JPH0885815A - Method for effectively refining molten chromium-containing steel using decarburized slag - Google Patents

Method for effectively refining molten chromium-containing steel using decarburized slag

Info

Publication number
JPH0885815A
JPH0885815A JP22223094A JP22223094A JPH0885815A JP H0885815 A JPH0885815 A JP H0885815A JP 22223094 A JP22223094 A JP 22223094A JP 22223094 A JP22223094 A JP 22223094A JP H0885815 A JPH0885815 A JP H0885815A
Authority
JP
Japan
Prior art keywords
molten steel
refining
chromium
slag
decarburization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP22223094A
Other languages
Japanese (ja)
Inventor
Ryuji Nakao
隆二 中尾
Mayumi Okimori
麻佑巳 沖森
Hiroshi Iwasaki
央 岩崎
Hiroaki Morishige
博明 森重
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP22223094A priority Critical patent/JPH0885815A/en
Publication of JPH0885815A publication Critical patent/JPH0885815A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

PURPOSE: To reduce and recover produced chromium oxide in a method at a low cost in a decarburization-refining of molten chromium-containing steel and also, to effectively execute the reduction and the decarburization. CONSTITUTION: At the time of tapping the decarburization-refined molten steel in the decarburization-refining of the molten chromium-containing steel, the crude molten steel having >=1400 deg.C, >=0.2mass% [Si] concn. and >=1.2mass% [C] concn., is received under the condition of remaining slag containing 15-50mass% chromium oxide produced by the decarburization-refining in a furnace. In the case of being >=0.1mass% [Si] concn. in the crude molten steel, only inert gas is supplied from a bottom-blowing tuyere, and in the case of being <0.1mass% [Si] concn., oxygen gas is supplied from a top-blowing lance in addition of the inert gas from the bottom-blowing tuyere, to execute the reduction. By this method, since the remarkable lowerings of the unit consumptions of Si for reduction and dilute gas, and the shortening of the refining time are obtd., the refining cost can remarkably be reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は含クロム溶鋼の脱炭精錬
において、脱炭精錬によって生成したクロム酸化物を安
価な方法で還元してクロムを回収するとともに、効率的
に還元および脱炭を行う含クロム溶鋼の精錬方法に関す
る。
FIELD OF THE INVENTION The present invention relates to the decarburization refining of molten steel containing chromium, in which the chromium oxides produced by the decarburization refining are reduced by an inexpensive method to recover chromium, and the reduction and decarburization are efficiently performed. The present invention relates to a method for refining molten steel containing chromium.

【0002】[0002]

【従来の技術】従来、ステンレス鋼のような11mas
s%以上のクロムを含む含クロム溶鋼の脱炭精錬法とし
ては、脱炭中期以降(例えば〔C〕0.5mass%以
下)を減圧下で行う真空脱炭法、および希釈ガスを吹込
んで雰囲気中のCO分圧を下げる希釈脱炭法が広く用い
られている。前者は一般にVOD法と呼ばれ、後者はA
OD法および上底吹き転炉法と呼ばれている。これらの
方法は、いずれも脱炭中期以降において、溶鋼中〔C
r〕の酸化損失を抑えながら効率的に脱炭を進行させよ
うとするものである。しかしながら、〔C〕濃度が低下
するにつれて〔Cr〕の酸化が避けられないため、〔C
r〕酸化量が増大する。
2. Description of the Related Art Conventionally, 11mas such as stainless steel
As a decarburizing refining method for molten chromium-containing steel containing s% or more of chromium, there are a vacuum decarburizing method in which decarburization is carried out after the middle stage of decarburization (for example, [C] 0.5 mass% or less), and an atmosphere in which a diluting gas is blown Diluted decarburization, which lowers the CO partial pressure, is widely used. The former is generally called the VOD method, and the latter is A
It is called the OD method and the top-bottom blowing converter method. All of these methods are used in molten steel [C
It is intended to efficiently carry out decarburization while suppressing the oxidation loss of [r]. However, as the [C] concentration decreases, the oxidation of [Cr] is unavoidable.
r] The amount of oxidation increases.

【0003】従来、溶鋼中〔Cr〕の酸化損失を抑える
ために、例えばVOD法では、特開昭55−89417
号公報や特開昭55−152118号公報に示されてい
るように、脱炭の進行に伴う酸素供給量の調整や、ある
いは100Torr以下の真空下での調整を行ってい
る。また、AOD法では〔C〕濃度の低下に伴って希釈
ガスの比率を上げるような方法がとられている。
Conventionally, in order to suppress the oxidation loss of [Cr] in molten steel, for example, in the VOD method, JP-A-55-89417 is used.
As disclosed in Japanese Patent Laid-Open Publication No. 55-152118 and Japanese Patent Laid-Open No. 55-152118, the oxygen supply amount is adjusted in accordance with the progress of decarburization, or the adjustment is performed under a vacuum of 100 Torr or less. Further, in the AOD method, a method of increasing the ratio of the diluent gas as the [C] concentration decreases is adopted.

【0004】これらの方法では、スラグの役割は、大半
はスプラッシュの抑制および炉耐火物の溶損抑制であ
り、脱炭の酸素源はガスとして供給される酸素あるいは
溶鋼中の酸素である。このため、供給された酸素ガスに
よる溶鋼中〔Cr〕の酸化は避けられず、この〔Cr〕
の酸化により、スラグ中のクロム酸化物(一般には(C
2 3 )と書く)濃度が増大し、スラグの融点が急激
に上昇してくる。クロム酸化物濃度は脱炭終了時には1
5〜50mass%にもなり、その融点は1700℃以
上の高温となってスラグは完全に固相を形成してくる。
In these methods, most of the role of slag is to suppress splash and melt loss of furnace refractory, and the oxygen source for decarburization is oxygen supplied as gas or oxygen in molten steel. Therefore, the oxidation of [Cr] in the molten steel by the supplied oxygen gas is unavoidable.
Oxidation of chromium oxide in the slag (generally (C
r 2 O 3 )) concentration increases, and the melting point of slag rises sharply. Chromium oxide concentration is 1 at the end of decarburization
The melting point becomes 5 to 50 mass%, the melting point becomes a high temperature of 1700 ° C. or higher, and the slag completely forms a solid phase.

【0005】従来、このスラグを脱炭反応の酸素源とし
て使用し、クロム酸化物を還元して〔Cr〕を回収する
ため、および脱炭末期(例えば〔C〕0.1mass%
以下)での脱炭反応速度の上昇をはかるために、VOD
法では高真空化およびガス吹込み量の増大をはかってい
る。また、AOD法では特開平3−68713号公報お
よび特開平4−254509号公報に示されているよう
に、真空精錬の付与を行っている場合もある。しかし、
これらの方法ではスラグが固相を形成していること、お
よび脱炭初期(例えば〔C〕0.5mass%以上)に
比べ脱炭速度が非常に遅く、かつ脱炭量も小さいため
に、大きな効果は得られていない。このため、脱炭精錬
終了後、スラグ中のクロム等の有価金属を還元回収する
ためにSiやAl等の還元材を大量に投入して還元精錬
を行った後に出鋼している。
Conventionally, this slag is used as an oxygen source for a decarburization reaction to reduce chromium oxide and recover [Cr], and for the decarburization end stage (eg, [C] 0.1 mass%).
In order to increase the decarburization reaction rate in
The method seeks to increase the vacuum and increase the gas injection amount. In addition, in the AOD method, vacuum refining may be applied as shown in JP-A-3-68713 and JP-A-4-254509. But,
In these methods, the slag forms a solid phase, and the decarburization rate is very slow compared to the initial decarburization (for example, [C] 0.5 mass% or more), and the decarburization amount is small. No effect has been obtained. Therefore, after the decarburization refining, in order to reduce and recover valuable metals such as chromium in the slag, a large amount of a reducing material such as Si or Al is introduced to carry out reduction refining, and then steel is tapped.

【0006】一方、これらの問題点を解決する方法とし
て、特開昭62−243711号公報および特開平6−
73424号公報記載の方法が開示されている。これら
の方法は、クロム酸化物を多量に含むスラグを炉内に残
留させ、新たに受鋼した粗溶鋼中の〔C〕のみによって
還元する方法である。しかしながら、〔C〕のみによる
還元では還元速度が遅いために、クロム酸化物中の〔C
r〕を回収するための十分な効果は得られていない。
On the other hand, as a method for solving these problems, Japanese Patent Laid-Open No. 243711/1987 and Japanese Patent Laid-Open No.
The method described in Japanese Patent No. 73424 is disclosed. These methods are methods in which slag containing a large amount of chromium oxide is left in the furnace and reduced only by [C] in the newly molten steel. However, reduction with only [C] results in a slow reduction rate, so [C] in chromium oxide
The sufficient effect for recovering r] has not been obtained.

【0007】[0007]

【発明が解決しようとする課題】本発明の課題は、AO
Dのような転炉型の精錬容器を用いた含クロム溶鋼の脱
炭精錬において、脱炭精錬処理された溶鋼を出鋼するに
際し、クロム酸化物を多量に含むスラグを炉内に残留さ
せ、新たに受鋼した粗溶鋼によって還元する方法におい
て還元速度を高位に維持し、かつ効率よく行うことであ
る。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
In decarburizing and refining molten chromium-containing steel using a converter type refining vessel such as D, when tapping the decarburized and refined molten steel, a slag containing a large amount of chromium oxide is left in the furnace. In the method of reducing with newly received crude molten steel, the reduction rate is maintained at a high level and is efficiently performed.

【0008】[0008]

【課題を解決するための手段】本発明は、上述の課題を
有利に解決したものであり、その要旨とするところは下
記のとおりである。 (1)AODのような転炉型の精錬容器を用いた含クロ
ム溶鋼の脱炭精錬において、脱炭精錬処理された溶鋼を
出鋼するに際し、前記脱炭精錬処理によって生成したク
ロム酸化物を15mass%以上かつ50mass%以
下含むスラグを出鋼時に炉内に残留させ、新たに受鋼し
た粗溶鋼中の〔Si〕および〔C〕により前記クロム酸
化物を還元する方法において、溶鋼中の〔Si〕濃度が
0.1mass%以上では底吹き羽口よりAr、N2
の不活性ガスを供給し、〔Si〕濃度が0.1mass
%未満では底吹き羽口からは不活性ガスを、上吹きラン
スからは酸素ガスを供給することを特徴とする脱炭滓を
用いた効率的な含クロム溶鋼の精錬方法。
The present invention advantageously solves the above-mentioned problems, and the gist thereof is as follows. (1) In decarburization refining of molten chromium-containing steel using a converter-type refining vessel such as AOD, when the decarburized refining-treated molten steel is tapped, the chromium oxide produced by the decarburization refining treatment is In the method of reducing the chromium oxide by [Si] and [C] in the newly-received crude molten steel, the slag containing 15 mass% or more and 50 mass% or less is left in the furnace at the time of tapping. When the Si] concentration is 0.1 mass% or more, an inert gas such as Ar or N 2 is supplied from the bottom blowing tuyere, and the [Si] concentration is 0.1 mass%.
%, An inert gas is supplied from the bottom blowing tuyere, and oxygen gas is supplied from the top blowing lance. An efficient method for refining molten chromium-containing steel using a decarburizing slag.

【0009】(2)上吹きランスから供給する酸素ガス
の流量を、スラグ中のクロム酸化物の〔C〕による還元
速度に合わせて調整することを特徴とする前項(1)記
載の脱炭滓を用いた効率的な含クロム溶鋼の精錬方法。 (3)新たに受鋼する粗溶鋼の温度が1400℃以上
で、かつ〔Si〕濃度が0.2mass%以上、〔C〕
濃度が1.2mass%以上であることを特徴とする前
項(1)記載の脱炭滓を用いた効率的な含クロム溶鋼の
精錬方法。
(2) The decarburizing slag described in (1) above, wherein the flow rate of the oxygen gas supplied from the top blowing lance is adjusted according to the reduction rate of [C] of the chromium oxide in the slag. Efficient refining method for molten steel containing chromium. (3) The temperature of the newly obtained crude molten steel is 1400 ° C. or higher, the [Si] concentration is 0.2 mass% or higher, and [C].
An efficient method for refining molten chromium-containing steel using a decarburizing slag as described in (1) above, wherein the concentration is 1.2 mass% or more.

【0010】(4)前記クロム酸化物の還元終了後、ス
ラグのみを精錬容器より排出し、続いて含クロム溶鋼の
脱炭精錬を行うことを特徴とする前項(1)記載の脱炭
滓を用いた効率的な含クロム溶鋼の精錬方法。以下に本
発明について詳細に説明する。本発明の含クロム溶鋼の
精錬方法はAODのような転炉型の精錬容器を用いた、
図1に例示するような精錬工程である。図1において、
で目標〔C〕濃度までの脱炭精錬を行い、で脱炭精
錬で生成したクロム酸化物を含むスラグを炉内残留させ
て、脱炭精錬処理された溶鋼のみを出鋼する。次いで、
で新たに粗溶鋼を受鋼し、で炉内残留させたスラグ
の粗溶鋼による還元処理を行い、で還元処理されたス
ラグのみを排出する。ではの脱炭精錬と同じ工程に
戻る。従って、からを繰り返すことにより、効率的
な精錬方法となる。
(4) After the completion of the reduction of the chromium oxide, only the slag is discharged from the refining vessel, and then the decarburization smelting of the chromium-containing molten steel is carried out. Efficient refining method of molten chromium-containing steel used. The present invention will be described in detail below. The method for refining molten chromium-containing steel of the present invention uses a converter type refining vessel such as AOD,
This is a refining process as illustrated in FIG. In FIG.
The decarburization refining up to the target [C] concentration is carried out in step 1, and the slag containing the chromium oxide produced in the decarburization refining step is left in the furnace, and only the decarburized refining molten steel is tapped. Then
The crude molten steel is newly received at, and the slag left in the furnace is reduced by the crude molten steel at, and only the slag reduced at is discharged. Then, return to the same process as decarburization refining in. Therefore, an efficient refining method can be obtained by repeating steps from.

【0011】なお、図中のaは炉体、bはスラグ、cは
溶鋼、dは羽口、eは取鍋、fはスラグ鍋を示す。本発
明は、クロム酸化物を含むスラグを新たに受鋼する粗溶
鋼で還元するに際し、粗溶鋼中に〔C〕以外に〔Si〕
を共存させ、かつクロム酸化物量に応じて〔Si〕濃度
を調整すること、さらに、吹込むガス種を粗溶鋼中の
〔Si〕濃度に合わせて変更することによって、効率的
な精錬を行うものである。
In the figure, a is a furnace body, b is slag, c is molten steel, d is tuyere, e is a ladle, and f is a slag pot. According to the present invention, when the slag containing chromium oxide is reduced by the newly received crude molten steel, [Si] is contained in the crude molten steel in addition to [C].
Coexisting, and adjusting the [Si] concentration according to the amount of chromium oxide, and by changing the gas species to be blown in accordance with the [Si] concentration in the crude molten steel, efficient refining is performed. Is.

【0012】図2にクロム酸化物を30mass%含む
スラグを約1500℃の温度を有する粗溶鋼で還元処理
した場合のスラグ中クロム酸化物濃度の時間変化を粗溶
鋼中の〔C〕濃度2.0mass%、〔Si〕濃度0.
01mass%の場合と〔C〕濃度2.0mass%、
〔Si〕濃度0.30mass%の場合を比較して示
す。粗溶鋼中に〔Si〕を含有させることによって、ク
ロム酸化物濃度の低減速度、すなわち還元速度が大きく
なることがわかる。従って、クロム酸化物を含むスラグ
の還元は、〔C〕単独で行うよりも、〔Si〕および
〔C〕により行う方が効率的である。
FIG. 2 shows the change over time in the chromium oxide concentration in the slag when the slag containing 30 mass% of chromium oxide was subjected to reduction treatment with the crude molten steel having a temperature of about 1500 ° C. 0 mass%, [Si] concentration of 0.
01 mass% and [C] concentration 2.0 mass%,
The case where the [Si] concentration is 0.30 mass% is shown for comparison. It can be seen that the inclusion rate of [Si] in the crude molten steel increases the reduction rate of chromium oxide concentration, that is, the reduction rate. Therefore, the reduction of slag containing chromium oxide is more efficient with [Si] and [C] than with [C] alone.

【0013】図3にクロム酸化物を含むスラグを約15
00℃の温度を有する粗溶鋼で10分間の還元処理を行
った場合の還元前のクロム酸化物濃度と還元指数の関係
を示す。なお、還元指数はクロム酸化物濃度が50ma
ss%の場合の還元量の平均値を100として指数化し
た値であり、また、還元前の粗溶鋼中の〔C〕濃度は
2.0mass%、〔Si〕濃度は0.3mass%で
あった。図3よりスラグ中クロム酸化物濃度が50ma
ss%以上では還元指数が急激に低下することがわか
る。また、クロム酸化物濃度が15mass%未満では
脱炭末期の脱炭速度が小さく、かつ脱炭終了後にスラグ
を残留させ、新たに受鋼した粗溶鋼で還元処理する場合
のクロム酸化物の還元量が小さくなるために、コスト低
減効果も小さくなる。従って、脱炭終了後に炉内に残留
させるスラグ中のクロム酸化物濃度としては15mas
s%以上、50mass%以下が必要である。
FIG. 3 shows about 15 slags containing chromium oxide.
The relationship between the chromium oxide concentration before reduction and the reduction index when the reduction treatment is performed for 10 minutes on the crude molten steel having a temperature of 00 ° C is shown. The reduction index is such that the chromium oxide concentration is 50 ma.
In the case of ss%, the average value of the reduction amount was set as 100 and indexed. Further, the [C] concentration in the crude molten steel before the reduction was 2.0 mass% and the [Si] concentration was 0.3 mass%. It was From Fig. 3, the chrome oxide concentration in the slag is 50 ma.
It can be seen that the reduction index sharply decreases at ss% or more. When the chromium oxide concentration is less than 15 mass%, the decarburization rate at the final stage of decarburization is low, and the amount of chromium oxide reduced when the slag is left after the decarburization is finished and the reduction treatment is carried out with newly received crude molten steel. Is smaller, the cost reduction effect is also smaller. Therefore, the concentration of chromium oxide in the slag that remains in the furnace after decarburization is 15mass.
It is necessary to be s% or more and 50 mass% or less.

【0014】図4にクロム酸化物を約40mass%含
むスラグを、約1500℃で〔C〕濃度約2.0mas
s%の粗溶鋼で還元処理を行った場合の粗溶鋼中の〔S
i〕濃度と全還元量に占める粗溶鋼中の〔Si〕による
還元の比率を示す。図4より〔Si〕濃度0.1mas
s%未満では〔Si〕による還元の比率が急激に低下す
ることがわかる。一方、〔Si〕による還元の比率が高
い領域では〔C〕による還元の比率が小さいために、
〔C〕による還元で生成するCOガスの発生量が小さ
い。つまり、COガスの発生量の小さい領域で酸素ガス
を吹込んだ場合には酸素ガスは粗溶鋼中の〔Si〕や
〔Cr〕の酸化に働くために有効とは言えない。また、
底吹き羽口からのガス吹込みは溶鋼とスラグとの反応を
効率的に進めるのに有効であり、上吹きランスからのガ
ス吹付けは溶鋼内から発生するガスと反応させるのに有
効である。従って、〔Si〕濃度0.1mass%以上
では底吹き羽口からAr、N2 等の不活性ガスを吹込む
ことで、スラグ中クロム酸化物の粗溶鋼中の〔Si〕還
元を促進させる。また、〔Si〕濃度0.1mass%
未満では底吹き羽口からの不活性ガスの吹込みでクロム
酸化物の粗溶鋼中の〔C〕による還元を促進させるとと
もに、上吹きランスから酸素ガスを流すことで生成して
くるCOとの反応(CO+1/2O2 =CO2 )を促進
させて、反応熱を回収することが効果的である。
FIG. 4 shows a slag containing about 40 mass% of chromium oxide at a temperature of about 1500 ° C. and a [C] concentration of about 2.0 mass.
[S in crude molten steel when reduction treatment is performed with s% of crude molten steel
i] The concentration and the ratio of reduction by [Si] in the crude molten steel to the total reduction amount are shown. From FIG. 4, [Si] concentration is 0.1 mas
It can be seen that if it is less than s%, the ratio of reduction by [Si] drops sharply. On the other hand, in the region where the ratio of reduction by [Si] is high, the ratio of reduction by [C] is small,
The amount of CO gas generated by the reduction by [C] is small. That is, when oxygen gas is blown in a region where the amount of CO gas generated is small, the oxygen gas is not effective because it acts on the oxidation of [Si] and [Cr] in the crude molten steel. Also,
Gas injection from the bottom blowing tuyere is effective in efficiently promoting the reaction between molten steel and slag, and gas injection from the top blowing lance is effective in reacting with the gas generated from inside the molten steel. . Therefore, when the [Si] concentration is 0.1 mass% or more, the inert gas such as Ar or N 2 is blown from the bottom blowing tuyere to promote the [Si] reduction of the chromium oxide in the slag in the crude molten steel. Also, the [Si] concentration is 0.1 mass%
If the amount is less than the above, the reduction of chromium oxide by [C] in the crude molten steel is promoted by blowing an inert gas from the bottom blowing tuyere, and the amount of CO generated by flowing oxygen gas from the top blowing lance It is effective to promote the reaction (CO + 1 / 2O 2 = CO 2 ) and recover the heat of reaction.

【0015】図5にクロム酸化物を約40mass%含
むスラグを、約1500℃で〔C〕濃度約2.0mas
s%、〔Si〕濃度約0.3mass%の粗溶鋼で還元
処理した場合の〔Si〕濃度0.1mass%未満の領
域における脱炭量に対する酸素ガス流量と酸素ガスによ
る〔Cr〕酸化量指数の関係を示す。なお、酸素ガスは
上吹きランスより吹付けた場合であり、また、脱炭量に
対する酸素ガス流量とは1kgの脱炭が進行した場合に
吹込んだ酸素ガス流量を表し、酸素ガスによる〔Cr〕
酸化量指数は酸素ガス流量が1.0の場合の〔Cr〕酸
化量の平均値を1.0として指数化した値である。図5
からわかるように、上吹きランスから供給する酸素ガス
流量はクロム酸化物の〔C〕による還元速度(脱炭量)
に合わせて調整する必要があり、〔Cr〕の酸化を抑え
るためには、脱炭量の1.3倍程度以下が望ましいと言
える。
FIG. 5 shows a slag containing about 40 mass% of chromium oxide at about 1500 ° C. and a [C] concentration of about 2.0 mass.
s%, [Si] concentration of approximately 0.3 mass% when subjected to reduction treatment with crude molten steel, the flow rate of oxygen gas and the index of oxidation amount of [Cr] by oxygen gas in the range of [Si] concentration of less than 0.1 mass% Shows the relationship. It should be noted that the oxygen gas was sprayed from the top blowing lance, and the oxygen gas flow rate with respect to the decarburization amount represents the oxygen gas flow rate blown when the decarburization of 1 kg progressed. ]
The oxidation amount index is a value obtained by indexing the average value of the [Cr] oxidation amount when the oxygen gas flow rate is 1.0 as 1.0. Figure 5
As can be seen from the above, the flow rate of oxygen gas supplied from the top blowing lance is the rate of reduction of chromium oxide by [C] (decarburization amount).
In order to suppress the oxidation of [Cr], it can be said that the amount of decarburization is about 1.3 times or less.

【0016】図6に約30mass%のクロム酸化物を
含むスラグを新たに受鋼した粗溶鋼で10分間の還元処
理を行った場合の粗溶鋼の温度と還元指数の関係を示
す。なお、還元指数は粗溶鋼の温度が1400℃の場合
のクロム酸化物の還元量の平均値を100として指数化
した値である。また、還元前の粗溶鋼中の〔C〕濃度は
2.0mass%、〔Si〕濃度は0.3mass%で
あった。図6からわかるように、粗溶鋼の温度が140
0℃未満では急激に還元指数が低下することから、温度
としては1400℃以上が好ましい。
FIG. 6 shows the relationship between the temperature of the crude molten steel and the reduction index when the crude molten steel newly receiving the slag containing about 30 mass% of chromium oxide was subjected to the reduction treatment for 10 minutes. The reduction index is a value obtained by indexing the average value of the reduction amount of chromium oxide when the temperature of the crude molten steel is 1400 ° C. as 100. Further, the [C] concentration in the crude molten steel before the reduction was 2.0 mass% and the [Si] concentration was 0.3 mass%. As can be seen from FIG. 6, the temperature of the crude molten steel is 140
When the temperature is lower than 0 ° C, the reduction index sharply decreases, so the temperature is preferably 1400 ° C or higher.

【0017】図7に約30mass%のクロム酸化物を
含むスラグを炉内に残留させ、新たに受鋼した約150
0℃の温度を有する粗溶鋼で10分間の還元処理を行っ
た場合の粗溶鋼中の〔Si〕濃度と還元指数の関係を示
す。なお、還元指数は〔Si〕濃度0.20mass%
の場合のクロム酸化物の還元量の平均値を100として
指数化した値である。また、還元前の粗溶鋼中の〔C〕
濃度は2.0mass%であった。図7からわかるよう
に、〔Si〕濃度0.2mass%未満では還元指数が
低下することから、粗溶鋼中の〔Si〕濃度は0.2m
ass%以上が好ましい。
In FIG. 7, a slag containing about 30 mass% of chromium oxide was left in the furnace, and about 150 new steel was received.
The relationship between the [Si] concentration in the crude molten steel and the reduction index when the reduction treatment is performed on the crude molten steel having a temperature of 0 ° C. for 10 minutes is shown. The reduction index is [Si] concentration of 0.20 mass%.
In the case of, the average value of the reduction amount of the chromium oxide is set as 100 and indexed. In addition, [C] in the crude molten steel before reduction
The concentration was 2.0 mass%. As can be seen from FIG. 7, when the [Si] concentration is less than 0.2 mass%, the reduction index decreases, so that the [Si] concentration in the crude molten steel is 0.2 m.
It is preferably ass% or more.

【0018】図8に約30mass%のクロム酸化物を
含むスラグを炉内に残留させ、新たに受鋼した約150
0℃の温度を有する粗溶鋼で10分間の還元処理を行っ
た場合の粗溶鋼中の〔C〕濃度と還元指数の関係を示
す。なお、還元指数は〔C〕濃度1.2mass%の場
合のクロム酸化物の還元量の平均値を100として指数
化した値である。図8からわかるように、〔C〕濃度
1.2mass%未満では還元指数が低下することか
ら、粗溶鋼中の〔C〕濃度は1.2mass%以上が好
ましい。
In FIG. 8, slag containing about 30 mass% of chromium oxide was left in the furnace, and about 150 new steel was received.
The relationship between the [C] concentration in the crude molten steel and the reduction index when the reduction treatment is performed on the crude molten steel having a temperature of 0 ° C. for 10 minutes is shown. The reduction index is a value obtained by indexing the average value of the reduction amount of chromium oxide in the case of [C] concentration of 1.2 mass% as 100. As can be seen from FIG. 8, the reduction index decreases when the [C] concentration is less than 1.2 mass%. Therefore, the [C] concentration in the crude molten steel is preferably 1.2 mass% or more.

【0019】スラグ中のクロム酸化物の還元終了後、そ
のまま脱炭精錬を行うことは可能である。しかし、その
まま脱炭精錬を行った場合には、スラグ量が大幅に増大
し、かつ溶鋼中の[Cr]酸化量も増大することから、
クロム酸化物の還元終了後、スラグのみを精錬容器より
排出し、続いて脱炭精錬を行うことが効率的である。以
上より、含クロム溶鋼の脱炭精錬において、脱炭精錬処
理によって生成したクロム酸化物を15mass%以上
かつ50mass%以下含むスラグを炉内に残留させ、
新たに受鋼した粗溶鋼でクロム酸化物の還元を効率的に
進めるには、粗溶鋼中の〔Si〕濃度により吹込むガス
の種類を変えることが効果的である。さらに効率的に還
元を進める条件として、粗溶鋼中〔C〕濃度、〔Si〕
濃度および温度等の好適条件が導出された。
After the reduction of the chromium oxide in the slag is completed, it is possible to carry out decarburization refining as it is. However, if decarburization refining is performed as it is, the amount of slag increases significantly and the amount of [Cr] oxidation in the molten steel also increases.
It is efficient to discharge only the slag from the refining vessel after the reduction of the chromium oxide, and then perform decarburization refining. As described above, in the decarburization refining of molten steel containing chromium, slag containing 15 mass% or more and 50 mass% or less of chromium oxide generated by the decarburization refining treatment is left in the furnace,
In order to efficiently proceed with the reduction of chromium oxide in the newly received crude molten steel, it is effective to change the type of gas blown according to the [Si] concentration in the crude molten steel. Conditions for further efficient reduction include [C] concentration in crude molten steel and [Si]
Suitable conditions such as concentration and temperature have been derived.

【0020】[0020]

【作用】一般にステンレス鋼のような11mass%以
上のクロムを含む含クロム溶鋼では、脱炭精錬により
〔C〕濃度0.1mass%以下まで脱炭される。この
場合の脱炭反応は(1)式で表わされ、平衡定数Kco
(2)式で表わされる。 =CO(g) …(1) Kco=Pco/(ac ・ao) …(2) ここで、ac 、ao は溶鋼中の〔C〕および〔O〕の活
量、Pcoは雰囲気中のCO分圧(atm)で示す。
In general, molten steel containing chromium such as stainless steel containing 11 mass% or more of chromium is decarburized to a [C] concentration of 0.1 mass% or less by decarburization refining. The decarburization reaction in this case is expressed by the equation (1), and the equilibrium constant K co is expressed by the equation (2). C + O = CO (g) ... (1) K co = P co / (a c · a o) ... (2) where, a c, a o is active in the molten steel [C] and [O] The quantity, P co, is indicated by the CO partial pressure (atm) in the atmosphere.

【0021】含クロム溶鋼では溶鋼中の〔Cr〕がac
およびao を低下させるために、〔C〕濃度の低下に伴
って、(3)式で示される溶鋼中の〔Cr〕の酸化が避
けられず、AOD法やVOD法のようにPcoを下げて
も、この反応は進行する。 2Cr+3=(Cr2 3 ) …(3) 脱炭精錬終了時にはスラグ中(Cr2 3 )濃度は15
mass%以上の高濃度になってスラグは固化する。
〔Cr〕は有価な金属であり、回収する必要がある。こ
のため、これまでは脱炭終了後にSiやAl等の還元材
を大量に投入して還元精錬を行ってきた。そのために精
錬コストの増大を招いていた。
In the chromium-containing molten steel, [Cr] in the molten steel is a c
In order to reduce a and a o , the oxidation of [Cr] in the molten steel represented by the formula (3) is unavoidable as the concentration of [C] decreases, and P co is reduced like the AOD method or the VOD method. Even if lowered, this reaction will proceed. 2 Cr +3 O = (Cr 2 O 3 ) (3) At the end of decarburization refining, the slag (Cr 2 O 3 ) concentration is 15
The slag is solidified with a high concentration of mass% or more.
[Cr] is a valuable metal and needs to be recovered. For this reason, until now, after the decarburization has been completed, a large amount of reducing materials such as Si and Al have been added to carry out reduction refining. Therefore, the refining cost was increased.

【0022】これらの問題点を解決する方法として、特
開昭62−243711号公報や特開平6−73424
号公報記載の方法が開示されている。これらの方法は、
クロム酸化物を多量に含むスラグを炉内に残留させ、新
たに受鋼した粗溶鋼中の〔Cのみによって還元する方法
である。この場合の反応は(4)式で表わされる。 (Cr2 3 )+3=2Cr+3CO(g) …(4) (4)式の反応はスラグが液相状態ではある程度の速度
が得られるが、固相状態では非常に遅く、還元処理に長
時間を要するために非効率的である。そこで、この問題
点を解消する方法として、スラグの中のクロム酸化物の
一部を(5)式で示される粗溶鋼中の〔Si〕で還元す
る方法を見出した。
As a method for solving these problems, JP-A-62-243711 and JP-A-6-73424 are known.
The method described in the publication is disclosed. These methods are
This is a method in which slag containing a large amount of chromium oxide is left in the furnace and is reduced only by [C in newly received crude molten steel. The reaction in this case is represented by the equation (4). (Cr 2 O 3 ) +3 C = 2 Cr + 3CO (g) (4) The reaction of the formula (4) can obtain a certain speed in the liquid phase of the slag, but is very slow in the solid phase, and the reduction treatment It is inefficient because it takes a long time. Then, as a method of solving this problem, a method of reducing a part of chromium oxide in the slag with [Si] in the crude molten steel represented by the formula (5) was found.

【0023】 2(Cr2 3 )+3Si=4Cr+3(SiO2 ) …(5) (5)式の反応は(4)式の反応に比べて非常に速く、
粗溶鋼中に〔Si〕および〔C〕が含まれる場合には、
みかけ上、(5)式の反応終了後、(4)式の反応が進
行する。(4)式および(5)式の反応ともに発熱反応
であるが、発熱量は小さく、不活性ガスのみの吹込みで
は炉体からの抜熱もあるために、徐々に溶鋼温度は低下
する。(4)式の反応ではCOガスを生成するが、これ
に酸素ガスを吹付けることで、下記(6)式の反応が進
行する。(6)式の反応の発熱量は非常に大きく、溶鋼
温度は徐々に上昇するために、効率的な精錬が可能にな
る。
2 (Cr 2 O 3 ) + 3Si = 4 Cr +3 (SiO 2 ) ... (5) The reaction of the equation (5) is much faster than the reaction of the equation (4),
When [Si] and [C] are contained in the crude molten steel,
Apparently, the reaction of the formula (4) proceeds after the reaction of the formula (5) is completed. Both the reactions of the equations (4) and (5) are exothermic reactions, but the calorific value is small and the temperature of the molten steel gradually decreases because the heat is removed from the furnace body by blowing only the inert gas. CO gas is generated in the reaction of the equation (4), but by blowing oxygen gas onto the CO gas, the reaction of the following equation (6) proceeds. The calorific value of the reaction of the equation (6) is very large, and the molten steel temperature gradually rises, which enables efficient refining.

【0024】 CO(g)+1/2 O2 (g)=CO2 (g) …(6) (6)式の反応を効率的に進ませる条件として、粗溶鋼
中〔Si〕濃度が0.1mass%未満で上吹きランス
から酸素ガスを流すこと、および脱炭量に合わせて酸素
ガス流量を調整することを見出した。さらに、(4)お
よび(5)式の反応を効率的に進める条件として粗溶鋼
の温度および組成の好適な条件を見出した。
CO (g) + 1 / 2O 2 (g) = CO 2 (g) (6) As a condition for efficiently proceeding the reaction of the formula (6), the [Si] concentration in the crude molten steel is 0. It has been found that the oxygen gas is made to flow from the top blowing lance at less than 1 mass% and the oxygen gas flow rate is adjusted according to the decarburization amount. Furthermore, suitable conditions for the temperature and composition of the crude molten steel have been found as conditions for efficiently promoting the reactions of equations (4) and (5).

【0025】[0025]

【実施例】SUS304ステンレス鋼(8mass%N
i−18mass%Cr)60ton処理において、図
1に示す実施態様で実施した。脱炭精錬終了時の目標の
〔C〕濃度は全て0.05mass%であり、目標の
〔C〕濃度まで脱炭する間に溶鋼中〔Cr〕の酸化が進
行し、スラグ中のクロム酸化物濃度が増大した。このス
ラグを出鋼時に炉に残留させ、新たに受鋼した粗溶鋼に
より還元処理を行った。還元処理は〔Si〕濃度0.1
mass%までは底吹き羽口よりArあるいはN2 の不
活性ガスを2000Nm3 /Hrの流量で吹込み、〔S
i〕濃度0.1mass%未満では底吹き羽口よりAr
あるいはN2 の不活性ガスを2000Nm3 /Hr、上
吹きランスから酸素ガスを予め測定しておいた〔C〕に
よる還元量に合わせて、300〜2000Nm3 /Hr
の範囲で流した。これらの還元処理には10分間を要し
た。還元処理後、スラグのみを排出し、引き続き粗溶鋼
の脱炭精錬を実施した。
[Example] SUS304 stainless steel (8 mass% N
i-18 mass% Cr) 60 ton treatment was carried out in the embodiment shown in FIG. At the end of decarburization refining, the target [C] concentration is all 0.05 mass%, and while decarburizing to the target [C] concentration, oxidation of [Cr] in molten steel progresses, and chromium oxide in slag The concentration increased. This slag was left in the furnace at the time of tapping, and reduction treatment was performed with newly received crude molten steel. The reduction treatment is [Si] concentration 0.1.
Up to mass%, an inert gas of Ar or N 2 was blown from the bottom blowing tuyere at a flow rate of 2000 Nm 3 / Hr, and [S
i] When the concentration is less than 0.1 mass%, Ar will come out from the bottom blowing tuyeres.
Alternatively 2000 Nm 3 / Hr inert gas N 2, in accordance with the reduction amount by the advance measuring oxygen gas from the top lance (C), 300~2000Nm 3 / Hr
Shed in the range of. These reduction treatments took 10 minutes. After the reduction treatment, only the slag was discharged, and the decarburization refining of the crude molten steel was subsequently carried out.

【0026】表1に実施例の条件を示す。本発明の実施
例はガス吹込み条件および粗溶鋼の組成等の条件が先に
示した条件を満足するように実施した。比較例のNo.
7は従来法として行われている特開昭62−24371
1号公報記載の方法に準じて行った例であり、比較例の
No.8は脱炭精錬の終了後、スラグ中クロム酸化物を
還元するためにSiを添加して還元処理を行った後に、
溶鋼およびスラグを同時に出鋼した例であり、比較例の
No.9〜No.11は処理の条件が本発明の条件外の
例である。
Table 1 shows the conditions of the embodiment. The examples of the present invention were carried out such that the gas blowing conditions and the conditions such as the composition of the crude molten steel satisfied the conditions described above. No. of the comparative example.
No. 7 is a conventional method disclosed in JP-A-62-24371.
This is an example performed according to the method described in Japanese Patent Laid-Open No. 1-No. After completion of decarburization refining, 8 was added with Si to reduce the chromium oxide in the slag and subjected to reduction treatment,
This is an example in which molten steel and slag were tapped at the same time. 9-No. 11 is an example in which the processing conditions are outside the conditions of the present invention.

【0027】実施結果を表2に示す。表中の値は比較例
のNo.7の結果を100として、全て比例換算した値
である。本発明例では、スラグ中のクロム酸化物の還元
を促進する条件で行っているので精錬時間および精錬コ
ストに大きな差は表われていないが、比較例では、特に
No.8の例では精錬コストが非常に高くなっている。
The results of the implementation are shown in Table 2. The values in the table are the numbers of the comparative example. The result of 7 is 100, and all values are proportionally converted. In the example of the present invention, since the reduction was carried out under the condition of promoting the reduction of the chromium oxide in the slag, no significant difference was observed in the refining time and the refining cost, but in the comparative example, no. In Example 8, the refining cost is very high.

【0028】[0028]

【表1】 [Table 1]

【0029】[0029]

【表2】 [Table 2]

【0030】[0030]

【発明の効果】本発明法によると、含クロム溶鋼の精錬
において、還元用Si原単位、希釈ガス原単位の大幅な
低下がはかれ、また、クロム酸化物の還元が促進される
ために精錬時間の短縮がはかれることから精錬コストの
大幅な低減が可能になる。さらに、還元時の粗溶鋼の温
度制御が可能になることから、還元処理後の脱炭精錬が
効率的に行える。また、脱炭精錬終了後、スラグは炉内
に残留させることから、溶鋼中へのスラグ捲き込み量が
低減し、製品の品質が向上する。
According to the method of the present invention, in refining molten steel containing chromium, a reduction in the basic unit of reducing Si and the basic unit of diluting gas are significantly reduced, and the reduction of chromium oxide is promoted. Since the time is shortened, the refining cost can be greatly reduced. Further, since it becomes possible to control the temperature of the crude molten steel during the reduction, decarburization refining after the reduction treatment can be efficiently performed. Further, since the slag is left in the furnace after the decarburization refining, the amount of slag inclusion in the molten steel is reduced, and the quality of the product is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施態様を説明する図であり、は脱
炭精錬工程、はスラグを炉内に残留させ溶鋼のみを出
鋼する工程、は粗溶鋼の受鋼工程、はスラグの還元
処理工程、はスラグの排出工程、は脱炭精錬工程を
示す。
FIG. 1 is a diagram for explaining an embodiment of the present invention, where is a decarburization refining step, is a step of leaving slag in the furnace to produce only molten steel, is a step of receiving crude molten steel, and is reduction of slag. A treatment process, a slag discharge process, and a decarburization refining process.

【図2】本発明法におけるクロム酸化物の〔Si〕およ
び〔C〕による還元法の効果を示す図である。
FIG. 2 is a diagram showing the effect of the reduction method of chromium oxides [Si] and [C] in the method of the present invention.

【図3】本発明法における粗溶鋼中の〔Si〕による還
元終了時のスラグ中のクロム酸化物濃度の限定理由を示
す図である。
FIG. 3 is a diagram showing the reason for limiting the concentration of chromium oxide in the slag at the end of reduction by [Si] in the crude molten steel in the method of the present invention.

【図4】本発明法におけるガス吹込み条件を変更する粗
溶鋼中の〔Si〕濃度の限定理由を示す図である。
FIG. 4 is a diagram showing the reason for limiting the [Si] concentration in the crude molten steel for changing the gas blowing conditions in the method of the present invention.

【図5】本発明法における上吹きランスから流す酸素ガ
ス流量の調整の必要性を示す図である。
FIG. 5 is a diagram showing the necessity of adjusting the flow rate of oxygen gas flowing from an upper blowing lance in the method of the present invention.

【図6】本発明法における新たに受鋼する粗溶鋼の温度
の限定理由を示す図である。
FIG. 6 is a diagram showing the reason for limiting the temperature of the crude molten steel newly received in the method of the present invention.

【図7】本発明法における新たに受鋼する粗溶鋼の〔S
i〕濃度の限定理由を示す図である。
7] FIG. 7 shows the [S of the newly obtained crude molten steel in the method of the present invention]
i] It is a figure which shows the reason for limiting the density.

【図8】本発明法における新たに受鋼する粗溶鋼の
〔C〕濃度の限定理由を示す図である。
FIG. 8 is a diagram showing the reason for limiting the [C] concentration of the crude molten steel newly received in the method of the present invention.

【符号の説明】[Explanation of symbols]

a 炉体 b スラグ c 溶鋼 d 羽口 e 取鍋 f スラグ鍋 a furnace body b slag c molten steel d tuyere e ladle f slag pan

───────────────────────────────────────────────────── フロントページの続き (72)発明者 森重 博明 山口県光市大字島田3434番地 新日本製鐵 株式会社光製鐵所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hiroaki Morishige 3434 Shimada, Hikari City, Yamaguchi Prefecture Nippon Steel Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 AODのような転炉型の精錬容器を用い
た含クロム溶鋼の脱炭精錬において、脱炭精錬処理され
た溶鋼を出鋼するに際し、前記脱炭精錬処理によって生
成したクロム酸化物を15mass%以上かつ50ma
ss%以下含むスラグを出鋼時に炉内に残留させ、新た
に受鋼した粗溶鋼中の〔Si〕および〔C〕により前記
クロム酸化物を還元する方法において、溶鋼中の〔S
i〕濃度が0.1mass%以上では底吹き羽口よりA
r、N2 等の不活性ガスを供給し、〔Si〕濃度が0.
1mass%未満では底吹き羽口からは不活性ガスを、
上吹きランスからは酸素ガスを供給することを特徴とす
る脱炭滓を用いた効率的な含クロム溶鋼の精錬方法。
1. In the decarburization refining of molten chromium-containing steel using a converter-type refining vessel such as AOD, when the decarburization-refined molten steel is tapped, chromium oxidation produced by the decarburization refining treatment is carried out. 15mass% or more and 50ma
In the method for reducing the chromium oxides by leaving slag containing ss% or less in the furnace at the time of tapping and reducing the chromium oxide with [Si] and [C] in the newly received crude molten steel,
i) When the concentration is 0.1 mass% or more, A from the bottom blown tuyere
An inert gas such as r, N 2 or the like is supplied, and the [Si] concentration becomes 0.
If it is less than 1 mass%, an inert gas is emitted from the bottom tuyeres,
An efficient refining method of molten chromium-containing steel using a decarburizing slag, characterized by supplying oxygen gas from a top blowing lance.
【請求項2】 上吹きランスから供給する酸素ガスの流
量を、スラグ中のクロム酸化物の〔C〕による還元速度
に合わせて調整することを特徴とする請求項1記載の脱
炭滓を用いた効率的な含クロム溶鋼の精錬方法。
2. The decarburizing slag according to claim 1, wherein the flow rate of the oxygen gas supplied from the upper blowing lance is adjusted according to the reduction rate of [C] of chromium oxide in the slag. Efficient method for refining molten steel containing chromium.
【請求項3】 新たに受鋼する粗溶鋼の温度が1400
℃以上で、かつ〔Si〕濃度が0.2mass%以上、
〔C〕濃度が1.2mass%以上であることを特徴と
する請求項1記載の脱炭滓を用いた効率的な含クロム溶
鋼の精錬方法。
3. The temperature of the crude molten steel newly received is 1400.
At a temperature of ℃ or more and a [Si] concentration of 0.2 mass% or more,
The efficient method for refining molten chromium-containing steel using a decarburizing slag according to claim 1, wherein the [C] concentration is 1.2 mass% or more.
【請求項4】 前記クロム酸化物の還元終了後、スラグ
のみを精錬容器より排出し、続いて含クロム溶鋼の脱炭
精錬を行うことを特徴とする請求項1記載の脱炭滓を用
いた効率的な含クロム溶鋼の精錬方法。
4. The decarburizing slag according to claim 1, wherein after the completion of the reduction of the chromium oxide, only the slag is discharged from the refining vessel, and then the chromium-containing molten steel is decarburized and refined. Efficient refining method for molten steel containing chromium.
JP22223094A 1994-09-16 1994-09-16 Method for effectively refining molten chromium-containing steel using decarburized slag Withdrawn JPH0885815A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22223094A JPH0885815A (en) 1994-09-16 1994-09-16 Method for effectively refining molten chromium-containing steel using decarburized slag

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22223094A JPH0885815A (en) 1994-09-16 1994-09-16 Method for effectively refining molten chromium-containing steel using decarburized slag

Publications (1)

Publication Number Publication Date
JPH0885815A true JPH0885815A (en) 1996-04-02

Family

ID=16779162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22223094A Withdrawn JPH0885815A (en) 1994-09-16 1994-09-16 Method for effectively refining molten chromium-containing steel using decarburized slag

Country Status (1)

Country Link
JP (1) JPH0885815A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003083144A1 (en) * 2002-03-28 2003-10-09 Sms Demag Aktiengesellschaft Method for treating alloyed carbonic iron smelts used for the production of steel
CN110016535A (en) * 2019-03-01 2019-07-16 鞍钢股份有限公司 Method for improving and stably controlling nitrogen content in stainless steel
WO2022130473A1 (en) * 2020-12-14 2022-06-23 日鉄ステンレス株式会社 Method for refining chromium-containing molten steel

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003083144A1 (en) * 2002-03-28 2003-10-09 Sms Demag Aktiengesellschaft Method for treating alloyed carbonic iron smelts used for the production of steel
CN110016535A (en) * 2019-03-01 2019-07-16 鞍钢股份有限公司 Method for improving and stably controlling nitrogen content in stainless steel
WO2022130473A1 (en) * 2020-12-14 2022-06-23 日鉄ステンレス株式会社 Method for refining chromium-containing molten steel

Similar Documents

Publication Publication Date Title
JP2001355018A (en) METHOD FOR MELTING Ti-CONTAINING STEEL
JP3333795B2 (en) Method for denitrification of molten metal and method for denitrification and decarburization
JPH0885815A (en) Method for effectively refining molten chromium-containing steel using decarburized slag
JP2947063B2 (en) Stainless steel manufacturing method
JPH08260030A (en) Method for vacuum-refining extra-low carbon stainless steel
JP3220233B2 (en) Refining method of ultra-low carbon / ultra low sulfur chromium-containing molten steel
JP3158912B2 (en) Stainless steel refining method
JPH0885814A (en) Method for effectively refining molten chromium-containing steel using decarburized slag
JPS6358203B2 (en)
JP3063537B2 (en) Stainless steel manufacturing method
JPH10245620A (en) Method for refining titanium and sulfur containing stainless steel
JPH0885813A (en) Method for effectively refining molten chromium-containing steel using decarburized slag
JP3198250B2 (en) Vacuum refining method for molten steel containing chromium
JPH0959708A (en) Method for efficently decarburization-blowing stainless steel
JP2882236B2 (en) Stainless steel manufacturing method
JPH07173515A (en) Decarburization refining method of stainless steel
JPH0762419A (en) Method for refining stainless steel
JPH0987720A (en) Method for decarburize-refining chromium-containing molten steel
JP2795513B2 (en) Decarburization refining method of chromium-containing molten steel
JPH089730B2 (en) Decarburization refining method for molten steel containing chromium
JP3282544B2 (en) Demanganese method for high chromium molten iron alloy
JP3757435B2 (en) Method for decarburizing and refining chromium-containing molten steel
JPS5938319A (en) Method for refining high chromium steel
JP2001032009A (en) Method for refining molten steel containing chromium
JP2000026913A (en) Method for refining high nitrogen, low oxygen and chromium-containing molten steel

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20011120