JP2002146429A - METHOD FOR PRODUCING AUSTENITIC HIGH Mn STAINLESS STEEL - Google Patents

METHOD FOR PRODUCING AUSTENITIC HIGH Mn STAINLESS STEEL

Info

Publication number
JP2002146429A
JP2002146429A JP2000340512A JP2000340512A JP2002146429A JP 2002146429 A JP2002146429 A JP 2002146429A JP 2000340512 A JP2000340512 A JP 2000340512A JP 2000340512 A JP2000340512 A JP 2000340512A JP 2002146429 A JP2002146429 A JP 2002146429A
Authority
JP
Japan
Prior art keywords
stainless steel
refining
less
molten steel
slag
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000340512A
Other languages
Japanese (ja)
Inventor
Teruyasu Oka
照恭 岡
Toru Taniguchi
徹 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2000340512A priority Critical patent/JP2002146429A/en
Publication of JP2002146429A publication Critical patent/JP2002146429A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a production method by which the reduction of oxygen in high Mn stainless steel is solved, and further, the composition and form of inclusions can be controlled. SOLUTION: In this method for producing austenitic high Mn stainless steel, Al is added to a molten steel having a composition containing <=0.15% C, <=1% Si, 5 to 10% Mn, <=0.06% P, <=0.03% S, 3.5 to 6.0% Ni, 16 to 19% Cr and <=0.25% N, and the balance Fe to remain Al by 0.008 to 0.03 mass%. The molten steel is refined by using slag in which the ratio of CaO/SiO2 is 1.5 to 2.5 in a laddle refining furnace to control the value of oxygen in the molten steel to <=35 ppm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、オーステナイト系
高Mnステンレス鋼を製造する方法に関するものである。
The present invention relates to a method for producing austenitic high Mn stainless steel.

【0002】[0002]

【従来の技術】従来、ステンレス製鋼法の分野には、VO
D法,RH-OB法,AOD法等の炉外精錬技術が採用され極低
炭素ステンレス鋼や高純度ステンレス鋼などの高性能ス
テンレス鋼が生産されてきた。加工性に優れたオーステ
ナイト系ステンレス鋼は多くの機能性材料に使用されて
おり、高Mn系は高強度、耐食ステンレスの特色を有して
いる。この種の材料は高い清浄度が要求されるが、Cr含
有率が高く酸素活量が小さいため脱酸が困難であり、特
に高Mnステンレス鋼はさらに脱酸が効き難い鋼種であ
る。
2. Description of the Related Art Conventionally, in the field of stainless steel making,
Out-of-pile refining technologies such as the D method, RH-OB method, and AOD method have been adopted, and high-performance stainless steels such as ultra-low carbon stainless steel and high-purity stainless steel have been produced. Austenitic stainless steel with excellent workability is used for many functional materials, and high-Mn-based stainless steel has the characteristics of high-strength, corrosion-resistant stainless steel. This type of material requires a high degree of cleanliness, but is difficult to deoxidize because of its high Cr content and low oxygen activity. In particular, high-Mn stainless steel is a steel type that is even more difficult to deoxidize.

【0003】脱酸技術の一つとしてステンレス鋼につい
て炉外精錬を適用する方法が、特開平10−23759
8号公報等に開示されている。また、特開平10−23
7598号公報には、特定のオーステナイト系ステンレ
ス鋼に対して、Si/Alを規定し非金属介在物の組成
をMnO−SiO2が主成分となるように調整すること
により、加工割れ感受を低くするという技術提案がなさ
れている。この提案は介在物組成を制御することにより
熱間および冷間加工時に介在物を分断して介在物起因の
加工割れを低減したという点で優れたものである。
As one of the deoxidizing techniques, a method of applying out-of-pile refining to stainless steel is disclosed in Japanese Patent Application Laid-Open No. Hei 10-23759.
No. 8, for example. Further, Japanese Patent Application Laid-Open No. Hei 10-23
No. 7598 discloses that, for a specific austenitic stainless steel, the ratio of Si / Al is regulated and the composition of nonmetallic inclusions is adjusted so that MnO—SiO 2 becomes a main component, thereby reducing the susceptibility to processing cracks. Technical proposals have been made to do so. This proposal is excellent in that the inclusions are separated during hot and cold working by controlling the composition of the inclusions, thereby reducing the work-induced cracking caused by the inclusions.

【0004】[0004]

【発明が解決しようとする課題】上述した炉外精錬と介
在物組成制御の技術は、極低炭素ステンレス鋼や高純度
ステンレス鋼などの製造に関しては有利であるものの、
高Mn系ステンレス鋼の製造に関する点では、低酸素化お
よび脱酸生成物の制御が困難という問題があった。これ
らの問題は、介在物の形態を制御し無害化する上で大き
な問題となる。本発明の目的は、Cr含有率が高くかつ高
Mnステンレス鋼の低酸素化を解決し、さらに介在物組成
および形態を制御したオーステナイト系高Mnステンレス
鋼の製造方法を提供することである。
Although the above-mentioned techniques of refining outside the furnace and controlling the composition of inclusions are advantageous for the production of ultra-low carbon stainless steel and high-purity stainless steel,
Regarding the production of high-Mn stainless steel, there was a problem that it was difficult to control oxygen reduction and deoxidation products. These problems become significant problems in controlling the form of inclusions to render them harmless. An object of the present invention is to provide a high and high Cr content.
An object of the present invention is to provide a method for producing austenitic high Mn stainless steel in which the oxygen content of Mn stainless steel is solved and the composition and morphology of inclusions are controlled.

【0005】[0005]

【課題を解決するための手段】本発明者は、オーステナ
イト系ステンレス鋼はCr含有率が高く酸素活量が小さい
ため脱酸が難しく、加えて高Mnステンレス鋼はさらに脱
酸が効き難い鋼種であることの問題を検討し、適正なA
l添加と精錬スラグを採用することで本鋼類の低酸素
化、介在物組成や形態を制御できることを見いだし本発
明に到達した。
The present inventors have found that austenitic stainless steels have a high Cr content and a low oxygen activity, making it difficult to deoxidize them. In addition, high-Mn stainless steels are more difficult to deoxidize. Consider the problem of being
It has been found that by adding l and refining slag, it is possible to reduce the oxygen content of the steel and control the composition and morphology of inclusions, and have reached the present invention.

【0006】すなわち、本発明は、質量%でC:0.15%
以下,Si:1%以下,Mn:5〜10%,P:0.06%以下,S:
0.03%以下,Ni:3.5〜6.0%,Cr:16〜19,N:0.25%
以下,残部が実質的にFeの組成である溶鋼に、Alを添加
し、Al:0.008〜0.03質量%に調整脱酸後、取鍋精錬炉
にてCaO/SiO2比が1.5〜2.5のスラグを用いて溶鋼を精錬
し、溶鋼酸素値を35ppm以下とするオーステナイト
系高Mnステンレス鋼の製造方法である。
That is, in the present invention, C: 0.15% by mass%
Below, Si: 1% or less, Mn: 5-10%, P: 0.06% or less, S:
0.03% or less, Ni: 3.5 to 6.0%, Cr: 16 to 19, N: 0.25%
Hereafter, Al is added to molten steel whose balance is substantially Fe, and Al is adjusted to 0.008 to 0.03% by mass. After deoxidation, the slag with a CaO / SiO 2 ratio of 1.5 to 2.5 is used in a ladle refining furnace. This is a method for producing austenitic high-Mn stainless steel in which molten steel is refined using the method described above to reduce the oxygen value of molten steel to 35 ppm or less.

【0007】[0007]

【発明の実施の形態】本発明の重要な特徴は特定組成の
高Mnステンレス鋼に対して、取鍋精錬前の溶解工程で
強脱酸剤であるAlを添加して0.008〜0.03質量%に調
整脱酸した後,取鍋精錬炉にてCaO/SiO2比が1.5〜2.5の
スラグを用い精錬を実施したことにある。本発明者等
は,精錬前にAl使用量を増加して脱酸力を強化したう
えで,生成したAl23をスラグ精錬により除去するこ
とで溶鋼酸素量は平衡値に到達することを見出した。さ
らに精錬スラグ組成、耐火物組成等について検討をした
ところ、スラグ塩基度を規定することが有効であること
が判明した。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An important feature of the present invention is that a high deoxidizer, Al, is added to a high Mn stainless steel having a specific composition in a melting step before ladle refining to 0.008 to 0.03 mass%. After the adjusted deoxidation, refining was performed in a ladle refining furnace using slag with a CaO / SiO 2 ratio of 1.5 to 2.5. The present inventors increased the amount of Al used before refining to enhance the deoxidizing power, and then removed the generated Al 2 O 3 by slag refining to make the molten steel oxygen amount reach an equilibrium value. I found it. Further examination of the refining slag composition, refractory composition, and the like revealed that it is effective to define the slag basicity.

【0008】本発明においてAl値は脱酸平衡を考慮す
るうえで重要である。Al値が0.008質量%未満では高
Mnの溶鋼の含有酸素を十分に低減することが出来な
い。逆に0.03質量%を超えても脱酸状態に変化は無く添
加量の増加は得策ではない。精錬スラグ組成は、Al2
3吸着能力に優れることが重要である。スラグ塩基度C
aO/SiO2比を1.5〜2.5に規定しているが、塩基度が1.5を
下回ると脱酸生成物の吸着が進行し難くなくなり精錬に
長時間を要することになる。逆に2.5を超過するとスラ
グの滓化性が悪くなり硬質化してくるため、精錬効果が
低くなる。従って、スラグ塩基度の最適値をCaO/SiO2
1.5〜2.5とした。
In the present invention, the Al value is important in considering the deoxidation equilibrium. If the Al value is less than 0.008% by mass, the oxygen content of the molten steel with high Mn cannot be sufficiently reduced. Conversely, if it exceeds 0.03% by mass, there is no change in the deoxidized state, and it is not advisable to increase the amount added. Smelting slag composition is Al 2
It is important to have excellent O 3 adsorption ability. Slag basicity C
Although the aO / SiO 2 ratio is specified to be 1.5 to 2.5, if the basicity is less than 1.5, the adsorption of the deoxidized product does not easily progress and the refining takes a long time. Conversely, if it exceeds 2.5, the slag becomes less hardened and hardened, and the refining effect is reduced. Therefore, the optimal value of the slag basicity is calculated as CaO / SiO 2 =
1.5 to 2.5.

【0009】本発明において、精錬した溶鋼酸素値を3
5ppm以下に規定した。35ppmを越えた酸素値で
は、介在物清浄度が良好とはならず。連鎖状の介在物が
生成することがあるためである。なお、本発明におい
て、精錬効果をさらに高めるには溶鋼と精錬スラグとの
接触を効果的に進行することが有効であり、取鍋精錬時
にポーラスプラグによるAr底吹きを適用することが有効
である。好ましくはダブルポーラスタイプとし、溶鋼の
攪拌を高めた方が精錬効果が高くなる。
In the present invention, the refined molten steel oxygen value is 3
It was specified to be 5 ppm or less. If the oxygen value exceeds 35 ppm, the inclusion cleanliness will not be good. This is because chain-like inclusions may be generated. In the present invention, in order to further enhance the refining effect, it is effective to effectively advance the contact between the molten steel and the refining slag, and it is effective to apply Ar bottom blowing with a porous plug during ladle refining. . Preferably, it is of a double porous type, and the higher the agitation of the molten steel, the higher the refining effect.

【0010】取鍋精錬炉の耐火物としては、ドロマイト
質が好ましい。ドロマイト質耐火物の構成は、MgO:約6
3%を主成分としてCaO:約33%含みMgO成分が高いほど
耐溶損性が高い。精錬スラグの塩基度が1.4以下の時
にはドロマイト質耐火物は溶損しやすい性質がある。従
って、スラグ塩基度が1.5〜2.5であることはドロ
マイト質耐火物の溶損性を考慮したうえでも適正であ
る。また、ドロマイト質耐火物の使用は精錬が進行して
も耐火物溶損によるスラグ塩基度が大きく変化しないこ
とから精錬への影響が少ないという特質がある。一般的
には取鍋精錬炉の耐火物はMgO―C質レンガが採用されて
いるが、精錬中にレンガのCが溶鋼に溶出し溶鋼C%が概
ね0.005〜0.01%/h程度上昇していく。そのためMgO-C
質レンガを施工した取鍋精錬炉での低Cステンレス鋼の
精錬は好ましくなく、ドロマイト質耐火物が適正であ
る。
The refractory of the ladle refining furnace is preferably dolomite. The composition of dolomite refractories is MgO: about 6
The higher the MgO component containing about 33% CaO with 3% as the main component, the higher the erosion resistance. When the basicity of the smelting slag is 1.4 or less, the dolomite refractory tends to be easily melted. Therefore, it is appropriate that the slag basicity is 1.5 to 2.5 even in consideration of the erosion resistance of the dolomite refractory. The use of dolomite-based refractories has the characteristic that even if refining proceeds, the slag basicity does not change significantly due to refractory erosion, so that the effect on refining is small. Generally, the refractory of the ladle refining furnace is made of MgO-C brick, but during refining, the C of the brick elutes into the molten steel and the molten steel C% rises by about 0.005 to 0.01% / h. Go. Therefore MgO-C
Refining of low-C stainless steel in a ladle refining furnace equipped with high quality brick is not preferable, and dolomite refractories are appropriate.

【0011】ところで、取鍋精錬炉の加熱源には一般に
人造黒鉛電極が用いられる。しかし、低カーボンのステ
ンレス鋼の精錬では、黒鉛電極の一部が溶損することに
より溶鋼のC%が高くなるいわゆるCピックアップが発生
しやすくなる。これを防止するためには、黒鉛電極に替
わる加熱トーチが有効であり、最もクリーンな加熱源と
なる金属トーチを採用したプラズマアークを使用しても
良い。
By the way, an artificial graphite electrode is generally used as a heating source of a ladle refining furnace. However, in refining of low carbon stainless steel, so-called C pickup in which C% of molten steel is increased due to erosion of a part of the graphite electrode is likely to occur. In order to prevent this, a heating torch instead of the graphite electrode is effective, and a plasma arc using a metal torch as the cleanest heating source may be used.

【0012】以下、本発明を適用するオーステナイト系
高Mnステンレス鋼に含まれる合金成分範囲(質量%)につ
いてを説明を加える。 C:0.15%以下 Cは固溶強化元素であり多量に含まれると0.2%耐力が上
昇し鋼材を硬質化する。なお、添加量が多くなると耐力
および硬さの上昇により加工誘起割れを発生させること
もあり、C含有量は0.15%以下とした。
The range of alloy components (% by mass) contained in the austenitic high Mn stainless steel to which the present invention is applied will be described below. C: 0.15% or less C is a solid solution strengthening element, and when contained in a large amount, the proof stress increases by 0.2% and hardens the steel material. In addition, when the addition amount is large, the work-induced cracking may occur due to an increase in proof stress and hardness, and thus the C content is set to 0.15% or less.

【0013】Si:1%以下 Siは溶鋼の脱酸に使用される成分であるが、1質量%を
超える多量のSiが含まれると鋼材が硬質化する。鋼材の
硬質化に伴って、加工誘起割れを発生することもあり、
Si含有量は1%以下とした。 Mn:5〜10% Mnは熱間加工性の確保に有効な成分であるが、高Mnステ
ンレス鋼においてはNiを節約するために添加する成分で
ある。Nの固溶度を上げ鋼材を硬質化する作用があり5〜
10%添加するが、10%を超えて添加しても耐酸化性の改
善には寄与しない。
Si: 1% or less Si is a component used for deoxidizing molten steel. However, if a large amount of Si exceeding 1% by mass is contained, the steel material becomes hard. With the hardening of steel materials, work-induced cracking may occur,
The Si content was set to 1% or less. Mn: 5 to 10% Mn is a component effective for ensuring hot workability, but is a component added to save Ni in high Mn stainless steel. Has the effect of increasing the solid solubility of N to harden steel
Although 10% is added, adding more than 10% does not contribute to improvement in oxidation resistance.

【0014】P:0.06%以下 Pは偏析しやすい成分であり、素材の変形能を劣化す
る。そのためPは低く抑えるのがよく、好ましくは0.04
%以下がよい。 S:0.03%以下 SもP同様に熱間加工性に悪影響を及ぼす元素であり、低
く抑えるほうがよく、0.03%を上限とした。
P: 0.06% or less P is a component that is easily segregated, and deteriorates the deformability of the material. Therefore, P should be kept low, preferably 0.04
% Or less is good. S: 0.03% or less S is an element that has an adverse effect on hot workability similarly to P, and it is better to keep it low. The upper limit is 0.03%.

【0015】Ni:3.5〜6.0% オーステナイト形成元素であるが、高Mnステンレス鋼に
おいてはNiを節約するためにMn、Nを添加している。そ
のため、3.5から6.0%の添加量とした。 Cr:16〜19% 耐食性の改善に必要な基本成分でありCr添加量が16%以
上で効果が顕著となる。過剰に含まれると素材が硬質化
し、加工性が劣化するため、上限を19%とした。 N:0.25%以下 Nは固溶強化元素であり,多量に含まれると素材を硬質
化する。高Mnステンレス鋼においてはNiを節約するため
にMn,Nを添加しており、Nの固溶度がNiに比べてMnの方
が高いため、上限を0.25質量%とした.
Ni: 3.5-6.0% Ni is an austenite-forming element. In high-Mn stainless steel, Mn and N are added to save Ni. Therefore, the addition amount was set to 3.5 to 6.0%. Cr: 16 to 19% This is a basic component necessary for improving corrosion resistance. The effect becomes significant when the Cr content is 16% or more. If contained excessively, the material becomes hard and workability deteriorates, so the upper limit was made 19%. N: 0.25% or less N is a solid solution strengthening element, and when contained in a large amount, hardens the material. In high-Mn stainless steels, Mn and N were added to save Ni. Since the solid solubility of N was higher in Mn than in Ni, the upper limit was set to 0.25% by mass.

【0016】[0016]

【実施例】表1に示した成分組成をもつオーステナイト
系高Mnステンレス鋼SUS201を15トン電気アーク
炉で溶解し成分粗調整をした後Al脱酸を実施し、その
後取鍋精錬を実施した。図1に電気アーク炉1で原料を
溶解し、次いで溶鋼を取鍋2に移して取鍋精錬炉3の底
部に配置したポーラスレンガ6からArを底吹きし取鍋
でのスラグ精錬を実施した。脱酸はアーク炉の出鋼前に
実施し、Al質量%を0.008〜0.03質量%に調整した。
また,スラグのCaO/SiO比はアーク炉出鋼前に
スラグの基本組成を調整するが、取鍋精錬炉においても
CaO,CaF2を添加して塩基度を調整した。
EXAMPLE Austenitic high Mn stainless steel SUS201 having the composition shown in Table 1 was melted in a 15-ton electric arc furnace, the components were roughly adjusted, Al deoxidation was performed, and then ladle refining was performed. In FIG. 1, the raw material was melted in the electric arc furnace 1, then the molten steel was transferred to the ladle 2, and Ar was blown from the porous brick 6 arranged at the bottom of the ladle refining furnace 3 to perform slag refining in the ladle. . Deoxidation was performed before tapping of the arc furnace, and the Al mass% was adjusted to 0.008 to 0.03 mass%.
Also, the CaO / SiO 2 ratio of the slag is adjusted by adjusting the basic composition of the slag before tapping from the arc furnace, but the basicity is also adjusted by adding CaO and CaF 2 in the ladle refining furnace.

【0017】[0017]

【表1】 [Table 1]

【0018】図2にSUS201鋼のAl脱酸平衡と取
鍋精錬前後のAl,[O]値の実績を示す。図2に示すよ
うに、Al値が0.008%未満の比較例では、ほぼ温度1
873Kのアルミナの活量aAl2O3=1.0とした場合
の線上にプロットでき、溶鋼酸素値は十分に低減できな
いことがわかる。表2にアーク炉出鋼前のAl値を0.00
4%ねらいの場合と本発明として0.01%ねらいに調整し
た場合の精錬後の溶鋼中介在物組成を比較して示す。
FIG. 2 shows the Al deoxidation equilibrium of SUS201 steel and the results of Al and [O] values before and after ladle refining. As shown in FIG. 2, in the comparative example in which the Al value was less than 0.008%, the temperature was almost 1%.
Can be plotted on the line in the case where the activity of a Al2 O3 = 1.0 alumina of 873 K, the molten steel oxygen value it can be seen that not be sufficiently reduced. Table 2 shows the Al value before tapping from the arc furnace to 0.00.
The compositions of inclusions in molten steel after refining in the case of 4% aim and in the case of adjusting to 0.01% aim in the present invention are shown.

【0019】[0019]

【表2】 [Table 2]

【0020】0.004%ねらいでは介在物の主組成はSi
2−MnOとなり、脱酸が十分に行なわれない場合に
は精錬中にAlが脱酸剤として消耗することを示してい
る。これに対しAlが0.01%ねらいでは介在物の主組成
はSiO2−MnOであるが、Al23が23質量%程度
含有され、精錬中に生成したAl23がスラグに吸着さ
れ溶鋼酸素値の低減に寄与していることがわかる。これ
により、溶鋼酸素量を30ppm程度まで低減すること
が出来た。さらに表3に本発明と同条件で精錬前と精錬
後におけるスラグ組成の変化を精錬前と精錬後を比較し
て示す。スラグ組成に大きな変化は見られなかったが、
精錬が進行すると徐々にAlが増加していること
から生成したAlがスラグに吸着されていること
がわかる。
At the aim of 0.004%, the main composition of the inclusion is Si
O 2 -MnO, which indicates that Al is consumed as a deoxidizing agent during refining when deoxidation is not sufficiently performed. On the other hand, when Al is aimed at 0.01%, the main composition of the inclusions is SiO 2 —MnO, but about 23% by mass of Al 2 O 3 is contained, and Al 2 O 3 generated during refining is adsorbed by slag and molten steel It can be seen that this contributes to the reduction of the oxygen value. As a result, the molten steel oxygen content could be reduced to about 30 ppm. Further, Table 3 shows changes in the slag composition before and after refining under the same conditions as those of the present invention in comparison with before and after refining. No major change was seen in the slag composition,
As the refining progresses, Al 2 O 3 gradually increases, indicating that the generated Al 2 O 3 is adsorbed on the slag.

【0021】[0021]

【表3】 [Table 3]

【0022】[0022]

【発明の効果】本発明によればオーステナイト系高Mnス
テンレス鋼の低酸素化を飛躍的に改善することができ、
介在物の無害化の実用化にとって欠くことのできない技
術となる。
According to the present invention, the oxygen reduction of austenitic high Mn stainless steel can be remarkably improved,
This is an indispensable technology for practical use of detoxifying inclusions.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の工程を説明する図である。FIG. 1 is a diagram illustrating a process of the present invention.

【図2】Al値と酸素量の関係を示す図である。FIG. 2 is a diagram showing a relationship between an Al value and an oxygen amount.

【符号の説明】[Explanation of symbols]

1.電気アーク炉,2.取鍋,3.取鍋精錬炉,4.耐
火物,5.電極,6.ポーラスレンガ,7.鋳型
1. Electric arc furnace, 2. Ladle, 3. Ladle refining furnace, 4. Refractory, 5. Electrode, 6. Porous brick, 7. template

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 質量%でC:0.15%以下,Si:1%以下,
Mn:5〜10%,P:0.06%以下,S:0.03%以下,Ni:3.5
〜6.0%,Cr:16〜19,N:0.25%以下,残部が実質的に
Feの組成である溶鋼に、Alを添加し、Al:0.008〜0.03
質量%に調整脱酸後、取鍋精錬炉にてCaO/SiO2比が1.5
〜2.5のスラグを用いて溶鋼を精錬し、溶鋼酸素値を3
5ppm以下とすることを特徴とするオーステナイト系
高Mnステンレス鋼の製造方法。
C .: 0.15% or less by mass, Si: 1% or less,
Mn: 5-10%, P: 0.06% or less, S: 0.03% or less, Ni: 3.5
~ 6.0%, Cr: 16 ~ 19, N: 0.25% or less, with the balance being substantially
Al is added to molten steel having a composition of Fe, and Al: 0.008 to 0.03
After deoxidation, the CaO / SiO 2 ratio was 1.5 in a ladle refining furnace.
Refining molten steel using a slag of ~ 2.5 and reducing molten steel oxygen value to 3
A method for producing an austenitic high-Mn stainless steel, characterized in that the content is 5 ppm or less.
JP2000340512A 2000-11-08 2000-11-08 METHOD FOR PRODUCING AUSTENITIC HIGH Mn STAINLESS STEEL Pending JP2002146429A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000340512A JP2002146429A (en) 2000-11-08 2000-11-08 METHOD FOR PRODUCING AUSTENITIC HIGH Mn STAINLESS STEEL

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000340512A JP2002146429A (en) 2000-11-08 2000-11-08 METHOD FOR PRODUCING AUSTENITIC HIGH Mn STAINLESS STEEL

Publications (1)

Publication Number Publication Date
JP2002146429A true JP2002146429A (en) 2002-05-22

Family

ID=18815416

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000340512A Pending JP2002146429A (en) 2000-11-08 2000-11-08 METHOD FOR PRODUCING AUSTENITIC HIGH Mn STAINLESS STEEL

Country Status (1)

Country Link
JP (1) JP2002146429A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102041351A (en) * 2010-11-07 2011-05-04 山西太钢不锈钢股份有限公司 Slag conditioning method for refining chromium-nickel austenite stainless steel with argon-oxygen furnace
CN106011688A (en) * 2015-03-31 2016-10-12 日本冶金工业株式会社 Fe-Cr-Ni alloy with high Mn content and manufacturing method of Fe-Cr-Ni alloy
JP2019081202A (en) * 2013-10-18 2019-05-30 エー フィンクル アンド サンズ カンパニーA. Finkl & Sons Co. Steel production system of electric arc furnace
CN113234990A (en) * 2021-05-17 2021-08-10 宝武集团鄂城钢铁有限公司 Smelting method for improving fluidity of molten steel after refining and desulfurizing deformed steel bar
CN114427014A (en) * 2022-01-18 2022-05-03 甘肃酒钢集团宏兴钢铁股份有限公司 Smelting method of high-manganese non-magnetic steel

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102041351A (en) * 2010-11-07 2011-05-04 山西太钢不锈钢股份有限公司 Slag conditioning method for refining chromium-nickel austenite stainless steel with argon-oxygen furnace
CN102041351B (en) * 2010-11-07 2012-10-03 山西太钢不锈钢股份有限公司 Slag conditioning method for refining chromium-nickel austenite stainless steel with argon-oxygen furnace
JP2019081202A (en) * 2013-10-18 2019-05-30 エー フィンクル アンド サンズ カンパニーA. Finkl & Sons Co. Steel production system of electric arc furnace
CN106011688A (en) * 2015-03-31 2016-10-12 日本冶金工业株式会社 Fe-Cr-Ni alloy with high Mn content and manufacturing method of Fe-Cr-Ni alloy
CN113234990A (en) * 2021-05-17 2021-08-10 宝武集团鄂城钢铁有限公司 Smelting method for improving fluidity of molten steel after refining and desulfurizing deformed steel bar
CN114427014A (en) * 2022-01-18 2022-05-03 甘肃酒钢集团宏兴钢铁股份有限公司 Smelting method of high-manganese non-magnetic steel
CN114427014B (en) * 2022-01-18 2023-02-17 甘肃酒钢集团宏兴钢铁股份有限公司 Smelting method of high-manganese non-magnetic steel

Similar Documents

Publication Publication Date Title
CN108330245B (en) High-purity smelting method for stainless steel
KR100941841B1 (en) A method of manufacturing austenite stainless steel
JP6937190B2 (en) Ni-Cr-Mo-Nb alloy and its manufacturing method
US3615348A (en) Stainless steel melting practice
WO2016027765A1 (en) Method for controlling ti concentration in steel, and method for producing silicon-deoxidized steel
JP6903182B1 (en) Ni-Cr-Al-Fe alloy with excellent surface properties and its manufacturing method
JP2002167647A (en) Si KILLED STEEL HAVING EXCELLENT FATIGUE STRENGTH AND ITS PRODUCTION METHOD
JP2002146429A (en) METHOD FOR PRODUCING AUSTENITIC HIGH Mn STAINLESS STEEL
JP3752892B2 (en) Method of adding titanium to molten steel
JP7015410B1 (en) Nickel alloy with excellent surface properties and its manufacturing method
KR100844794B1 (en) A method for refining with high purity of austenitic stainless steel
KR100729123B1 (en) Method of manufacturing for low-carbon austenite stainless steel
KR101786931B1 (en) Method for refining of molten stainless steel
CN111112594A (en) Stopper rod for pouring low-carbon low-alloy steel and steelmaking process using stopper rod
JP5454313B2 (en) Blowing acid decarburization method for chromium-containing steel
CN109680124A (en) A method of improving engineering machinery wear resistance castings performance
JP7438435B1 (en) Stainless steel with excellent surface quality
JP4063452B2 (en) Stainless steel desulfurization method
JP7438436B1 (en) Ni-based alloy with excellent surface quality
JPS60121211A (en) Method for reducing and desulfurizing molten cr steel
JP2011174102A (en) METHOD FOR PRODUCING HIGH-Si STEEL WITH LESS S AND Ti CONTENTS
JPH07316631A (en) Deoxidizing and cleaning method of molten steel
JP6322065B2 (en) Stainless steel manufacturing method
JP2022027515A (en) Method for desulfurizing molten steel and desulfurization flux
JPH11279623A (en) Method for melting ferritic stainless steel containing high aluminum capable of suppressing erosion of refractory of refining container, and excellent in manufacture