JP3728922B2 - Method for melting molybdenum-containing molten steel - Google Patents

Method for melting molybdenum-containing molten steel Download PDF

Info

Publication number
JP3728922B2
JP3728922B2 JP12620298A JP12620298A JP3728922B2 JP 3728922 B2 JP3728922 B2 JP 3728922B2 JP 12620298 A JP12620298 A JP 12620298A JP 12620298 A JP12620298 A JP 12620298A JP 3728922 B2 JP3728922 B2 JP 3728922B2
Authority
JP
Japan
Prior art keywords
molybdenum
iron alloy
blowing
molten steel
molten
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12620298A
Other languages
Japanese (ja)
Other versions
JPH11323422A (en
Inventor
岳彦 高橋
元達 杉澤
祐樹 鍋島
寛 野村
直樹 菊池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP12620298A priority Critical patent/JP3728922B2/en
Publication of JPH11323422A publication Critical patent/JPH11323422A/en
Application granted granted Critical
Publication of JP3728922B2 publication Critical patent/JP3728922B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、含モリブデン溶鋼の溶製方法に関し、特に、モリブデン源に安価な酸化モリブデンを使用すると共に、高いモリブデン歩留りを達成し、従来より安価にモリブデン含有のステンレス溶鋼を溶製する技術である。
【0002】
【従来の技術】
一般に、溶融金属の精錬過程で該溶融金属に合金材を添加する場合には、その添加歩留りが高く、かつ溶融金属中に均一に混合するような添加方法が採用される。例えば、転炉でステンレス鋼のような合金鋼を精錬する場合も同様に考えられており、フェロ・クロムやフェロ・ニッケル、フェロ・モリブデン等の合金材は、通常、精錬前あるいは精錬初期に炉内に投入されている。
【0003】
ところで、近年、含モリブデン鋼の製造コストを低減するため、安価な原料を多量に使用する試みが盛んに行われるようになった。特に、モリブデン源である前記フェロ・モリブデンは、非常に高価であるので、安価な酸化モリブデンで代用させるようになってきた。
例えば、特公平1−25363号公報は、溶鋼中に酸化モリブデンを添加するにあたり、該溶鋼中に浸漬したランスを介し、キャリア・ガスと共に吹き込む技術を開示している。また、投入する酸化モリブデンは酸化物であるから、還元を容易にするため、溶鋼中の炭素濃度が十分に高い、つまり還元力の強い転炉吹錬初期の溶鋼に、酸化モリブデンを添加して、該酸化モリブデンの還元と溶湯中へのモリブデンの移行をさせるのが一般的である。この方法では、酸化モリブデンが700℃という比較的低い温度で昇華(気化)してしまうため、還元が速いほど、昇華ロスを低く抑えることができるという効果が期待される。
【0004】
【発明が解決しようとする課題】
しかしながら、酸素及び酸素を含む混合ガスを上吹き、底吹き、あるいは上底吹き可能な精錬容器を用いて溶鋼を吹錬する際、従来のように、吹錬初期に酸化モリブデンを添加しても、その添加量に対する溶鋼中へのモリブデンの移行量、つまりモリブデンの添加歩留は、高々92wt%止まりで、それ以上にならないことが判明した。また、酸化モリブデンを溶鋼中に添加するに際して、該溶鋼に浸漬したランスを介し、キャリアガスと共に吹き込む技術は、設備投資が必要であり、いずれにしろ安価な酸化モリブデンを使用するメリットが享受できないという結果になる。
【0005】
本発明は、かかる事情に鑑み、モリブデン源である酸化モリブデンを、酸素又は酸素を含む混合ガスで脱炭吹錬中の溶湯に添加して含モリブデン溶鋼を製造するに際し、モリブデンの添加歩留を従来より格段と高めることの可能な含モリブデン溶鋼の溶製方法を提供することを目的としている。
【0006】
【課題を解決するための手段】
発明者は、上記目的を達成するため、酸化モリブデンの溶融合金への添加時期を、溶銑からのダスト発生と関係づけて鋭意研究し、本発明を完成させた。
すなわち、本発明は、炭素を含有する溶融鉄合金を酸素又は酸素含有ガスで脱炭吹錬する際に、該溶融鉄合金中に酸化モリブデンを投入添加して、還元する含モリブデン溶鋼の溶製方法において、前記溶融鉄合金の下記式で定義される脱炭率が0.4以上、0.98以下になる時期に、該溶融鉄合金へ酸化モリブデンを添加することを特徴とする含モリブデン溶鋼の溶製方法である。
【0007】
脱炭率=([wt%C]i −[wt%C])/([wt%C]i −[wt%C]f
[wt%C]i :脱炭吹錬開始時の溶融鉄合金中の炭素濃度
[wt%C]f :脱炭吹錬吹止め時の含モリブデン溶鋼中の炭素濃度
[wt%C] :脱炭吹錬途上での溶融鉄合金中の炭素濃度
また、本発明は、前記溶融鉄合金がクロムを含有するものであることを特徴とする含モリブデン溶鋼の溶製方法でもある。ここで、上記炭素を含有する溶融鉄合金(以下では、単に溶融鉄合金ということが多い)とは、普通鋼を脱炭吹錬で溶製する場合、吹錬開始時には、出発原料の溶融鉄合金は、炭素の飽和した所謂溶銑組成であるが、脱炭の進行に伴い炭素濃度が低下し、吹止時には溶鋼組成となるので、溶銑から溶鋼になるまでのすべての状態を一言で表わすために用いた言葉である。特に、ステンレス鋼や含クロム溶鋼を溶製する場合には、該溶融鉄合金中には、クロムが含有されているが、この含クロム溶融鉄合金には、クロム鉱石の溶融還元で得たものの使用が好ましい。
本発明によれば、脱炭率が0.4以上0.98以下の時期に酸化モリブデンを添加するようにしたので、吹錬前半のダスト発生が多い時期を回避するためモリブデンのダストロスは減少し、且つ吹錬末期の炭素濃度が低い、すなわち,還元力が弱い時期での添加を避け、昇華ロスが減少するので添加歩留りが向上する。
【0008】
【発明の実施の形態】
以下、本発明をなすに至った経緯を交え、本発明の形態を説明する。
まず、発明者は、モリブデン源に酸化モリブデンを用いると、なぜモリブデンの歩留りが低下するかを究明した。つまり、ガス底吹き機能を有する転炉精錬で物質バランスを調査したのである。その結果、精錬で形成されるスラグ中には、モリブデンが殆ど残存しておらず、図2に示すように、溶融鉄合金(溶銑)、精錬初期のダスト、あるいは精錬末期のダスト中に含まれることを知った。
【0009】
そこで、発明者は、引き続き、脱炭吹錬中でのダストの発生速度及び溶融鉄合金(溶銑)中炭素濃度の経時変化を調査し、図3に示す関係を得た。この図3によれば、ダストの発生速度は、脱炭率が0.4の直前でほぼ最大値となった後、急激に低下することがわかる。つまり、このことから、従来の酸化モリブデンの添加時期が、このダストで逸散する時期であったことが明白になった。また、脱炭率が0.4以上になり、ダスト発生速度が小さくなった時期に、酸化モリブデンを添加すれば、ダストによる酸化モリブデンの損失が大幅に低減できることも明らかになった。
【0010】
さらに、発明者は、吹錬末期の種々の溶鋼中炭素濃度において酸化モリブデンを添加した時に、モリブデン歩留がどのようになるかを調査し、図4の結果を得た。この結果によれば、モリブデンの歩留は、酸化モリブデンを添加する時の溶銑中炭素濃度が低下すると共に上昇し、脱炭率が0.98の時に最大となり、さらに炭素濃度が低下すると、モリブデンの歩留は、再度低下することがわかる。この再度低下する理由は、脱炭率が0.98を超えた領域で酸化モリブデンを添加すると、炭素が少なくて酸化モリブデンを還元する速度が遅く、むしろ昇華ロスが増加し、モリブデンの添加歩留が低下してしまうからである。
【0011】
従って、発明者は、かかる問題を解消するため、脱炭率が0.4以上0.98以下の時期に、酸化モリブデンを添加することを本発明としたのである。なお、図1に、各炭素濃度で酸化モリブデンを添加した時の脱炭率とモリブデン歩留との関係を示しておく。
【0012】
【実施例】
容量160トンの上底吹転炉を用いて、TCM13鋼(1wt%Mo−9wt%Cr)を溶製した。溶銑中の炭素を、通常の酸素ガスによる脱炭吹錬で5.5wt%から0.12wt%へ低下させる過程で,溶銑中の炭素が0.4wt%(脱炭率0.95)の時点で、酸化モリブデンを溶銑中に投下によって添加した。そして、引き続き酸素吹錬を続け、上記の含モリブデン溶鋼とした。操業の成績をモリブデン歩留で評価し、図5に示す。
【0013】
図5より、従来の脱炭吹錬初期に酸化モリブデンを投入する方法に比較して、本発明に係る溶製方法によれば、モリブデンの添加歩留は、絶対値で2%も向上することが明らかである。
【0014】
【発明の効果】
以上述べたように、本発明により、モリブデン源に酸化モリブデンを使用する含モリブデン溶鋼の溶製において、モリブデン歩留を2%も向上させることができた。
【図面の簡単な説明】
【図1】溶銑の脱炭吹錬期に、種々の溶銑中炭素濃度において酸化モリブデンを添加し、モリブデン添加歩留を調査した結果を示す図である。
【図2】従来の脱炭吹錬におけるモリブデン量に関する物質バランスを示す図である。
【図3】従来のモリブデン溶鋼の溶製におけるダスト発生速度及び溶鉄中炭素濃度の経時変化を示す図である。
【図4】吹錬末期の種々の炭素濃度で酸化モリブデンを添加した時のモリブデン歩留を示す図である。
【図5】脱炭吹錬の初期及び末期で酸化モリブデンを添加した時のモリブデン歩留を示す図である。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for melting molybdenum-containing molten steel, and in particular, is a technique that uses inexpensive molybdenum oxide as a molybdenum source, achieves a high molybdenum yield, and melts molybdenum-containing stainless molten steel at a lower cost than before. .
[0002]
[Prior art]
In general, when an alloy material is added to a molten metal during the process of refining the molten metal, an addition method is employed in which the addition yield is high and the molten metal is uniformly mixed in the molten metal. For example, it is considered the same when refining alloy steel such as stainless steel in a converter. Alloy materials such as ferro-chromium, ferro-nickel, and ferro-molybdenum are usually used before or during the refining process. It is thrown in.
[0003]
By the way, in recent years, in order to reduce the production cost of molybdenum-containing steel, attempts to use a large amount of inexpensive raw materials have been actively conducted. In particular, the ferro-molybdenum, which is a molybdenum source, is very expensive and has been replaced by inexpensive molybdenum oxide.
For example, Japanese Patent Publication No. 1-25363 discloses a technique of blowing molybdenum oxide together with a carrier gas through a lance immersed in the molten steel when molybdenum oxide is added to the molten steel. In addition, since the molybdenum oxide to be added is an oxide, in order to facilitate the reduction, the molybdenum concentration is added to the molten steel at the initial stage of converter blowing with a sufficiently high carbon concentration in the molten steel, that is, a strong reducing power. In general, the molybdenum oxide is reduced and the molybdenum is transferred into the molten metal. In this method, molybdenum oxide is sublimated (vaporized) at a relatively low temperature of 700 ° C., so that the faster the reduction, the lower the sublimation loss.
[0004]
[Problems to be solved by the invention]
However, when molten steel is blown using a refining vessel capable of top blowing, bottom blowing, or top bottom blowing of oxygen and a mixed gas containing oxygen, molybdenum oxide may be added at the initial stage of blowing as in the past. It has been found that the amount of molybdenum transferred into the molten steel relative to the amount added, that is, the molybdenum addition yield is at most 92 wt% and does not exceed that. In addition, when adding molybdenum oxide into molten steel, the technology of blowing together with a carrier gas through a lance immersed in the molten steel requires capital investment, and in any case, the advantage of using inexpensive molybdenum oxide cannot be enjoyed. Result.
[0005]
In view of such circumstances, the present invention adds molybdenum oxide, which is a molybdenum source, to the molten metal being decarburized and blown with oxygen or a mixed gas containing oxygen to produce molybdenum-containing molten steel. An object of the present invention is to provide a method for producing molybdenum-containing molten steel that can be remarkably enhanced as compared with the prior art.
[0006]
[Means for Solving the Problems]
In order to achieve the above-mentioned object, the inventor diligently studied the timing of addition of molybdenum oxide to the molten alloy in relation to the generation of dust from the hot metal, and completed the present invention.
That is, the present invention provides a molybdenum-containing molten steel that is reduced by adding and adding molybdenum oxide into the molten iron alloy when decarburizing and blowing carbon-containing molten iron alloy with oxygen or an oxygen-containing gas. In the method, molybdenum-containing molten steel characterized by adding molybdenum oxide to the molten iron alloy at a time when the decarburization rate defined by the following formula of the molten iron alloy becomes 0.4 or more and 0.98 or less. This is a melting method.
[0007]
Decarburization rate = ([wt% C] i − [wt% C]) / ([wt% C] i − [wt% C] f )
[Wt% C] i : Carbon concentration in molten iron alloy at the start of decarburization blowing [wt% C] f : Carbon concentration in molten steel containing molybdenum at the time of decarburization blowing [wt% C]: Desorption Carbon concentration in molten iron alloy in the course of charcoal blowing Further, the present invention is also a method for producing molybdenum-containing molten steel, wherein the molten iron alloy contains chromium. Here, the above-mentioned molten iron alloy containing carbon (hereinafter, simply referred to as a molten iron alloy) is a case where ordinary steel is melted by decarburization blowing, and at the start of blowing, molten iron as a starting material The alloy has a so-called hot metal composition saturated with carbon, but as the decarburization progresses, the carbon concentration decreases and the molten steel composition is obtained at the time of blowing, so all the states from hot metal to molten steel are expressed in one word. It is a word used for this purpose. In particular, when molten stainless steel or chromium-containing molten steel is produced, chromium is contained in the molten iron alloy. This chromium-containing molten iron alloy is obtained by smelting reduction of chromium ore. Use is preferred.
According to the present invention, molybdenum oxide is added at a time when the decarburization rate is 0.4 or more and 0.98 or less, so that the dust loss of molybdenum is reduced in order to avoid the time when dust is generated in the first half of blowing. In addition, the addition yield is improved because the carbon concentration at the end of blowing is low, that is, the addition is avoided when the reducing power is weak, and the sublimation loss is reduced.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the form of the present invention will be described with the background of the present invention.
First, the inventor has investigated why the yield of molybdenum decreases when molybdenum oxide is used as a molybdenum source. In other words, the material balance was investigated by converter refining with a gas bottom blowing function. As a result, almost no molybdenum remains in the slag formed by refining, and as shown in FIG. 2, it is contained in molten iron alloy (hot metal), refining dust, or refining dust. I knew that.
[0009]
Therefore, the inventor continuously investigated the time course of the dust generation rate during decarburization blowing and the carbon concentration in the molten iron alloy (hot metal), and obtained the relationship shown in FIG. According to FIG. 3, it can be seen that the dust generation rate rapidly decreases after the decarburization rate is almost the maximum just before 0.4. That is, from this, it became clear that the conventional addition time of molybdenum oxide was the time when the dust was dissipated. It was also found that the loss of molybdenum oxide due to dust can be significantly reduced if molybdenum oxide is added when the decarburization rate is 0.4 or more and the dust generation rate is reduced.
[0010]
Furthermore, the inventor investigated the molybdenum yield when molybdenum oxide was added at various concentrations of carbon in molten steel at the end of the blow smelting, and obtained the results shown in FIG. According to this result, the yield of molybdenum increases as the carbon concentration in the hot metal when molybdenum oxide is added decreases, reaches a maximum when the decarburization rate is 0.98, and further decreases as the carbon concentration decreases. It can be seen that the yield decreases again. The reason for this decrease again is that when molybdenum oxide is added in a region where the decarburization rate exceeds 0.98, the rate of reduction of molybdenum oxide is low because of less carbon, rather the sublimation loss increases, and the molybdenum addition yield increases. It is because it will fall.
[0011]
Therefore, the inventor decided to add molybdenum oxide when the decarburization rate is 0.4 or more and 0.98 or less in order to solve such a problem. FIG. 1 shows the relationship between the decarburization rate and molybdenum yield when molybdenum oxide is added at each carbon concentration.
[0012]
【Example】
TCM13 steel (1 wt% Mo-9 wt% Cr) was melted using an upper bottom blow converter with a capacity of 160 tons. When the carbon in the hot metal is lowered from 5.5 wt% to 0.12 wt% by decarburization blowing with ordinary oxygen gas, the carbon in the hot metal is 0.4 wt% (decarburization rate 0.95) Then, molybdenum oxide was added to the hot metal by dropping. And oxygen blowing was continued and it was set as said molybdenum containing molten steel. The performance of the operation was evaluated by molybdenum yield and is shown in FIG.
[0013]
From FIG. 5, compared to the conventional method of adding molybdenum oxide at the early stage of decarburization, according to the melting method according to the present invention, the addition yield of molybdenum is improved by 2% in absolute value. Is clear.
[0014]
【The invention's effect】
As described above, according to the present invention, molybdenum yield can be improved by 2% in the production of molten molybdenum-containing steel using molybdenum oxide as a molybdenum source.
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is a diagram showing the results of investigation of molybdenum addition yield by adding molybdenum oxide at various carbon concentrations in hot metal during the decarburization blowing process of hot metal.
FIG. 2 is a diagram showing a material balance relating to the amount of molybdenum in conventional decarburization blowing.
FIG. 3 is a graph showing changes over time in dust generation rate and carbon concentration in molten iron in the conventional melting of molten molybdenum steel.
FIG. 4 is a diagram showing molybdenum yield when molybdenum oxide is added at various carbon concentrations at the end of blowing.
FIG. 5 is a diagram showing molybdenum yield when molybdenum oxide is added at the beginning and end of decarburization blowing.

Claims (2)

炭素を含有する溶融鉄合金を酸素又は酸素含有ガスで脱炭吹錬する際に、該溶融鉄合金中に酸化モリブデンを投入添加して、還元する含モリブデン溶鋼の溶製方法において、
前記溶融鉄合金の下記式で定義される脱炭率が0.4以上、0.98以下になる時期に、該溶融鉄合金へ酸化モリブデンを添加することを特徴とする含モリブデン溶鋼の溶製方法。
脱炭率=([wt%C]i−[wt%C])/([wt%C]i−[wt%C]f
[wt%C]i:脱炭吹錬開始時の溶融鉄合金中の炭素濃度
[wt%C]f:脱炭吹錬吹止め時の含モリブデン溶鋼中の炭素濃度
[wt%C] :脱炭吹錬途上での溶融鉄合金中の炭素濃度
When decarburization blowing the molten iron alloy in an oxygen or oxygen-containing gas containing carbon, was charged adding molybdenum oxide in the molten iron alloy, the melting method including molybdenum molten steel to reduce,
Molybdenum-containing molten steel is produced by adding molybdenum oxide to the molten iron alloy when the decarburization rate defined by the following formula of the molten iron alloy becomes 0.4 or more and 0.98 or less. Method.
Decarburization rate = ([wt% C] i − [wt% C]) / ([wt% C] i − [wt% C] f )
[Wt% C] i : Carbon concentration in molten iron alloy at the start of decarburization blowing [wt% C] f : Carbon concentration in molybdenum-containing molten steel at the time of decarburization blowing [wt% C]: Desorption Carbon concentration in molten iron alloy during charcoal blowing
前記溶融鉄合金が、クロムを含有するものであることを特徴とする請求項1記載の含モリブデン溶鋼の溶製方法。  The method for melting molybdenum-containing molten steel according to claim 1, wherein the molten iron alloy contains chromium.
JP12620298A 1998-05-08 1998-05-08 Method for melting molybdenum-containing molten steel Expired - Fee Related JP3728922B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12620298A JP3728922B2 (en) 1998-05-08 1998-05-08 Method for melting molybdenum-containing molten steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12620298A JP3728922B2 (en) 1998-05-08 1998-05-08 Method for melting molybdenum-containing molten steel

Publications (2)

Publication Number Publication Date
JPH11323422A JPH11323422A (en) 1999-11-26
JP3728922B2 true JP3728922B2 (en) 2005-12-21

Family

ID=14929246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12620298A Expired - Fee Related JP3728922B2 (en) 1998-05-08 1998-05-08 Method for melting molybdenum-containing molten steel

Country Status (1)

Country Link
JP (1) JP3728922B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100402017B1 (en) * 1999-12-01 2003-10-17 주식회사 포스코 Method For Manufacturing Stainless Steel Containing Mo
KR20020040022A (en) * 2000-11-23 2002-05-30 이구택 A method for manufacturing high chromium stainless steel using molybdenium oxides
JP2015199625A (en) * 2014-04-08 2015-11-12 Dic株式会社 Core-shell type structure, manufacturing method thereof, and heat conductive resin composition

Also Published As

Publication number Publication date
JPH11323422A (en) 1999-11-26

Similar Documents

Publication Publication Date Title
JP3728922B2 (en) Method for melting molybdenum-containing molten steel
JPH083615A (en) Production of low carbon steel containing chromium
JP3774674B2 (en) Method for producing low nitrogen-containing chromium molten steel
JP3158912B2 (en) Stainless steel refining method
KR100411288B1 (en) Method for recovering chromium from electric furnace slag
JP4411934B2 (en) Method for producing low phosphorus hot metal
US2797156A (en) Nitrogen-bearing ferrochromium
JPH07173515A (en) Decarburization refining method of stainless steel
JPS6010087B2 (en) steel smelting method
JPS60200949A (en) Production of high-carbon ferromanganese
JP2802799B2 (en) Dephosphorization and desulfurization method for crude molten stainless steel and flux used for it
JPH0250165B2 (en)
JPS6250543B2 (en)
JPH093517A (en) Method for decarburization-refining stainless steel by blowing oxygen
JPH01316437A (en) Manufacture of medium-low carbon ferromanganese
JPH0372129B2 (en)
KR20150044288A (en) Method for recovering chromium from slag in an electric-arc furnace
RU2091494C1 (en) Method of smelting steel alloyed with chromium and nickel
JPS6244533A (en) Melting-reducing refining method for metallic oxide
JPH03271309A (en) Production of low nitrogen-high carbon iron alloy with smelting reduction
JPS5928608B2 (en) Manufacturing method of ultra-low carbon, nitrogen-rich chromium steel
JPH11140523A (en) Manufacture of steel containing nickel
JPH02138409A (en) Method for refining stainless steel
JPH0215602B2 (en)
JPH11286713A (en) Method for refining chromium-containing molten steel

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050801

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050913

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050926

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091014

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101014

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101014

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111014

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111014

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121014

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121014

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131014

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees