chromium-containing steel, it is necessary to have a basicity of 1.2 or higher. In other words, in the refining of chromium-containing steel, oxidation of [Cr] in the steel increases as decarburization progresses. In order to suppress this oxidation of [Cr], it is sufficient to lower the CO partial pressure. As a method for efficiently decarburizing by lowering the partial pressure of CO, decarburization in a vacuum or dilution decarburization, in which diluent gas is simultaneously blown in with oxygen gas, is widely used. However, none of the above methods can completely eliminate the oxidation of [Cr], so a method is adopted in which after decarburization, a reducing agent (Fe-Si, etc.) is introduced to reduce and recover the oxidized [Cr]. ing. This [Cr]
The recovery ratio (hereinafter referred to as Cr yield) is strongly influenced by the basicity of the slag, and for efficient recovery, the basicity of the slag needs to be 1.2 or higher. In other words, if the slag basicity is set to less than 1.2 in the refining method of high S chromium-containing steel in order to target [S] in the steel, there will be problems such as significant erosion of the refractories and a significant decrease in the Cr yield. On the other hand, if an attempt is made to increase the slag basicity to 1.2 or more in order to improve the Cr yield and prevent the erosion of refractories, there is a problem in that the accuracy of [S] is reduced. [Problems to be Solved by the Invention] The present invention solves the above-mentioned problems in the refining method for high-sulfur-containing chromium steel. [S]
The present invention provides a refining method that can accurately achieve the target value. [Means and effects for solving the problems] The present invention is aimed at, in refining chromium-containing steel containing 0.1 to 0.5% [S], adjusting (S) in slag to 1.5 to 6.0 during refining, and It is characterized by refining so that the slag basicity (CaO/SiO 2 ) after refining is 1.2 to 2.0. When refining chromium-containing steel in a converter or AOD furnace lined with basic refractories, the slag basicity at the end of reduction (hereinafter referred to as "after refining"), the amount of erosion of the furnace refractory, and Cr
Figure 1 shows the relationship between yields. Slag basicity is 1.2
If it is below, the melting loss of the furnace refractory will become significantly large, and the Cr yield will also decrease significantly. Furthermore, if the slag basicity exceeds 2.0, the Cr yield will decrease, which is disadvantageous in terms of cost. This is because when the basicity becomes high, the slag becomes hard and the progress of the reduction reaction is inhibited. Therefore, from the viewpoint of refractory erosion and Cr yield, the optimum slag basicity after refining is 1.2 to 2.0. Next, FIG. 2 shows the relationship between the basicity of the slag after refining and the desulfurization reaction. In FIG. 2, the distribution ratio ([S]/[S]) between [S] in the steel and (S) in the slag after the completion of refining is shown as an index of the S-removal reaction. The greater the S distribution ratio, the greater the progress of the S removal reaction. When the [S] in the steel after refining is 0.030% or less and the (S) in the slag during refining is 0.5% or less (○ mark in the figure), the S distribution ratio increases when the basicity becomes 1.2 or more. It can be seen that desistance is promoted. On the other hand, [S] in steel after refining is 0.1 to 0.5%,
When the (S) content in the slag during refining is 1.5 to 6.0% (marked with an x in the figure) and the basicity is in the range of 0.7 to 2.0, the fluctuation of the S distribution ratio after the completion of refining is as described above (marked with a circle in the figure). ), the relationship with slag basicity is not significant and the variation is small. On the other hand, if the (S) in the slag during refining is less than 1.5%, the distribution ratio (S) / [S] will increase when the basicity after refining increases, so the [S] in the steel will be lower than the target. This may result in poor accuracy.
Also, if the (S) in the slag during refining is 6.0% or more and the basicity after refining becomes low, the distribution ratio [S] / [S] will decrease, so the [S] in the steel will be higher than the target. This may result in poor accuracy. Therefore, in the slag before or at the start of refining (S)
If you adjust it to 1.5-6.0% in advance and maintain this range during refining, the distribution ratio (S)/
[S] is stable without significant increase,
The variation is the same as when the basicity is low, and in steel [S], the same accuracy as when the basicity is low can be obtained. [Example] The present invention will be explained based on an example. Example 1 In the refining of high S chromium steel in a 60Ton AOD furnace using basic refractories, the slag (S) at the start of refining was set at 3.5% and decarburized, and the slag basicity after refining was 1.6. Table 1 shows the average results of the embodiments of the invention and comparative examples using the conventional method. In Table 1, even though the AOD start [S] of the examples according to the present invention is significantly increased from 0.3% to 0.6% compared to the comparative example, the value of [S] after scouring is the same as 0.25%. This is because the slag basicity after refining is
This is because the basicity has increased from 0.9 to 1.6, so the desulfurization reaction has progressed during the reduction period, and the (S) in the slag is controlled at 3.0%, resulting in a distribution ratio (S)/
This is because [S] is stable, making it possible to accurately hit [S] in steel. Example 2 Example of the present invention and comparative example of conventional method when raw material is melted in a 60Ton electric furnace and high S chromium-containing steel is refined in a 60Ton AOD furnace, when 1% [S] is mixed in the raw material Table 2 shows the average performance. As shown in Table 2, in the example according to the present invention, the content of [S] increased from 0.5% to 1.0% compared to the comparative example, and since the S removal reaction progresses even in the electric furnace, the [S] after electric furnace refining has increased from 0.3% to 0.6%, but the content after AOD refining remains at the same value as 0.3%. This is because the basicity has become high from 0.8 to 1.4 after refining, so desulfurization has progressed during the reduction period, and since the (S) in the slag is controlled to 3.0%, the distribution ratio (S) )/[S] is stable and it has become possible to accurately hit [S] in steel.

【表】【table】

【表】【table】

〔発明の効果〕〔Effect of the invention〕

本発明による高S含クロム鋼精錬方法は以上の
ように構成されているので次の効果を奏する。 (1) スラグ塩基度が高塩基度で精錬できるので炉
体耐火物の溶損が少なく且つCr歩留も高い。 (2) スラグ中(S)をあらかじめ1.5〜6.0%とす
ることにより分配比(S)/〔S〕のバラツキ
を小さくすることができ、高塩基度での精錬で
も低塩基度の場合と同等の精度で〔S〕の適中
ができる。 (3) 配合〔S〕を高くすることが可能であり安価
な高硫原料、例えばNiマツトとか硫化鉱等の
使用が出来るので原硫費を著しく軽減すること
ができる。
Since the method for refining high S chromium-containing steel according to the present invention is configured as described above, it has the following effects. (1) Since the slag can be refined with high basicity, there is little erosion of the furnace refractories and the Cr yield is high. (2) By adjusting the (S) content in the slag to 1.5 to 6.0% in advance, it is possible to reduce the variation in the distribution ratio (S)/[S], and even refining with high basicity is equivalent to that with low basicity. You can hit [S] with the accuracy of . (3) Since it is possible to increase the proportion [S] and use inexpensive high-sulfur raw materials such as Ni matu and sulfide ore, the raw sulfur cost can be significantly reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はスラグ塩基度と耐火物溶損量および
Cr歩留との関係を示す図、第2図はスラグ塩基
度と分配比(S)/〔S〕の関係を示す図であ
る。
Figure 1 shows slag basicity, amount of refractory erosion, and
A diagram showing the relationship between Cr yield and FIG. 2 is a diagram showing the relationship between slag basicity and distribution ratio (S)/[S].

Claims (1)

【特許請求の範囲】 1 〔S〕を0.1〜0.5%含有する含クロム鋼の精
錬において、精錬中におけるスラグ中の(S)を
1.5〜6.0%に調整し、かつ精錬後のスラグ塩基度
(CaO/SiO2)が1.2〜2.0となるように精錬する
ことを特徴とする高S含クロム鋼の精錬方法。
[Claims] 1. In the refining of chromium-containing steel containing 0.1 to 0.5% [S], (S) in the slag during refining is
A method for refining high S chromium-containing steel, which comprises adjusting the slag basicity (CaO/SiO 2 ) to 1.5 to 6.0% and refining the slag basicity (CaO/SiO 2 ) to 1.2 to 2.0.
JP1108885A 1985-01-25 1985-01-25 Method for refining high-s chromium steel Granted JPS61170507A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1108885A JPS61170507A (en) 1985-01-25 1985-01-25 Method for refining high-s chromium steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1108885A JPS61170507A (en) 1985-01-25 1985-01-25 Method for refining high-s chromium steel

Publications (2)

Publication Number Publication Date
JPS61170507A JPS61170507A (en) 1986-08-01
JPH0143807B2 true JPH0143807B2 (en) 1989-09-22

Family

ID=11768227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1108885A Granted JPS61170507A (en) 1985-01-25 1985-01-25 Method for refining high-s chromium steel

Country Status (1)

Country Link
JP (1) JPS61170507A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6114118B2 (en) * 2013-06-04 2017-04-12 日本冶金工業株式会社 Method for producing S-containing steel

Also Published As

Publication number Publication date
JPS61170507A (en) 1986-08-01

Similar Documents

Publication Publication Date Title
JPH0143807B2 (en)
EP0146696B1 (en) Process for refining of chromium-containing molten steel
JP3158912B2 (en) Stainless steel refining method
JPS6354045B2 (en)
JP3511808B2 (en) Stainless steel smelting method
JPH11131122A (en) Method of decarburizing refining crude molten stainless steel using blast furnace molten iron and ferro chromium alloy
JP2002146429A (en) METHOD FOR PRODUCING AUSTENITIC HIGH Mn STAINLESS STEEL
KR102581777B1 (en) method of manufacturing austenite stainless steel
JP3728922B2 (en) Method for melting molybdenum-containing molten steel
JP5454313B2 (en) Blowing acid decarburization method for chromium-containing steel
JP2795513B2 (en) Decarburization refining method of chromium-containing molten steel
KR100434735B1 (en) Method for manufacturing ultra-low C steel having phosphorous
JP3820686B2 (en) Melting method of low nitrogen stainless steel
KR20020051961A (en) A method for refining high phosphurous steel in converter
JPH0250165B2 (en)
JPS621444B2 (en)
JPH0885815A (en) Method for effectively refining molten chromium-containing steel using decarburized slag
JPS6318645B2 (en)
JPH0438806B2 (en)
JPS591620A (en) Refining agent having high desulfurizing power causing slight melt fracture on refractory
JPH06925B2 (en) Refining method of stainless steel
KR101268667B1 (en) Method for refining of high purity stainless steel
JPH08302418A (en) Slag of chromium steel, and its treating method
JPH05222428A (en) Method for reforming slag
JPH0539521A (en) Method for decarbonize-refining of molten chromium-containing steel