JP5454313B2 - Blowing acid decarburization method for chromium-containing steel - Google Patents

Blowing acid decarburization method for chromium-containing steel Download PDF

Info

Publication number
JP5454313B2
JP5454313B2 JP2010086092A JP2010086092A JP5454313B2 JP 5454313 B2 JP5454313 B2 JP 5454313B2 JP 2010086092 A JP2010086092 A JP 2010086092A JP 2010086092 A JP2010086092 A JP 2010086092A JP 5454313 B2 JP5454313 B2 JP 5454313B2
Authority
JP
Japan
Prior art keywords
chromium
molten metal
mass
content
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010086092A
Other languages
Japanese (ja)
Other versions
JP2011214125A (en
Inventor
紀史 浅原
勝彦 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2010086092A priority Critical patent/JP5454313B2/en
Publication of JP2011214125A publication Critical patent/JP2011214125A/en
Application granted granted Critical
Publication of JP5454313B2 publication Critical patent/JP5454313B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Description

本発明は、クロム含有鋼の吹酸脱炭方法に関するものである。   The present invention relates to a blown acid decarburization method for chromium-containing steel.

ステンレス鋼を代表とするクロム含有鋼を溶製する方法として、電気炉を用いる方法と転炉を用いる方法が採用されている。電気炉を用いる方法は鉄源として主にスクラップを用い、電気炉のみで仕上げ精錬を完了する普通法、炉外精錬にVODを用いる方法、AOD炉を用いる方法が採用されている。転炉を用いる方法では、鉄源として主に高炉溶銑を用い、転炉内の溶銑にFe−Crを添加して吹酸脱炭を行う。その後、炉外精錬としてVOD、AOD、RH−OBなどが組み合わされる(非特許文献1参照)。   As a method for melting chromium-containing steel typified by stainless steel, a method using an electric furnace and a method using a converter are employed. As a method using an electric furnace, scrap is mainly used as an iron source, and a normal method in which finishing refining is completed only by an electric furnace, a method using VOD for out-of-furnace refining, and a method using an AOD furnace are employed. In the method using a converter, blast furnace hot metal is mainly used as an iron source, and Fe-Cr is added to the hot metal in the converter to perform blown acid decarburization. Then, VOD, AOD, RH-OB, etc. are combined as outside refining (refer nonpatent literature 1).

クロム含有鋼の溶製において、鋼中のCr源として主にFe−Crが用いられる。Fe−Crには、S含有量が0.03質量%以上である汎用Fe−Crと、S含有量が0.02質量%以下である低硫黄Fe−Crとがある。低硫黄Fe−Crは汎用Fe−Crと比較して高価である。   In the melting of chromium-containing steel, Fe—Cr is mainly used as a Cr source in the steel. Fe-Cr includes general-purpose Fe-Cr having an S content of 0.03% by mass or more and low sulfur Fe-Cr having an S content of 0.02% by mass or less. Low sulfur Fe—Cr is more expensive than general purpose Fe—Cr.

鋼中に含有する硫黄は鋼品質に種々の悪影響を及ぼすため、クロム含有鋼においても鋼中の硫黄含有量を低減することが要求される。   Since sulfur contained in steel has various adverse effects on steel quality, it is required to reduce the sulfur content in steel even in chromium-containing steel.

しかし、高クロム溶鉄は脱硫が困難であることが知られており、クロム源としてS含有量が高い汎用Fe−Crを用いたのでは、クロム源添加後に溶湯脱硫を行ったとしても目標とするS含有量まで脱硫を進行させることが困難となる。   However, it is known that high chromium molten iron is difficult to desulfurize, and if general-purpose Fe-Cr having a high S content is used as the chromium source, even if the molten metal desulfurization is performed after adding the chromium source, it is a target. It becomes difficult to advance the desulfurization to the S content.

例えば上記した転炉を用いる方法では、溶銑予備処理にて脱硫した溶銑を転炉に供給し、転炉でFe−Crを供給、溶解するが、吹酸脱炭の際にある程度は溶鋼の脱硫がなされるものの、その溶鋼中にクロムを含むため脱硫能力の限界がある。このため一般に、転炉で供給するFe−Crは前記した低硫黄Fe−Crを使用する前提で、転炉に供給する溶銑は硫黄含有量を0.013質量%以下(吹酸脱炭開始時点での目標S含有量をS≦0.013質量%とすること)となるように溶銑予備処理することが求められていた。この転炉での処理の後、用途に応じて炉外精錬(二次精錬)で脱硫処理がなされるが、溶鋼にクロムを含み、炭素量も少ないため、その脱硫能力には限界があるため、転炉に供給する溶銑(吹酸脱炭開始時)はS含有量を0.013質量%以下とすることは重要である。   For example, in the method using the converter described above, the hot metal desulfurized in the hot metal pretreatment is supplied to the converter, and Fe-Cr is supplied and melted in the converter, but to some extent desulfurization of the molten steel during blown acid decarburization. However, there is a limit of desulfurization ability because the molten steel contains chromium. Therefore, in general, Fe-Cr supplied in the converter is based on the premise that the above-described low sulfur Fe-Cr is used, and the hot metal supplied to the converter has a sulfur content of 0.013 mass% or less (at the start of blowing acid decarburization). In this case, the hot metal preliminary treatment has been required so that the target S content in S is 0.01 ≦ 3% by mass). After treatment in this converter, desulfurization treatment is performed by out-of-furnace refining (secondary refining) depending on the application, but because the molten steel contains chromium and has a small amount of carbon, its desulfurization capacity is limited. It is important that the hot metal supplied to the converter (at the start of blowing acid decarburization) has an S content of 0.013% by mass or less.

なお本発明は、Fe−Crに含まれる硫黄と溶湯中のS量について取り扱うものであり、吹酸脱炭工程で添加する副原料(例えば炭材、Mn、Si等を添加する合金鉄)中に含まれる硫黄は、前記した吹酸脱炭開始時のS含有量(0.013質量%以下)には含めない。   Note that the present invention deals with sulfur contained in Fe-Cr and the amount of S in the molten metal, and in the auxiliary materials added in the blowing acid decarburization step (for example, carbon steel, alloy iron to which Mn, Si, etc. are added). Is not included in the S content (0.013 mass% or less) at the start of the above-described blowing acid decarburization.

また上記した電炉を用いる方法でも、電炉でクロム含有粗溶鋼を溶製した後の脱硫能力には限界があり、低硫黄ステンレススクラップや低硫黄Fe−Crを使用する等の原料を選定し、溶製の前段階で硫黄の混入を防ぐ必要がある。   The method using the electric furnace also has a limit in the desulfurization capacity after the chrome-containing crude molten steel is melted in the electric furnace, so that raw materials such as low-sulfur stainless steel scrap and low-sulfur Fe-Cr are selected and melted. It is necessary to prevent sulfur contamination at the pre-production stage.

上記のように、高クロム溶鉄は脱硫が困難であることから、クロム源として高価な低硫黄Fe−Crが用いられていた。   As described above, since high chromium molten iron is difficult to desulfurize, expensive low sulfur Fe—Cr has been used as a chromium source.

特許文献1には、原料を電気炉に装入して含Cr溶銑を製造し、次いで転炉で吹酸脱炭し、脱ガス工程で真空脱炭及び脱酸を行い、その後に連続鋳造装置でスラブを製造する方法が記載されている。また特許文献2には、クロムを含んだ竪型炉溶湯と電気炉溶湯を合わせ湯した後に転炉で精錬する方法が記載されている。特許文献1、2に記載されたいずれの方法においても、クロム源を添加した後の溶湯について脱硫を行うため、脱硫精錬において高い脱硫効率を実現することが困難であり、クロム源としては高価な低硫黄Fe−Crを用いることとなる。   In Patent Document 1, a raw material is charged into an electric furnace to produce Cr-containing hot metal, then blown acid decarburized in a converter, vacuum decarburized and deoxidized in a degassing step, and then a continuous casting apparatus Describes a method for producing slabs. Further, Patent Document 2 describes a method of refining in a converter after combining a vertical furnace molten metal containing chromium and an electric furnace molten metal. In any of the methods described in Patent Documents 1 and 2, since desulfurization is performed on the molten metal after adding the chromium source, it is difficult to achieve high desulfurization efficiency in desulfurization refining, and it is expensive as a chromium source. Low sulfur Fe—Cr will be used.

特開昭51−28502号公報JP-A-51-28502 特開平4−107206号公報JP-A-4-107206

日本鉄鋼協会編「第3版鉄鋼便覧II製銑・製鋼」昭和54年丸善株式会社発行、第695〜728頁Edited by the Japan Iron and Steel Association, “Third Edition Steel Handbook II Steelmaking and Steelmaking” published by Maruzen Co., Ltd., 1979, pages 695-728

吹酸脱炭開始時点においてS≦0.013質量%程度が要求される低硫黄クロム含有鋼を溶製する場合においても、クロム源として、高価な低硫黄Fe−Crではなく安価な汎用Fe−Crを用いることができれば、鋼製造コストを低減することができる。そこで本発明は、吹酸脱炭開始時点においてS≦0.013質量%程度が要求される低硫黄クロム含有鋼を溶製する場合において、クロム源として安価な汎用Fe−Crを用いることを可能にするクロム含有鋼の吹酸脱炭方法を提供することを目的とする。   Even when melting low-sulfur chromium-containing steel that requires about S ≦ 0.013 mass% at the start of blowing acid decarburization, it is not an expensive low-sulfur Fe—Cr but an inexpensive general-purpose Fe— If Cr can be used, the steel manufacturing cost can be reduced. Therefore, the present invention can use inexpensive general-purpose Fe—Cr as a chromium source when melting low-sulfur chromium-containing steel that requires about S ≦ 0.013 mass% at the start of blowing acid decarburization. An object of the present invention is to provide a blown acid decarburization method for chromium-containing steel.

Cr含有量が10%以上である高クロム溶湯であって、クロム源としてS含有量が高い汎用Fe−Crを用いた場合であっても、脱硫精錬後のS含有量を0.014〜0.020質量%程度まで低減するのであれば、通常の脱硫精錬で実現可能である。また、Cr含有量が4%以下の低クロム溶湯であれば、脱硫精錬でS含有量を0.010質量%以下まで低減することは容易である。そして、このように脱硫精錬を行った後の含クロム溶湯と低クロム溶湯とを混合し、この混合溶湯を精錬容器内で吹酸により脱炭することとすれば、クロム源としてS含有量が高い汎用Fe−Crを用いた場合であっても、吹酸脱炭開始時の溶湯中S含有量を0.013質量%以下とすることが可能となる。   Even if it is a high chromium molten metal having a Cr content of 10% or more and a general-purpose Fe—Cr having a high S content as a chromium source, the S content after desulfurization and refining is 0.014 to 0. If it is reduced to about .020 mass%, it can be realized by ordinary desulfurization refining. Moreover, if it is a low chromium molten metal whose Cr content is 4% or less, it is easy to reduce the S content to 0.010% by mass or less by desulfurization refining. And, if the chromium-containing molten metal after the desulfurization refining is mixed with the low chromium molten metal and the mixed molten metal is decarburized with blowing acid in the refining vessel, the S content as the chromium source is Even when high general-purpose Fe—Cr is used, the S content in the molten metal at the start of blowing acid decarburization can be made 0.013 mass% or less.

本発明は、上記知見に基づいてなされたものであり、その要旨は以下の通りである。
(1)電気炉にてC:2〜8質量%、Cr:10質量%以上の含クロム溶湯を溶製し、Cr:4質量%以下の低クロム溶湯を準備し、前記含クロム溶湯X(トン)と低クロム溶湯とを混合してCr:8〜26質量%の混合溶湯Y(トン)とし、0.52≦X/Y≦0.80を満足し、前記混合溶湯を精錬容器内で吹酸により脱炭し、前記含クロム溶湯のCr源として、全Cr分のうち50%相当分以上について、S含有量が0.03質量%以上の汎用Fe−Crを用い、電気炉溶製後の含クロム溶湯のS含有量を0.014〜0.020質量%とし、前記低クロム溶湯のS含有量を0.010質量%以下とすることを特徴とするクロム含有鋼の吹酸脱炭方法

This invention is made | formed based on the said knowledge, The summary is as follows.
(1) A chromium-containing molten metal of C: 2 to 8% by mass and Cr: 10% by mass or more is melted in an electric furnace to prepare a low-chromium molten metal of Cr: 4% by mass or less. Ton) and a low chromium molten metal to obtain a mixed molten metal Y (ton) of Cr: 8 to 26% by mass, satisfying 0.52 ≦ X / Y ≦ 0.80. Decarburized by blowing acid, and as a Cr source of the chromium-containing molten metal, using a general-purpose Fe-Cr having an S content of 0.03% by mass or more for the equivalent of 50% or more of the total Cr content, The S content of the chromium-containing molten metal is 0.014 to 0.020 mass%, and the S content of the low-chromium molten metal is 0.010 mass% or less. Charcoal method .

本発明は、クロム含有鋼の吹酸脱炭方法において、Cr:10質量%以上の含クロム溶湯とCr:4質量%以下の低クロム溶湯を準備し、前記含クロム溶湯X(トン)と低クロム溶湯とを混合してCr:8〜26質量%の混合溶湯Y(トン)とし、0.52≦X/Y≦0.80を満足する比率とする。これにより、含クロム溶湯については電気炉溶製時にS含有量を0.014〜0.020質量%までの軽脱硫を行い、低クロム溶湯についてはS含有量を0.010質量%以下までの重脱硫を行い、両者を混合した場合、含クロム溶湯の原料としてS含有量が高い汎用Fe−Crを用いたとしても、混合溶湯の吹酸脱炭開始時点におけるS含有量を0.013質量%以下とすることができる。   The present invention provides a chromium-containing steel blown acid decarburization method in which Cr: 10% by mass or more of a chromium-containing molten metal and Cr: 4% by mass or less of a low-chromium molten metal are prepared. The mixture is mixed with the molten chromium to obtain a mixed molten metal Y (ton) of Cr: 8 to 26% by mass, and a ratio satisfying 0.52 ≦ X / Y ≦ 0.80. Thereby, about the chromium-containing molten metal, light desulfurization to S content 0.014-0.020 mass% is performed at the time of electric furnace melting, and about S chromium content to 0.010 mass% or less about low chromium molten metal When heavy desulfurization is performed and both are mixed, even if general-purpose Fe-Cr having a high S content is used as a raw material for the chromium-containing molten metal, the S content at the start of blowing acid decarburization of the mixed molten metal is 0.013 mass. % Or less.

本発明方法のフローを示す概略図である。It is the schematic which shows the flow of this invention method. 溶鉄中Cr濃度と脱硫処理後S濃度の関係を示す図である。It is a figure which shows the relationship between Cr concentration in molten iron, and S density | concentration after a desulfurization process. 混合後のCr濃度をそれぞれ8%、26%とする場合において、含クロム溶湯中Cr濃度と比X/Yの関係を示す図である。It is a figure which shows the relationship between Cr density | concentration in chromium-containing molten metal, and ratio X / Y in the case where Cr density | concentration after mixing shall be 8% and 26%, respectively. 含クロム溶湯の電気炉精錬において、処理後C濃度と処理後スラグ中Cr23濃度との関係を示す図である。In an electric furnace smelting of chromium-containing molten metal, which is a diagram showing the relationship between the post-treatment C concentration and processed slag Cr 2 O 3 concentration. 含クロム溶湯の電気炉精錬において、処理後Cr濃度と処理後スラグ中Cr23濃度との関係を示す図である。In an electric furnace smelting of chromium-containing molten metal, which is a diagram showing the relationship between the post-processing the Cr concentration and the processed slag Cr 2 O 3 concentration. 含クロム溶湯の電気炉精錬において、処理後Cr濃度と処理後スラグ中Cr23濃度/溶湯中Cr濃度との関係を示す図である。In an electric furnace smelting of chromium-containing molten metal, which is a diagram showing the relationship between the post-processing the Cr concentration and the processed slag Cr 2 O 3 concentration / melt in Cr concentration.

本発明が対象とするクロム含有鋼は、低硫鋼を対象としており、転炉等の精錬容器における吹酸脱炭開始時点においてS含有量が0.013質量%以下、望ましくは0.011質量%以下である鋼を対象とする。   The chromium-containing steel targeted by the present invention is a low-sulfur steel, and the S content is 0.013 mass% or less, preferably 0.011 mass at the start of blowing acid decarburization in a refining vessel such as a converter. % Steel or less.

前述のとおり、高クロム溶鉄は脱硫精錬が困難であることが知られていた。その理由は以下のように説明できる。即ち、溶湯中に含まれるクロムは硫黄の活量を下げる。また、クロムは炭素の活量も下げるので、結果として溶湯中の酸素濃度が上昇することとなる。従って、下記式に示す脱硫反応は、溶湯中のCr濃度が高くなるほど進行しづらくなる。図2は、溶鉄の脱硫精錬における溶鉄中クロム含有量と脱硫精錬後の溶鉄中硫黄濃度の関係を示したものである。脱硫精錬としては脱硫材にCaOを用い、通常の低硫溶鉄の製造を模した平衡実験の結果を示したものである。溶湯中のクロム濃度が高いほど、脱硫精錬後の硫黄濃度が高くなっていることがわかる。溶湯中クロム含有量が10%以上となると、脱硫精錬を行ったとしても精錬終了時点での到達S含有量はたかだか0.014質量%が限界である。一方、溶湯中クロム含有量が4%以下であると、精錬終了時点で到達S含有量が0.009質量%以下まで低減する。
CaO+S=CaS+O
As described above, it has been known that high chromium molten iron is difficult to desulfurize and refine. The reason can be explained as follows. That is, chromium contained in the molten metal lowers the sulfur activity. Chromium also lowers the carbon activity, resulting in an increase in the oxygen concentration in the melt. Therefore, the desulfurization reaction shown in the following formula becomes difficult to proceed as the Cr concentration in the molten metal increases. FIG. 2 shows the relationship between the chromium content in molten iron and the sulfur concentration in molten iron after desulfurization refining in the desulfurization refining of molten iron. For desulfurization refining, CaO is used as a desulfurization material, and the results of an equilibrium experiment simulating the production of ordinary low-sulfur molten iron are shown. It can be seen that the higher the chromium concentration in the molten metal, the higher the sulfur concentration after desulfurization. When the chromium content in the molten metal is 10% or more, even if desulfurization refining is performed, the ultimate S content at the end of refining is at most 0.014% by mass. On the other hand, when the chromium content in the molten metal is 4% or less, the reached S content is reduced to 0.009% by mass or less at the end of refining.
CaO + S = CaS + O

含クロム鋼を溶製する際のクロム源として用いられるFe−Crには、S含有量が0.03質量%以上である汎用Fe−Crと、S含有量が0.02質量%以下である低硫黄Fe−Crとがある。Cr含有量が8質量%以上であるクロム含有鋼を溶製する場合、クロム源としてS含有量が高い汎用Fe−Crを用いると、Fe−Cr添加後の溶湯中のS含有量がCr源起因で0.004質量%程度上昇する。Fe−Cr以外の主要な原料である鉄源、即ち高炉溶銑あるいは鉄スクラップからのS混入と合わせ、溶湯中のS含有量は0.014質量%まで上昇することになる。クロム源添加後の溶湯中のS含有量がここまで上昇すると、上記のようにクロムを含有する溶湯の脱硫は困難である。従って、吹酸脱炭開始時点においてS≦0.013質量%程度が要求される低硫黄クロム含有鋼を溶製する場合において、クロム源として高価な低硫黄Fe−Crが用いられていた。   Fe-Cr used as a chromium source for melting chromium-containing steel has a general-purpose Fe-Cr having an S content of 0.03% by mass or more and an S content of 0.02% by mass or less. There is low sulfur Fe-Cr. When melting a chromium-containing steel having a Cr content of 8% by mass or more, if general-purpose Fe-Cr having a high S content is used as the chromium source, the S content in the molten metal after the addition of Fe-Cr is the Cr source. It increases by about 0.004% by mass. Combined with the iron source, which is the main raw material other than Fe-Cr, that is, blast furnace hot metal or S contamination from iron scrap, the S content in the molten metal will rise to 0.014% by mass. If the S content in the molten metal after the addition of the chromium source is increased up to this point, it is difficult to desulfurize the molten metal containing chromium as described above. Therefore, in the case of melting low-sulfur chromium-containing steel that requires about S ≦ 0.013 mass% at the start of blowing acid decarburization, expensive low-sulfur Fe—Cr has been used as a chromium source.

Cr含有量が10%以上である高クロム溶湯であって、クロム源としてS含有量が高い汎用Fe−Crを用いた場合であっても、脱硫精錬後のS含有量を0.014〜0.020質量%程度まで低減するのであれば、脱硫負荷が軽減されるため、電気炉を用いた通常の脱硫精錬で実現可能である。   Even if it is a high chromium molten metal having a Cr content of 10% or more and a general-purpose Fe—Cr having a high S content as a chromium source, the S content after desulfurization and refining is 0.014 to 0. If it is reduced to about .020 mass%, the desulfurization load is reduced, so that it can be realized by ordinary desulfurization refining using an electric furnace.

一方、Cr含有量が4%以下の低クロム溶湯であれば、図2から明らかなように、脱硫精錬でS含有量を0.010質量%以下まで低減することは容易である。例えば低クロム溶湯として高炉溶銑を用いる場合、精錬前のS含有量は0.020質量%程度であり、トーピードカー脱硫、KR脱硫などの炉外脱硫精錬によってS含有量を0.010質量%以下、0.009質量%程度まで低減することができる。   On the other hand, if it is a low chromium molten metal having a Cr content of 4% or less, it is easy to reduce the S content to 0.010% by mass or less by desulfurization refining, as is apparent from FIG. For example, when blast furnace hot metal is used as the low chromium molten metal, the S content before refining is about 0.020 mass%, and the S content is 0.010 mass% or less by out-of-furnace desulfurization refining such as torpedo car desulfurization and KR desulfurization, It can be reduced to about 0.009% by mass.

そして図1に示すように、このように脱硫精錬を行った後の含クロム溶湯(S含有量:0.014質量%以上)と、同じく脱硫精錬を行った低クロム溶湯(S含有量:0.009質量%程度)とを混合し、この混合溶湯を精錬容器内で吹酸により脱炭することとすれば、クロム源としてS含有量が高い汎用Fe−Crを用いた場合であっても、吹酸脱炭開始時の溶湯中S含有量を0.013質量%以下とすることが可能となる。   And as shown in FIG. 1, the chromium-containing molten metal (S content: 0.014 mass% or more) after performing desulfurization refining in this way, and the low chromium molten metal (S content: 0) which also performed desulfurization refining similarly About 0.09 mass%), and the mixed molten metal is decarburized with blowing acid in a refining vessel, even when general-purpose Fe-Cr having a high S content is used as a chromium source. The S content in the molten metal at the start of blowing acid decarburization can be made 0.013 mass% or less.

含クロム溶湯X(トン)と低クロム溶湯とを混合して、混合溶湯Y(トン)を溶製する。S含有量について、含クロム溶湯は0.014質量%、低クロム溶湯は0.009質量%、混合溶湯を0.013質量%以下とし、XとYが満たすべき関係を計算すると、
0.014×X+0.009×(Y−X)≦0.013×Y
から、
X/Y≦0.80
が導かれる。
The mixed molten metal Y (ton) is made by mixing the chromium-containing molten metal X (ton) and the low chromium molten metal. Regarding the S content, the chromium-containing molten metal is 0.014% by mass, the low chromium molten metal is 0.009% by mass, the mixed molten metal is 0.013% by mass or less, and the relationship that X and Y should satisfy is calculated.
0.014 × X + 0.009 × (Y−X) ≦ 0.013 × Y
From
X / Y ≦ 0.80
Is guided.

電気炉でCr含有量10質量%以上の含クロム溶湯を溶製するに際し、溶湯とその上に形成される溶融スラグ成分との間には、クロム源溶解後の溶湯中Cr含有量が高くなるほどスラグ中Cr23濃度が高くなる関係がある。そして、電気炉にてCr濃度5〜70質量%の溶鉄を溶製したところ、溶鉄中のCr濃度が50質量%を超えると、固体のCr23が生成しやすくなり、スラグラインに位置する炉壁耐火物が顕著に損耗されることがわかった。本発明において、含クロム溶湯と低クロム溶湯を混合してCr含有量が最大26質量%の混合溶湯を溶製しようとしている。そこで、炉壁耐火物を溶損しない条件として、低クロム溶湯中のCr濃度をゼロと置き、
50×X≧26×Y
から、
X/Y≧26/50=0.52
が導かれる。
When melting a chromium-containing molten metal having a Cr content of 10% by mass or more in an electric furnace, the Cr content in the molten metal after melting the chromium source increases between the molten metal and the molten slag component formed thereon. There is a relationship in which the Cr 2 O 3 concentration in the slag increases. And when molten iron having a Cr concentration of 5 to 70% by mass was melted in an electric furnace, when the Cr concentration in the molten iron exceeds 50% by mass, solid Cr 2 O 3 is likely to be generated and is located in the slag line. It was found that the furnace wall refractory to be worn out significantly. In the present invention, an attempt is made to melt a mixed molten metal having a maximum Cr content of 26% by mass by mixing a chromium-containing molten metal and a low-chromium molten metal. Therefore, as a condition not to melt the furnace wall refractory, the Cr concentration in the low chromium molten metal is set to zero,
50 × X ≧ 26 × Y
From
X / Y ≧ 26/50 = 0.52
Is guided.

混合溶湯中のCr含有量を定めたときに、含クロム溶湯中のCr含有量とX/Yが満たすべき関係について示したのが図3である。図中実線は、混合溶湯のCr含有量を本発明の下限である8質量%とする場合について示した。含クロム溶湯中のCr含有量が10質量%以上であれば、X/Yが0.80以下において混合溶湯のCr含有量を8質量%とすることができる点が明らかである。また図中の破線は、混合溶湯のCr含有量を本発明の上限である26質量%とする場合について示した。含クロム溶湯中のCr含有量が50質量%以下であれば、X/Yが0.5以上において混合溶湯のCr含有量を26質量%とすることができる点が明らかである。   FIG. 3 shows the relationship between the Cr content in the chromium-containing molten metal and X / Y when the Cr content in the mixed molten metal is determined. The solid line in the figure shows the case where the Cr content of the mixed molten metal is 8% by mass which is the lower limit of the present invention. If the Cr content in the chromium-containing molten metal is 10% by mass or more, it is clear that the Cr content of the mixed molten metal can be 8% by mass when X / Y is 0.80 or less. The broken line in the figure shows the case where the Cr content of the molten mixture is 26% by mass which is the upper limit of the present invention. If the Cr content in the chromium-containing molten metal is 50% by mass or less, it is clear that the Cr content of the mixed molten metal can be 26% by mass when X / Y is 0.5 or more.

クロム源溶解後の溶湯中クロム濃度とスラグ中Cr23濃度との関係については、当該含クロム溶湯中のC濃度が低くなるほどスラグ中Cr23濃度が高くなる傾向がある。溶湯中Cr濃度30〜50質量%、温度1660〜1720℃で電気炉にて含クロム溶湯を溶製する際、溶湯中C濃度とスラグ中Cr23濃度の関係を調査した結果を図4に示す。溶湯中C濃度を2質量%以上とすれば、スラグ中Cr23濃度が5質量%以下となり、炉壁耐火物の損耗を防止できる。溶湯中のC濃度が高くなるほどスラグ中Cr23濃度を低くすることができるが、上限については、含Cr溶鉄の飽和C濃度である8質量%とする。 Regarding the relationship between the chromium concentration in the molten metal after dissolution of the chromium source and the Cr 2 O 3 concentration in the slag, the Cr 2 O 3 concentration in the slag tends to increase as the C concentration in the chromium-containing molten metal decreases. FIG. 4 shows the results of investigating the relationship between the C concentration in the molten metal and the Cr 2 O 3 concentration in the slag when the chromium-containing molten metal is melted in an electric furnace at a Cr concentration of 30 to 50 mass% and a temperature of 1660 to 1720 ° C. Shown in If the C concentration in the molten metal is 2% by mass or more, the Cr 2 O 3 concentration in the slag becomes 5% by mass or less, and wear of the furnace wall refractory can be prevented. The higher the C concentration in the molten metal, the lower the Cr 2 O 3 concentration in the slag, but the upper limit is 8% by mass, which is the saturated C concentration of the Cr-containing molten iron.

含クロム溶湯を電気炉で溶製する際において、クロムの酸化を抑制する観点からも、上記配合比X/Yを0.52≦X/Y≦0.80とすると好ましい。   When melting the chromium-containing molten metal in an electric furnace, the blending ratio X / Y is preferably 0.52 ≦ X / Y ≦ 0.80 from the viewpoint of suppressing the oxidation of chromium.

まず、X/Y≧0.52とすることで、混合溶湯のCr含有量を最大の26質量%とする場合において、含クロム溶湯中のCr含有量を50質量%以下に抑えることかできる。そして、電気炉精錬における溶湯中Cr濃度とスラグ中Cr23濃度の関係を調査した結果を図5に示す。精錬条件は図5中に記載したとおりである。溶湯中Cr濃度が50質量%以下であればスラグ中Cr23濃度を低い範囲に抑えることができ、クロムの酸化ロスを低減できることがわかる。 First, by setting X / Y ≧ 0.52, the Cr content in the chromium-containing molten metal can be suppressed to 50% by mass or less when the Cr content of the mixed molten metal is set to the maximum of 26 mass%. Then, the results of investigating the relationship between the Cr concentration and the slag Cr 2 O 3 concentration in the molten metal in the electric furnace refining in FIG. The refining conditions are as described in FIG. It can be seen that if the Cr concentration in the molten metal is 50% by mass or less, the Cr 2 O 3 concentration in the slag can be suppressed to a low range, and the oxidation loss of chromium can be reduced.

また、図6に示すとおり、含クロム溶湯の電気炉溶製において、溶湯中のCr濃度が10%未満と低すぎるとかえって「スラグ中Cr23濃度/溶湯中Cr濃度」の比が上昇することがわかった。精錬条件は図6中に記載したとおりである。本発明においてはX/Y≦0.80としているので、混合溶湯中のCr濃度が下限の8%であっても、含クロム溶湯中のCr濃度を10%以上とすることができ、「スラグ中Cr23濃度/溶湯中Cr濃度」が上昇しない良好範囲を維持できることがわかった。 In addition, as shown in FIG. 6, in the melting of the chromium-containing molten metal in the electric furnace, the ratio of “Cr 2 O 3 concentration in slag / Cr concentration in molten metal” increases rather than the Cr concentration in the molten metal is less than 10%. I found out that The refining conditions are as described in FIG. In the present invention, since X / Y ≦ 0.80, even if the Cr concentration in the mixed molten metal is 8%, which is the lower limit, the Cr concentration in the chromium-containing molten metal can be 10% or more. It was found that it was possible to maintain a favorable range in which “indium Cr 2 O 3 concentration / Cr concentration in molten metal” did not increase.

電気炉での含クロム溶湯の溶製において、含クロム溶湯中のSi濃度が0.2質量%以上であれば、溶湯中Crの酸化を抑制し、クロムロスを低減できるので好ましい。含クロム溶湯中のSi濃度の上限は1.0質量%とする。Si濃度1.0質量%までは、Si濃度が高いほどCrの酸化を抑えることができるが、Si濃度が1.0質量%を超えてもクロム酸化抑制はほとんど改善しない。その上、Si濃度が過剰であると、含クロム溶湯と低クロム溶湯を混合した後の吹酸脱炭精錬時に、溶湯中に含まれるシリコンが酸化してスラグ中SiO2となり、スラグボリュームが増加し、結果的にクロムロスが増えるという悪影響がある。 In the melting of the chrome-containing molten metal in the electric furnace, it is preferable that the Si concentration in the chromized molten metal is 0.2% by mass or more because oxidation of Cr in the molten metal can be suppressed and chromium loss can be reduced. The upper limit of the Si concentration in the chromium-containing molten metal is 1.0% by mass. Up to a Si concentration of 1.0 mass%, the higher the Si concentration, the more the oxidation of Cr can be suppressed. However, even if the Si concentration exceeds 1.0 mass%, the suppression of chromium oxidation is hardly improved. In addition, if the Si concentration is excessive, the silicon contained in the molten metal is oxidized to SiO 2 in the slag at the time of blown acid decarburization and refining after mixing the chrome-containing molten metal and the low-chromium molten metal, increasing the slag volume. As a result, there is an adverse effect that chromium loss increases.

電気炉での含クロム溶湯の溶製に際しては、鉄源として主にスクラップ、クロム源としてFe−Crが用いられる。Cr源としてのFe−Crの全量を、S含有量が0.03質量%以上の安価な汎用Fe−Crとすると好ましい。本発明においては、含クロム溶湯のCr源として、全Cr分のうち50%相当分以上について汎用Fe−Crを用いれば、コスト削減効果を享受することができる。   When melting a chromium-containing molten metal in an electric furnace, scrap is mainly used as an iron source, and Fe—Cr is used as a chromium source. It is preferable that the total amount of Fe—Cr as the Cr source is inexpensive general-purpose Fe—Cr having an S content of 0.03% by mass or more. In the present invention, if a general-purpose Fe—Cr is used for a Cr source of chromium-containing molten metal for a portion equivalent to 50% or more of the total Cr content, a cost reduction effect can be obtained.

含クロム溶湯のCr源としてS含有量が高い汎用Fe−Crを用いるため、電気炉において脱硫精錬を行う。本発明においては、電気炉溶製後の含クロム溶湯のS含有量を低硫領域まで下げず、S含有量下限を0.014質量%とする。この程度のS含有量まで脱硫するのであれば、電気炉に溶湯トン当たり40〜100kgのCaO源を添加してスラグを形成することにより、脱硫精錬を行うことができる。含クロム溶湯のS含有量が高すぎると、S含有量が低い低クロム溶湯と混合しても混合後のS含有量を十分に下げることができない。含クロム溶湯のS含有量上限を0.20質量%とすれば、本発明において混合後の混合溶湯のS含有量を目標レベルとすることが可能である。ただし、含クロム溶湯のS含有量が高くなるほど、X/Yを0.52≦X/Y≦0.80の範囲内で低い値とすることが必要となる。   Since general-purpose Fe-Cr having a high S content is used as a Cr source for the chromium-containing molten metal, desulfurization refining is performed in an electric furnace. In the present invention, the S content of the chromium-containing molten metal after melting in the electric furnace is not lowered to the low sulfur region, and the lower limit of the S content is set to 0.014% by mass. If desulfurization is performed up to this level of S content, desulfurization refining can be performed by adding 40 to 100 kg of CaO source per ton of molten metal to the electric furnace to form slag. If the S content of the chromium-containing molten metal is too high, the S content after mixing cannot be lowered sufficiently even when mixed with a low chromium molten metal having a low S content. If the upper limit of the S content of the chromium-containing molten metal is 0.20% by mass, the S content of the mixed molten metal after mixing in the present invention can be set to the target level. However, as the S content of the molten chromium is increased, X / Y needs to be set to a lower value within the range of 0.52 ≦ X / Y ≦ 0.80.

低クロム溶湯としては、高炉溶銑を好ましく用いることができる。高炉溶銑であればCr:4質量%以下とすることができる。また、S濃度が0.014〜0.020質量%の含クロム溶湯と混合してS濃度の低い混合溶湯とするため、低クロム溶湯はS濃度を低い濃度とする。本発明において、低クロム溶湯のS含有量を0.010質量%以下とすると好ましい。これにより、本発明において混合後の混合溶湯のS含有量を目標レベルとすることが可能である。ただし、低クロム溶湯のS含有量が高くなるほど、X/Yを0.52≦X/Y≦0.80の範囲内で低い値とすることが必要となる。低クロム溶湯のS含有量を目標レベル以下まで低減するため、溶湯の脱硫処理を行う。高炉溶銑を用いる場合には、トーピード脱硫、KR脱硫などの通常用いられる脱硫手段により、容易に目標のS濃度まで脱硫を進行することができる。   As the low chromium molten metal, blast furnace hot metal can be preferably used. If it is a blast furnace hot metal, it can be made Cr: 4 mass% or less. Moreover, since it mixes with the chromium containing molten metal whose S density | concentration is 0.014-0.020 mass% and it is set as a mixed molten metal with a low S density | concentration, a low chromium molten metal makes S concentration low. In the present invention, the S content of the low chromium molten metal is preferably 0.010% by mass or less. Thereby, in this invention, it is possible to make S content of the mixed molten metal after mixing into a target level. However, the higher the S content of the low chromium molten metal, the lower the X / Y value must be within the range of 0.52 ≦ X / Y ≦ 0.80. In order to reduce the S content of the low chromium molten metal to below the target level, the molten metal is desulfurized. When blast furnace hot metal is used, desulfurization can easily proceed to a target S concentration by a commonly used desulfurization means such as torpedo desulfurization or KR desulfurization.

溶銑鍋中に含クロム溶湯と低クロム溶湯をそれぞれ装入することにより、溶銑鍋中で含クロム溶湯と低クロム溶湯を混合することができる。混合溶湯について続いて吹酸脱炭を行う。混合溶湯を例えば上底吹き転炉に装入し、吹酸脱炭精錬を行う。電気炉中で吹酸脱炭を行っても良い。ただし、常圧下で目標C濃度まで脱炭を行うとクロムの酸化ロスが大きくなるので、転炉では粗脱炭までを行い、続いてVOD法、RH法などの真空脱炭、あるいはAOD炉を用いた精錬を行い、クロムの酸化損失を抑えながら目標C濃度までの吹酸脱炭を行う。   By inserting the chrome-containing molten metal and the low-chromium molten metal into the hot metal ladle, respectively, the chrome-containing molten metal and the low-chromium molten metal can be mixed in the hot metal ladle. Subsequently, blown acid decarburization is performed on the mixed molten metal. The mixed molten metal is charged into, for example, an upper bottom blowing converter, and blown acid decarburization refining is performed. Blow acid decarburization may be performed in an electric furnace. However, if decarburization is performed under normal pressure to the target C concentration, chromium oxidation loss increases. Therefore, rough decarburization is performed in the converter, followed by vacuum decarburization such as VOD method and RH method, or AOD furnace. Refining is performed and blown acid decarburization is performed up to the target C concentration while suppressing oxidation loss of chromium.

最大容量が1トンである試験電気炉を用いて含クロム溶湯を溶製し、低クロム溶湯として高炉溶銑を用い、両者を混合して混合溶湯とした。混合比X/Y、含クロム溶湯、低クロム溶湯の各成分、その他の処理条件を表1に示す。混合溶湯のY=1トンとなるように混合を行った。本発明範囲から外れる数値にアンダーラインを付している。   A chrome-containing molten metal was melted using a test electric furnace having a maximum capacity of 1 ton, a blast furnace molten iron was used as a low-chromium molten metal, and both were mixed to obtain a mixed molten metal. Table 1 shows the mixing ratio X / Y, each component of the chromium-containing molten metal, the low chromium molten metal, and other processing conditions. Mixing was performed so that the mixed molten metal Y = 1 ton. Numerical values that fall outside the scope of the present invention are underlined.

表1において、含クロム溶湯のCr含有量については、低クロム溶湯(高炉溶銑)との混合割合に応じて、混合溶湯中のCr含有量が表1に示す8.3〜26.0質量%となるように調整した。   In Table 1, about Cr content of chromium-containing molten metal, according to the mixing ratio with low chromium molten metal (blast furnace molten iron), Cr content in mixed molten metal is 8.3-26.0 mass% which Table 1 shows. It adjusted so that it might become.

電気炉での溶融後の含クロム溶湯の成分が表1に示す成分値となるよう、スクラップ、Fe−Cr合金、Cr合金、炭材を黒鉛電極からのアーク加熱により溶解した。Fe−Cr合金として、S含有量が0.03〜0.05質量%である汎用Fe−Cr合金を用いた。Fe−Cr合金から混入したSを低減するため、電気炉内にCaO源を添加して塩基性スラグを形成し、脱硫を行った。CaO源として主に生石灰を用い、一部転炉スラグも用いた。添加するCaO源は、CaO換算で溶湯1トンあたり40〜100kgとした。これにより、表1に示すように含クロム溶湯のS含有量を0.014〜0.018質量%の範囲まで低減することができた。なお、混合前の含クロム溶湯の温度は1634〜1712℃であった。電気炉溶製終了時のスラグ中Cr23濃度、スラグ中Cr23濃度/溶湯中Cr濃度比を表1に示す。 Scrap, Fe—Cr alloy, Cr alloy, and carbonaceous material were melted by arc heating from a graphite electrode so that the components of the chromium-containing molten metal after melting in the electric furnace had the component values shown in Table 1. A general-purpose Fe—Cr alloy having an S content of 0.03 to 0.05 mass% was used as the Fe—Cr alloy. In order to reduce S mixed from the Fe—Cr alloy, a CaO source was added to the electric furnace to form a basic slag, and desulfurization was performed. Quick lime was mainly used as the CaO source, and some converter slag was also used. The CaO source to be added was 40 to 100 kg per ton of molten metal in terms of CaO. Thereby, as shown in Table 1, S content of the chromium-containing molten metal was able to be reduced to the range of 0.014-0.018 mass%. In addition, the temperature of the chromium-containing molten metal before mixing was 1634-1712 degreeC. Shown slag Cr 2 O 3 concentration at the time of electric furnace melting completion, the slag Cr 2 O 3 concentration / melt Cr concentration ratio in Table 1.

電気炉で含クロム溶湯を溶製するに際し、溶製後の電気炉の耐火物損耗状況を目視で評価し、スラグ接触面に凹みが確認された場合を「×」と評価し、凹みが確認される場合と確認されない場合が混在する水準については「△」と評価し、それ以外を「○」と評価した。結果を表1に示す。   When melting chrome-containing molten metal in an electric furnace, visually evaluate the refractory wear situation of the electric furnace after melting, and evaluate the case where a dent is confirmed on the slag contact surface as "x", confirming the dent The level where both the cases where it was confirmed and the case where it was not confirmed was evaluated as “△”, and the others were evaluated as “◯”. The results are shown in Table 1.

低クロム溶湯として高炉溶銑を用い、S含有量が表1に示すようにS≦0.009質量%となるようにトーピードカーインジェクション法にて脱硫精錬を行った。高炉溶銑を用いているので、Cr含有量は0.01質量%未満、C濃度:3.5〜4.5質量%、Si濃度:0.1質量%未満であった。   Blast furnace hot metal was used as the low chromium molten metal, and desulfurization refining was performed by a torpedo car injection method so that the S content was S ≦ 0.009 mass% as shown in Table 1. Since blast furnace hot metal was used, the Cr content was less than 0.01% by mass, the C concentration was 3.5 to 4.5% by mass, and the Si concentration was less than 0.1% by mass.

まず低クロム溶湯を溶銑鍋中に装入し、次いでその上に含クロム溶湯を装入した。混合後の溶湯成分を表1に示す。   First, a low chromium molten metal was charged into a hot metal ladle, and then a molten chromium containing metal was charged thereon. The melt components after mixing are shown in Table 1.

Figure 0005454313
Figure 0005454313

本発明例である実施例1〜5においては、混合溶湯のS濃度がいずれも0.013質量%以下であった。特に含クロム溶湯の混合割合が低い実施例1〜3においては、S濃度が0.012質量%以下となっており、混合後の溶湯のS濃度を十分に低減できていることがわかる。実施例1〜5の含クロム溶湯における電気炉処理後スラグ中Cr23濃度は5質量%未満となっていた。また実施例1〜5では、電気炉耐火物損耗評価もいずれも○であった。 In Examples 1 to 5, which are examples of the present invention, the S concentration of the mixed molten metal was 0.013% by mass or less. In Examples 1 to 3 where the mixing ratio of the chromium-containing molten metal is particularly low, the S concentration is 0.012% by mass or less, and it can be seen that the S concentration of the molten metal after mixing can be sufficiently reduced. After the electric furnace process slag in chromium-containing molten Cr 2 O 3 concentration of Examples 1 to 5 had become less than 5 wt%. Moreover, in Examples 1-5, all of the electric furnace refractory wear evaluation were "good".

一方、比較例1では、混合比X/Yが本発明範囲よりも高く、混合溶湯のS濃度が0.013質量%を超えていた。また、比較例2では含クロム溶湯のCr濃度が50質量%を超えたために、電気炉耐火物損耗評価が×であった。またCrの酸化が進行してスラグ中Cr23が高く、クロムロスが大きかった。 On the other hand, in Comparative Example 1, the mixing ratio X / Y was higher than the range of the present invention, and the S concentration of the molten mixture exceeded 0.013 mass%. Further, in Comparative Example 2, the Cr concentration of the molten chrome-containing material exceeded 50% by mass, and therefore the evaluation of the electric furnace refractory wear was x. Further, the oxidation of Cr progressed, and Cr 2 O 3 in the slag was high, and the chromium loss was large.

比較例3では、含クロム溶湯のC濃度が低く、Crの酸化が進行してスラグ中Cr23が高く、クロムロスが大きかった。また、電気炉耐火物損耗評価が△であった。 In Comparative Example 3, the C concentration of the chromium-containing molten metal was low, the oxidation of Cr progressed, the Cr 2 O 3 in the slag was high, and the chromium loss was large. Moreover, the electric furnace refractory wear evaluation was Δ.

Claims (1)

電気炉にてC:2〜8質量%、Cr:10質量%以上の含クロム溶湯を溶製し、Cr:4質量%以下の低クロム溶湯を準備し、前記含クロム溶湯X(トン)と低クロム溶湯とを混合してCr:8〜26質量%の混合溶湯Y(トン)とし、0.52≦X/Y≦0.80を満足し、前記混合溶湯を精錬容器内で吹酸により脱炭し、
前記含クロム溶湯のCr源として、全Cr分のうち50%相当分以上について、S含有量が0.03質量%以上の汎用Fe−Crを用い、電気炉溶製後の含クロム溶湯のS含有量を0.014〜0.020質量%とし、前記低クロム溶湯のS含有量を0.010質量%以下とすることを特徴とするクロム含有鋼の吹酸脱炭方法。
A chromium-containing molten metal having C: 2 to 8% by mass and Cr: 10% by mass or more was melted in an electric furnace, and a low-chromium molten metal having Cr: 4% by mass or less was prepared. Mixing with the low chromium molten metal to make Cr: 8 to 26 mass% mixed molten metal Y (ton), 0.52 ≦ X / Y ≦ 0.80 is satisfied, and the mixed molten metal is blown into the smelting vessel. Decarburized ,
As a Cr source of the chromium-containing molten metal, a general-purpose Fe-Cr having an S content of 0.03% by mass or more is used for the equivalent of 50% or more of the total Cr content. A blown acid decarburization method for chromium-containing steel , wherein the content is 0.014 to 0.020 mass%, and the S content of the low chromium molten metal is 0.010 mass% or less .
JP2010086092A 2010-04-02 2010-04-02 Blowing acid decarburization method for chromium-containing steel Active JP5454313B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010086092A JP5454313B2 (en) 2010-04-02 2010-04-02 Blowing acid decarburization method for chromium-containing steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010086092A JP5454313B2 (en) 2010-04-02 2010-04-02 Blowing acid decarburization method for chromium-containing steel

Publications (2)

Publication Number Publication Date
JP2011214125A JP2011214125A (en) 2011-10-27
JP5454313B2 true JP5454313B2 (en) 2014-03-26

Family

ID=44944163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010086092A Active JP5454313B2 (en) 2010-04-02 2010-04-02 Blowing acid decarburization method for chromium-containing steel

Country Status (1)

Country Link
JP (1) JP5454313B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102326869B1 (en) * 2020-02-27 2021-11-16 주식회사 포스코 Manufacturing method of molten material

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5952926B2 (en) * 1980-03-10 1984-12-22 株式会社日本製鋼所 Manufacturing method of low phosphorus high chromium steel
JPS57161020A (en) * 1981-03-30 1982-10-04 Nippon Steel Corp Refining method of stainless steel
JPS58221211A (en) * 1982-06-15 1983-12-22 Kawasaki Steel Corp Manufacture of molten stainless steel
JPS5938320A (en) * 1982-08-28 1984-03-02 Kawasaki Steel Corp Method for mixing molten metal to refine high alloy steel
JPS5967309A (en) * 1982-10-09 1984-04-17 Kawasaki Steel Corp Manufacture of high cr steel using dephosphorized molten iron
JP2938535B2 (en) * 1990-08-29 1999-08-23 日新製鋼株式会社 Manufacturing process of chromium-containing molten steel
JPH06287621A (en) * 1993-02-05 1994-10-11 Kawasaki Steel Corp Melting process for iron scrap with low consumption of energy
JP4736466B2 (en) * 2005-02-24 2011-07-27 Jfeスチール株式会社 Method for producing high chromium molten steel
JP4765374B2 (en) * 2005-04-04 2011-09-07 Jfeスチール株式会社 Desulfurization treatment method for chromium-containing hot metal

Also Published As

Publication number Publication date
JP2011214125A (en) 2011-10-27

Similar Documents

Publication Publication Date Title
JP5326475B2 (en) Method for recovering chromium from chromium-containing slag
JP4736466B2 (en) Method for producing high chromium molten steel
CN112126737B (en) Production method of low-sulfur alloy molten steel
JP5386825B2 (en) Method for melting Mn-containing ultra-low carbon steel
US3615348A (en) Stainless steel melting practice
JP5454313B2 (en) Blowing acid decarburization method for chromium-containing steel
JP6311466B2 (en) Method of dephosphorizing molten steel using vacuum degassing equipment
JP4765374B2 (en) Desulfurization treatment method for chromium-containing hot metal
CN103225009A (en) Method for producing high-cleanness steel
JP4714655B2 (en) Desulfurization method for chromium-containing molten iron
JP4648820B2 (en) Method for producing extremely low sulfur chromium-containing molten steel
JP2008274387A (en) Method for melting cr-containing low alloy steel
JP5324142B2 (en) Refining method using electric furnace
JP4079190B2 (en) Flux for smelting low nitrogen, low oxygen and low sulfur steels
JP5286892B2 (en) Dephosphorization method of hot metal
JP5157228B2 (en) Desulfurization method for molten steel
JP2003147430A (en) Reducing agent for steelmaking, and steelmaking method
JP7255639B2 (en) Molten steel desulfurization method and desulfurization flux
JP2002146429A (en) METHOD FOR PRODUCING AUSTENITIC HIGH Mn STAINLESS STEEL
RU2312902C1 (en) Method of refining rail steel in furnace-ladle
JPH04318118A (en) Production of steel with extremely low carbon and extremely low sulfur
JP5387045B2 (en) Manufacturing method of bearing steel
RU2364632C2 (en) Steel production method
JP3726599B2 (en) Method for refining molten steel using refractory scrap containing carbon
RU2294382C1 (en) Charge for smelting the steel in the arc-furnaces

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120809

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131015

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131223

R151 Written notification of patent or utility model registration

Ref document number: 5454313

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350