JPH0885813A - Method for effectively refining molten chromium-containing steel using decarburized slag - Google Patents

Method for effectively refining molten chromium-containing steel using decarburized slag

Info

Publication number
JPH0885813A
JPH0885813A JP22222894A JP22222894A JPH0885813A JP H0885813 A JPH0885813 A JP H0885813A JP 22222894 A JP22222894 A JP 22222894A JP 22222894 A JP22222894 A JP 22222894A JP H0885813 A JPH0885813 A JP H0885813A
Authority
JP
Japan
Prior art keywords
refining
molten steel
chromium
slag
decarburization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP22222894A
Other languages
Japanese (ja)
Inventor
Ryuji Nakao
隆二 中尾
Shigenori Tanaka
重典 田中
Mayumi Okimori
麻佑巳 沖森
Hiroshi Iwasaki
央 岩崎
Hiroaki Morishige
博明 森重
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP22222894A priority Critical patent/JPH0885813A/en
Publication of JPH0885813A publication Critical patent/JPH0885813A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

PURPOSE: To reduce and recover produced chromium oxide in a method at a low cost in a decarburization-refining of molten chromium-containing steel and also, to effectively execute the reduction and the decarburization. CONSTITUTION: At the time of tapping the decarburization-refined molten steel in the decarburization-refining of the molten chromium-containing steel, the crude molten steel having >=1400 deg.C, >=0.2mass% [Si] concn. and >=1.2mass% [C] concn., is received under the condition of remaining slag containing 15-50mass% chromium oxide produced by the decarburization-refining in a furnace. The chromium oxide is reduced with [Si] and [C] in the crude molten steel. By this method, since the remarkable lowerings of the unit consumptions of Si for reduction and dilute gas, and the shortening of the refining time are obtd., the refining cost can remarkably be reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は含クロム溶鋼の脱炭精錬
において、脱炭精錬によって生成したクロム酸化物を安
価な方法で還元・回収するとともに、効率的に還元およ
び脱炭を行う含クロム溶鋼の精錬方法に関する。
BACKGROUND OF THE INVENTION The present invention relates to a chromium-containing chrome-containing molten steel for decarburizing and refining, in which the chromium oxides produced by the decarburizing and refining are reduced and recovered by an inexpensive method, and the reduction and decarburization are efficiently performed. The present invention relates to a method for refining molten steel.

【0002】[0002]

【従来の技術】従来、ステンレス鋼のような11mas
s%以上のクロムを含む含クロム溶鋼の脱炭精錬法とし
ては、脱炭中期以降(例えば〔C〕0.5mass%以
下)を減圧下で行う真空脱炭法、および希釈ガスを吹込
み雰囲気中のCO分圧を下げる希釈脱炭法が広く用いら
れている。前者は一般にVOD法、後者はAOD法およ
び上底吹き転炉法と呼ばれている。これらの方法はいず
れも脱炭中期以降において、溶鋼中〔Cr〕の酸化損失
を抑えながら効率的に脱炭を進行させようとするもので
ある。しかしながら、〔C〕濃度が低下するにつれて
〔Cr〕の酸化が避けられず、〔Cr〕酸化量が増大す
る。
2. Description of the Related Art Conventionally, 11mas such as stainless steel
As a decarburizing refining method for molten chromium-containing steel containing s% or more of chromium, there are a vacuum decarburizing method in which decarburization is carried out after the middle stage of decarburization (for example, [C] 0.5 mass% or less) under a reduced pressure, and a diluting gas blowing atmosphere Diluted decarburization, which lowers the CO partial pressure, is widely used. The former is generally called the VOD method, and the latter is called the AOD method and the bottom-blown converter. All of these methods are intended to efficiently progress decarburization while suppressing the oxidation loss of [Cr] in the molten steel after the middle stage of decarburization. However, as the [C] concentration decreases, the oxidation of [Cr] is inevitable, and the [Cr] oxidation amount increases.

【0003】従来、溶鋼中(Cr〕の酸化損失を抑える
ために、例えばVOD法では、特開昭55−89417
号公報や特開昭55−152118号公報に示されてい
るように、脱炭の進行に伴う酸素供給量の調整や、ある
いは100Torr以上の真空下での調整を行ってい
る。また、AOD法では、〔C〕濃度の低下に伴い希釈
ガスの比率を上げるような方法がとられている。
Conventionally, in order to suppress the oxidation loss of molten steel (Cr), for example, in the VOD method, JP-A-55-89417 is used.
As disclosed in Japanese Patent Laid-Open Publication No. 55-152118 and Japanese Patent Laid-Open Publication No. 55-152118, the oxygen supply amount is adjusted according to the progress of decarburization, or is adjusted under a vacuum of 100 Torr or more. Further, in the AOD method, a method of increasing the ratio of the diluent gas as the [C] concentration decreases is adopted.

【0004】これらの方法ではスラグの役割の大半はス
プラッシュの抑制であり、脱炭の酸素源はガスとして供
給される酸素あるいは溶鋼中の酸素である。このため、
供給された酸素ガスによる溶鋼中〔Cr〕の酸化は避け
られず、この〔Cr〕の酸化により、スラグ中のクロム
酸化物(一般には(Cr2 3 )と書く)濃度が増大
し、スラグの融点が急激に上昇してくる。クロム酸化物
濃度は脱炭終了時には15〜50mass%にもなり、
その融点は1700℃以上の高温となって、スラグは完
全に固相を形成してくる。
In these methods, most of the role of slag is to suppress splash, and the oxygen source for decarburization is oxygen supplied as gas or oxygen in molten steel. For this reason,
Oxidation of [Cr] in the molten steel by the supplied oxygen gas is unavoidable, and the oxidation of [Cr] increases the concentration of chromium oxide (generally referred to as (Cr 2 O 3 )) in the slag and The melting point of is rising rapidly. Chromium oxide concentration reaches 15 to 50 mass% at the end of decarburization,
The melting point becomes a high temperature of 1700 ° C. or higher, and the slag completely forms a solid phase.

【0005】従来、このスラグを脱炭反応の酸素源とし
て使用し、クロム酸化物を還元して〔Cr〕を回収する
ため、および脱炭末期(例えば〔C〕0.1mass%
以下)での脱炭反応速度の上昇をはかるために、VOD
法では高真空化およびガス吹込み量の増大をはかってい
る。また、AOD法では特開平3−68713号公報お
よび特開平4−254509号公報に示されているよう
に、真空精錬の付与を行っている場合もある。しかし、
これらの方法ではスラグが固相を形成していること、お
よび脱炭初期(例えば〔C〕0.5mass%以上)に
比べ脱炭速度が非常に遅いために、大きな効果は得られ
ていない。このため、脱炭精錬終了後、スラグ中のクロ
ム等の有価金属を還元回収するために、SiやAl等の
還元材を大量に投入して、還元精錬を行った後に出鋼し
ている。
Conventionally, this slag is used as an oxygen source for a decarburization reaction to reduce chromium oxide and recover [Cr], and for the decarburization end stage (eg, [C] 0.1 mass%).
In order to increase the decarburization reaction rate in
The method seeks to increase the vacuum and increase the gas injection amount. In addition, in the AOD method, vacuum refining may be applied as shown in JP-A-3-68713 and JP-A-4-254509. But,
In these methods, a large effect is not obtained because the slag forms a solid phase and the decarburization rate is very slow compared to the initial decarburization (for example, [C] 0.5 mass% or more). For this reason, after the decarburization refining, in order to reduce and recover valuable metals such as chromium in the slag, a large amount of a reducing material such as Si or Al is added, and reduction refining is carried out before tapping.

【0006】一方、これらの問題点を解決する方法が、
特開昭62−243711号公報および特開平6−73
424号公報に示されている。これらの方法は、クロム
酸化物を多量に含むスラグを炉内に残留させ、新たに受
鋼した粗溶鋼中の〔C〕のみによって還元する方法であ
る。しかしながら、〔C〕のみによる還元では、還元速
度が遅いために、クロム酸化物中の〔Cr〕を回収する
ための十分な効果は得られていない。
On the other hand, a method for solving these problems is
JP-A-62-243711 and JP-A-6-73.
No. 424. These methods are methods in which slag containing a large amount of chromium oxide is left in the furnace and reduced only by [C] in the newly molten steel. However, the reduction with [C] alone does not provide a sufficient effect for recovering [Cr] in chromium oxide, because the reduction rate is slow.

【0007】[0007]

【発明が解決しようとする課題】本発明の課題は、AO
Dのような転炉型の精錬容器を用いた含クロム溶鋼の脱
炭精錬において、脱炭精錬処理された溶鋼を出鋼するに
際し、クロム酸化物を多量に含むスラグを炉内に残留さ
せ、新たに受鋼した粗溶鋼によって還元する方法におい
て、還元速度を高位に維持し、かつ効率よく行うことで
ある。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
In decarburizing and refining molten chromium-containing steel using a converter type refining vessel such as D, when tapping the decarburized and refined molten steel, a slag containing a large amount of chromium oxide is left in the furnace. In the method of reducing by newly received crude molten steel, it is to maintain the reduction rate at a high level and to perform efficiently.

【0008】[0008]

【課題を解決するための手段】本発明は、上述の課題を
有利に解決したものであり、その要旨とするところは下
記のとおりである。 (1)AODのような転炉型の精錬容器を用いた含クロ
ム溶鋼の脱炭精錬において、脱炭精錬処理された溶鋼を
出鋼するに際し、前記脱炭精錬処理によって生成したク
ロム酸化物を15mass%以上かつ50mass%以
下含むスラグを出鋼時に炉内に残留させ、1400℃以
上の温度を有する新たに受鋼した粗溶鋼中の〔Si〕お
よび〔C〕により前記クロム酸化物を還元処理すること
を特徴とする脱炭滓を用いた効率的な含クロム溶鋼の精
錬方法。
The present invention advantageously solves the above-mentioned problems, and the gist thereof is as follows. (1) In decarburization refining of molten chromium-containing steel using a converter-type refining vessel such as AOD, when the decarburized refining-treated molten steel is tapped, the chromium oxide produced by the decarburization refining treatment is A slag containing 15 mass% or more and 50 mass% or less is left in the furnace at the time of tapping, and the chromium oxide is reduced by [Si] and [C] in newly received crude molten steel having a temperature of 1400 ° C. or more. An efficient refining method for molten chromium-containing steel using a decarburizing slag.

【0009】(2)新たに受鋼する粗溶鋼中の〔Si〕
濃度が0.2mass%以上、〔C〕濃度が1.2ma
ss%以上であることを特徴とする前項(1)記載の脱
炭滓を用いた効率的な含クロム溶鋼の精錬方法。 (3)前記クロム酸化物の還元処理終了後、スラグのみ
を排出し、続いて含クロム溶鋼の脱炭精錬を行うことを
特徴とする前項(1)記載の脱炭滓を用いた効率的な含
クロム溶鋼の精錬方法。
(2) [Si] in newly melted crude molten steel
Concentration is 0.2 mass% or more, [C] concentration is 1.2 ma
An efficient method for refining molten chromium-containing steel using the decarburizing slag described in the above item (1), which is ss% or more. (3) After completion of the reduction treatment of the chromium oxide, only the slag is discharged, and then the decarburization refining of the molten steel containing chromium is performed, so that the decarburizing slag described in (1) above is used efficiently. Refining method for molten steel containing chromium.

【0010】以下、本発明について詳細に説明する。本
発明の含クロム溶鋼の精錬方法はAODのような転炉型
の精錬容器を用いた、図1に例示するような精錬工程で
ある。図1ので目標〔C〕濃度までの脱炭精錬を行
い、で脱炭精錬で生成したクロム酸化物を含むスラグ
を炉内残留させて、脱炭精錬処理された溶鋼のみを出鋼
する。次いでで新たに粗溶鋼を受鋼し、でスラグの
粗溶鋼による還元処理を行い、でスラグのみを排出す
る。ではの脱炭精錬と同じ工程に戻る。従って、
からを繰り返すことにより、効率的な精錬方法とな
る。
The present invention will be described in detail below. The method for refining molten chromium-containing steel of the present invention is a refining process as illustrated in FIG. 1 using a converter type refining vessel such as AOD. As shown in FIG. 1, decarburization refining to a target [C] concentration is performed, and slag containing chromium oxide produced by decarburization refining is left in the furnace, and only decarburized refining-processed molten steel is tapped. Then, the crude molten steel is newly received, the slag is reduced by the crude molten steel, and only the slag is discharged. Then, return to the same process as decarburization refining in. Therefore,
By repeating from to, an efficient refining method can be obtained.

【0011】なお、図中のaは炉体、bはスラグ、cは
溶鋼、dは羽口、eは取鍋、fはスラグ鍋を示す。本発
明は、クロム酸化物を含むスラグを新たに受鋼する粗溶
鋼で還元するに際し、粗溶鋼中に〔C〕以外に〔Si〕
を共存させることによって、効率的に精錬を行うもので
ある。
In the figure, a is a furnace body, b is slag, c is molten steel, d is tuyere, e is a ladle, and f is a slag pot. According to the present invention, when the slag containing chromium oxide is reduced by the newly received crude molten steel, [Si] is contained in the crude molten steel in addition to [C].
By coexisting with, refining is efficiently performed.

【0012】図2にクロム酸化物を30mass%含む
スラグを約1500℃の温度を有する粗溶鋼で還元処理
した場合のスラグ中クロム酸化物濃度の時間変化を粗溶
鋼中の〔C〕濃度2.0mass%、〔Si〕濃度0.
01mass%の場合と〔C〕濃度2.0mass%、
〔Si〕濃度0.30mass%の場合を比較して示
す。粗溶鋼中に〔Si〕を含有させることによって、ク
ロム酸化物濃度の低下速度、すなわち還元速度が大きく
なることがわかる。従って、クロム酸化物を含むスラグ
の還元は、〔C〕単独で行うよりも、〔Si〕および
〔C〕により行う方が効率的である。
FIG. 2 shows the change over time in the chromium oxide concentration in the slag when the slag containing 30 mass% of chromium oxide was subjected to reduction treatment with the crude molten steel having a temperature of about 1500 ° C. 0 mass%, [Si] concentration of 0.
01 mass% and [C] concentration 2.0 mass%,
The case where the [Si] concentration is 0.30 mass% is shown for comparison. It can be seen that the inclusion rate of [Si] in the crude molten steel increases the reduction rate of the chromium oxide concentration, that is, the reduction rate. Therefore, the reduction of slag containing chromium oxide is more efficient with [Si] and [C] than with [C] alone.

【0013】図3にクロム酸化物を含むスラグを約15
00℃の温度を有する粗溶鋼で10分間の還元処理を行
った場合の還元前のクロム酸化物濃度と還元指数の関係
を示す。なお、還元指数はクロム酸化物濃度が30ma
ss%の場合の還元量の平均値を100として指数化し
た値であり、また、還元前の粗溶鋼中の〔C〕濃度は
2.0mass%、〔Si〕濃度は0.3mass%で
あった。図3よりスラグ中クロム酸化物濃度が50ma
ss%を超えると還元指数が急激に低下することがわか
る。また、クロム酸化物濃度が15mass%未満では
脱炭末期の脱炭速度が小さく、かつ脱炭終了後にスラグ
を残留させ、新たに受鋼した粗溶鋼で還元処理する場合
のクロム酸化物の還元量が小さくなるため、コスト低減
効率も小さくなる。従って、脱炭終了後に炉内に残留さ
せるスラグ中のクロム酸化物濃度としては15mass
%以上、50mass%以下が必要である。
FIG. 3 shows about 15 slags containing chromium oxide.
The relationship between the chromium oxide concentration before reduction and the reduction index when the reduction treatment is performed for 10 minutes on the crude molten steel having a temperature of 00 ° C is shown. The reduction index is such that the chromium oxide concentration is 30 ma.
In the case of ss%, the average value of the reduction amount was set as 100 and indexed. Further, the [C] concentration in the crude molten steel before the reduction was 2.0 mass% and the [Si] concentration was 0.3 mass%. It was From Fig. 3, the chrome oxide concentration in the slag is 50 ma.
It can be seen that the reduction index sharply decreases when it exceeds ss%. When the chromium oxide concentration is less than 15 mass%, the decarburization rate at the final stage of decarburization is low, and the amount of chromium oxide reduced when the slag is left after the decarburization is finished and the reduction treatment is carried out with newly received crude molten steel. Becomes smaller, the cost reduction efficiency also becomes smaller. Therefore, the concentration of chromium oxide in the slag that remains in the furnace after decarburization is 15 mass.
% Or more and 50 mass% or less is required.

【0014】図4に約30mass%のクロム酸化物を
含むスラグを新たに受鋼した粗溶鋼で10分間の還元処
理を行った場合の粗溶鋼の温度と還元指数の関係を示
す。なお、還元指数は粗溶鋼の温度が1400℃の場合
のクロム酸化物の還元量の平均値を100として指数化
した値である。また、還元前の粗溶鋼中の〔C〕濃度は
2.0mass%、〔Si〕濃度は0.3mass%で
あった。図4からわかるように、粗溶鋼の温度が140
0℃未満では急激に還元指数が低下することから、粗溶
鋼の温度としては1400℃以上が必要である。
FIG. 4 shows the relationship between the temperature of the crude molten steel and the reduction index when the crude molten steel newly receiving the slag containing about 30 mass% of chromium oxide was subjected to the reduction treatment for 10 minutes. The reduction index is a value obtained by indexing the average value of the reduction amount of chromium oxide when the temperature of the crude molten steel is 1400 ° C. as 100. Further, the [C] concentration in the crude molten steel before the reduction was 2.0 mass% and the [Si] concentration was 0.3 mass%. As can be seen from FIG. 4, the temperature of the crude molten steel is 140
If the temperature is lower than 0 ° C, the reduction index sharply decreases. Therefore, the temperature of the crude molten steel needs to be 1400 ° C or higher.

【0015】図5に約30mass%のクロム酸化物を
含むスラグを炉内に残留させ、新たに受鋼した約150
0℃の温度を有する粗溶鋼で10分間の還元処理を行っ
た場合の粗溶鋼中の〔Si〕濃度と還元指数の関係を示
す。なお、還元指数は〔Si〕濃度0.2mass%の
場合のクロム酸化物の還元量の平均値を100として指
数化した値である。また、還元前の粗溶鋼中の〔C〕濃
度は2.0mass%であった。図5からわかるよう
に、〔Si〕濃度0.2mass%未満では急激に還元
指数が低下することから、粗溶鋼中の〔Si〕濃度は
0.2mass%以上が必要である。
In FIG. 5, a slag containing about 30 mass% of chromium oxide was left in the furnace, and about 150 new steel was received.
The relationship between the [Si] concentration in the crude molten steel and the reduction index when the reduction treatment is performed on the crude molten steel having a temperature of 0 ° C. for 10 minutes is shown. The reduction index is a value indexed with an average value of the reduction amounts of chromium oxides being 100 when the [Si] concentration is 0.2 mass%. Further, the [C] concentration in the crude molten steel before the reduction was 2.0 mass%. As can be seen from FIG. 5, the reduction index sharply decreases when the [Si] concentration is less than 0.2 mass%. Therefore, the [Si] concentration in the crude molten steel needs to be 0.2 mass% or more.

【0016】図6に約30mass%のクロム酸化物を
含むスラグを炉内に残留させ、新たに受鋼した約150
0℃の温度を有する粗溶鋼で10分間の還元処理を行っ
た場合の粗溶鋼中の〔C〕濃度と還元指数の関係を示
す。なお、還元指数は〔C〕濃度1.2mass%の場
合のクロム酸化物の還元量の平均値を100として指数
化した値である。また、還元前の粗溶鋼中の〔Si〕濃
度は0.25mass%であった。図6からわかるよう
に、〔C〕濃度1.2mass%未満では急激に還元指
数が低下することから、粗溶鋼中の〔C〕濃度は1.2
mass%以上が必要である。
In FIG. 6, a slag containing about 30 mass% of chromium oxide was left in the furnace, and about 150 new steel was received.
The relationship between the [C] concentration in the crude molten steel and the reduction index when the reduction treatment is performed on the crude molten steel having a temperature of 0 ° C. for 10 minutes is shown. The reduction index is a value obtained by indexing the average value of the reduction amount of chromium oxide in the case of [C] concentration of 1.2 mass% as 100. Further, the [Si] concentration in the crude molten steel before the reduction was 0.25 mass%. As can be seen from FIG. 6, when the [C] concentration is less than 1.2 mass%, the reduction index sharply decreases, so that the [C] concentration in the crude molten steel is 1.2.
Mass% or more is required.

【0017】なお、粗溶鋼中の〔C〕および〔Si〕濃
度ともに高いほどスラグ中のクロム酸化物の還元に有利
であるが、これらの濃度は前工程での溶解あるいは精錬
処理によって決定されるために任意決定できない。しか
しながら、〔C〕濃度としては1.2mass%以上、
〔Si〕濃度としては0.2mass%以上を確保する
操業操作を行う必要がある。
The higher the [C] and [Si] concentrations in the crude molten steel, the more advantageous the reduction of the chromium oxide in the slag, but these concentrations are determined by the melting or refining treatment in the previous step. Because it cannot be arbitrarily determined. However, the [C] concentration is 1.2 mass% or more,
It is necessary to perform an operation operation that secures a [Si] concentration of 0.2 mass% or more.

【0018】次に、スラグ中のクロム酸化物の還元処理
終了後、そのまま脱炭精錬を行うことは可能である。し
かし、そのまま脱炭精錬を行った場合には、スラグ量が
大幅に増大し、かつ溶鋼中の〔Cr〕酸化量も増大する
ことから、クロム酸化物の還元処理終了後、スラグのみ
を排出し、続いて脱炭精錬を行うことが効率的である。
Next, after the reduction treatment of the chromium oxide in the slag is completed, it is possible to carry out decarburization refining as it is. However, if decarburization refining is performed as it is, the amount of slag increases significantly and the amount of [Cr] oxidation in the molten steel also increases, so only the slag is discharged after the reduction treatment of chromium oxide is completed. It is efficient to carry out decarburization refining subsequently.

【0019】以上より、含クロム溶鋼の脱炭精錬におい
て、脱炭精錬処理によって生成したクロム酸化物を15
mass%以上かつ50mass%以下含むスラグを炉
内に残留させ、新たに受鋼した粗溶鋼でクロム酸化物を
還元するには、粗溶鋼が1400℃以上の温度を有し、
〔Si〕および〔C〕によって還元することが効率的で
ある。さらに、効率的に還元を行うには〔Si〕濃度
0.2mass%以上、〔C〕濃度1.2mass%以
上として還元処理を行い、クロム酸化物の還元処理終了
後、スラグのみを排出し、続いて脱炭精錬を行うことが
必要である。
From the above, in the decarburization refining of molten chromium-containing steel, the chromium oxide produced by the decarburization refining treatment is
In order to allow the slag containing not less than 50 mass% and not more than 50 mass% to remain in the furnace and reduce the chromium oxide in the newly received crude molten steel, the crude molten steel has a temperature of 1400 ° C or higher,
It is efficient to reduce with [Si] and [C]. Furthermore, in order to perform the reduction efficiently, the reduction treatment is performed with [Si] concentration of 0.2 mass% or more and [C] concentration of 1.2 mass% or more, and after the reduction treatment of the chromium oxide is completed, only the slag is discharged, It is then necessary to carry out decarburization refining.

【0020】[0020]

【作用】一般にステンレス鋼のような11mass%以
上のクロムを含む含クロム溶鋼では酸素ガス吹込みによ
り、〔C〕濃度0.1mass%以下まで脱炭される。
この場合の脱炭反応は(1)式で表わされ、平衡定数K
coは(2)式で表わされる。
In general, molten chromium-containing steel containing 11 mass% or more of chromium such as stainless steel is decarburized to a [C] concentration of 0.1 mass% or less by blowing oxygen gas.
The decarburization reaction in this case is represented by the equation (1), and the equilibrium constant K
co is expressed by equation (2).

【0021】 =CO(g) …(1) Kco=Pco/(ac ・ao) …(2) ここで、ac ・ao は溶鋼中の〔C〕および〔O〕の活
量、Pcoは雰囲気中のCO分圧(atm)を示す。
[0021]C+O= CO (g) (1) Kco= Pco/ (Ac・ Ao)… (2)  Where ac・ AoIs the activity of [C] and [O] in the molten steel.
Quantity, PcoIndicates the CO partial pressure (atm) in the atmosphere.

【0022】含クロム溶鋼では、溶鋼中の〔Cr〕がa
c およびao を低下させるために、〔C〕濃度の低下に
伴って、(3)式で示される溶鋼中の〔Cr〕の酸化が
避けられず、AOD法やVOD法のようにPcOを下げて
も、この反応は進行する。 2Cr+3=(Cr2 3 ) …(3) 脱炭精錬終了時にはスラグ中(Cr2 3 )濃度は15
mass%以上の高濃度になり、スラグは固化する。
〔Cr〕は有価な金属であり、回収する必要がある。こ
のため、これまでは脱炭終了後、SiやAl等の還元材
を大量に投入して還元精錬を行ってきた。そのために精
錬コストの増大を招いていた。
In the chromium-containing molten steel, [Cr] in the molten steel is a
In order to reduce c and a o , the oxidation of [Cr] in the molten steel represented by the formula (3) is inevitable with the decrease of the [C] concentration, and P cO as in the AOD method or the VOD method is unavoidable. Even if is lowered, this reaction proceeds. 2 Cr +3 O = (Cr 2 O 3 ) (3) At the end of decarburization refining, the slag (Cr 2 O 3 ) concentration is 15
The concentration becomes higher than mass% and the slag solidifies.
[Cr] is a valuable metal and needs to be recovered. For this reason, until the end of decarburization, a large amount of reducing materials such as Si and Al have been added to carry out reduction refining. Therefore, the refining cost was increased.

【0023】これらの問題点を解決する方法として、特
開昭62−243711号公報や特開平6−73424
号公報記載の方法が示されている。これらの方法はクロ
ム酸化物を多量に含むスラグを炉内に残留させ、新たに
受鋼した粗溶鋼中の〔C〕のみによって還元する方法で
ある。この場合の反応は(4)で表わされる。 (Cr2 3 )+3=2Cr+3CO(g) …(4) (4)式の反応はスラグが液相状態ではある程度の速度
が得られるが、固相状態では非常に遅く、還元処理に長
時間を要するために非効率的である。そこで、この問題
点を解消する方法として、スラグ中のクロム酸化物の一
部を(5)式で示される粗溶鋼中の〔Si〕で還元する
方法を見出した。
As a method for solving these problems, JP-A-62-243711 and JP-A-6-73424 are known.
The method described in the publication is shown. These methods are methods in which slag containing a large amount of chromium oxide is left in the furnace and is reduced only by [C] in newly received crude molten steel. The reaction in this case is represented by (4). (Cr 2 O 3 ) +3 C = 2 Cr + 3CO (g) (4) The reaction of the formula (4) can obtain a certain speed in the liquid phase of the slag, but is very slow in the solid phase, and the reduction treatment It is inefficient because it takes a long time. Then, as a method of solving this problem, a method of reducing a part of chromium oxide in the slag with [Si] in the crude molten steel represented by the formula (5) was found.

【0024】 2(Cr2 3 )+3Si=4Cr+3(SiO2 ) …(5) (5)式の反応は(4)式の反応に比べて非常に速く、
粗溶鋼中に〔Si〕および〔C〕が含まれる場合には、
みかけ上、(5)式の反応終了後、(4)式の反応が進
行する。(5)式の反応の進行により、スラグは融点が
下って液相あるいは半液相状態になり、(4)式の反応
も効率的に進行することを見出した。さらに、(5)式
および(4)式の反応を効率的に進めさせる条件とし
て、粗溶鋼の温度および組成の好適な条件を見出した。
2 (Cr 2 O 3 ) + 3Si = 4 Cr +3 (SiO 2 ) ... (5) The reaction of the equation (5) is much faster than the reaction of the equation (4),
When [Si] and [C] are contained in the crude molten steel,
Apparently, the reaction of the formula (4) proceeds after the reaction of the formula (5) is completed. It has been found that, as the reaction of the formula (5) progresses, the melting point of the slag lowers and becomes a liquid phase or a semi-liquid phase, and the reaction of the formula (4) also efficiently proceeds. Further, as conditions for efficiently promoting the reactions of the formulas (5) and (4), suitable conditions for the temperature and composition of the crude molten steel have been found.

【0025】[0025]

【実施例】SUS304ステンレス鋼(8mass%N
i−18mass%Cr)60ton処理において、図
1に示す実施態様で実施した。脱炭精錬終了時の目標の
〔C〕濃度は全て0.05mass%であり、目標の
〔C〕濃度まで脱炭する間に溶鋼中〔Cr〕の酸化が進
行し、スラグ中のクロム酸化物濃度が増大した。このス
ラグを出鋼時に炉内に残留させ、新たに受鋼した粗溶鋼
により還元処理を行った。還元処理はArあるいはN2
の不活性ガスを2000Nm3 /Hrの流量で吹込み、
10分間処理した。還元処理後、スラグのみを排出し、
引き続き粗溶鋼の脱炭精錬を実施した。
[Example] SUS304 stainless steel (8 mass% N
i-18 mass% Cr) 60 ton treatment was carried out in the embodiment shown in FIG. At the end of decarburization refining, the target [C] concentration is all 0.05 mass%, and while decarburizing to the target [C] concentration, oxidation of [Cr] in molten steel progresses, and chromium oxide in slag The concentration increased. This slag was left in the furnace at the time of tapping, and a reduction treatment was performed with newly received crude molten steel. Reduction treatment is Ar or N 2
Of inert gas at a flow rate of 2000 Nm 3 / Hr,
It was treated for 10 minutes. After the reduction process, only slag is discharged,
Subsequently, decarburization refining of the crude molten steel was carried out.

【0026】表1に実施例の条件を示す。本発明の実施
例は先に示した条件を満足するように実施した。比較例
のNo.6は従来法として行われている特開昭62−2
43711号公報記載の方法に準じて行った例であり、
比較例のNo.7は脱炭精錬の終了後、スラグ中クロム
酸化物を還元するためにSiを添加して還元処理を行っ
た後に溶鋼およびスラグを同時に出鋼した例であり、比
較例のNo.8、9、10は処理の条件が本発明の条件
外の例である。
Table 1 shows the conditions of the embodiment. The examples of the present invention were carried out so as to satisfy the above-mentioned conditions. No. of the comparative example. No. 6 is a conventional method disclosed in JP-A-62-2
This is an example performed according to the method described in Japanese Patent No. 43711,
No. of the comparative example. No. 7 of Comparative Example is an example in which molten steel and slag were simultaneously tapped after performing reduction treatment by adding Si to reduce chromium oxide in slag after completion of decarburization refining. 8, 9 and 10 are examples in which the processing conditions are outside the conditions of the present invention.

【0027】実施結果を表2に示す。表中の値は比較例
のNo.6の結果を100として、全て比例換算した値
である。本発明例では、スラグ中のクロム酸化物の還元
を促進する条件で行っているので精錬時間および精錬コ
ストに大きな差は表われていないが、比較例では、特に
No.7の例では精錬コストが非常に高くなっている。
The results of the implementation are shown in Table 2. The values in the table are the numbers of the comparative example. The result of 6 is 100, and all values are proportionally converted. In the example of the present invention, since the reduction was carried out under the condition of promoting the reduction of the chromium oxide in the slag, no significant difference was observed in the refining time and the refining cost, but in the comparative example, no. In Example 7, the refining cost is very high.

【0028】[0028]

【表1】 [Table 1]

【0029】[0029]

【表2】 [Table 2]

【0030】[0030]

【発明の効果】本発明法によると、含クロム溶鋼の精錬
において、還元用Si原単位、希釈ガス原単位の大幅な
低下がはかれ、またクロム酸化物の還元が促進されるた
めに精錬時間の短縮がはかれることから、精錬コストの
大幅な低減が可能になる。さらに、脱炭精錬終了後、ス
ラグは炉内に残留させることから、溶鋼中へのスラグ捲
き込み量が低減し、製品の品質が向上する。
According to the method of the present invention, in the refining of molten steel containing chromium, the reduction Si basic unit and the dilution gas basic unit are significantly reduced, and the reduction of chromium oxide is promoted. As a result, the refining cost can be significantly reduced. Further, since the slag is left in the furnace after the decarburization refining, the amount of slag inclusion in the molten steel is reduced and the quality of the product is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施態様を説明する図であり、は脱
炭精錬工程、はスラグを炉内に残留させ溶鋼のみを出
鋼する工程、は粗溶鋼の受鋼工程、はスラグの還元
処理工程、はスラグの排出工程、は脱炭精錬工程を
示す。
FIG. 1 is a diagram for explaining an embodiment of the present invention, where is a decarburization refining step, is a step of leaving slag in the furnace to produce only molten steel, is a step of receiving crude molten steel, and is reduction of slag. A treatment process, a slag discharge process, and a decarburization refining process.

【図2】本発明法におけるクロム酸化物の〔Si〕およ
び〔C〕による還元法の効果を示す図である。
FIG. 2 is a diagram showing the effect of the reduction method of chromium oxides [Si] and [C] in the method of the present invention.

【図3】本発明法における炉内に残留させるスラグ中の
クロム酸化物の上限の限定理由を示す図である。
FIG. 3 is a diagram showing the reason for limiting the upper limit of chromium oxide in the slag left in the furnace in the method of the present invention.

【図4】本発明法における新たに受鋼する粗溶鋼の温度
の限定理由を示す図である。
FIG. 4 is a diagram showing the reason for limiting the temperature of the crude molten steel newly received in the method of the present invention.

【図5】本発明法における新たに受鋼する粗溶鋼の〔S
i〕濃度の限定理由を示す図である。
[Fig. 5] Fig. 5 shows the [S of the newly obtained crude molten steel in the method of the present invention.
i] It is a figure which shows the reason for limiting the density.

【図6】 本発明法における新たに受鋼する粗溶鋼の
〔C〕濃度の限定理由を示す図である。
FIG. 6 is a diagram showing the reason for limiting the [C] concentration of the crude molten steel newly received in the method of the present invention.

【符号の説明】[Explanation of symbols]

a 炉体 b スラグ c 溶鋼 d 羽口 e 取鍋 f スラグ鍋 a furnace body b slag c molten steel d tuyere e ladle f slag pan

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岩崎 央 山口県光市大字島田3434番地 新日本製鐵 株式会社光製鐵所内 (72)発明者 森重 博明 山口県光市大字島田3434番地 新日本製鐵 株式会社光製鐵所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hiroshi Iwasaki 3434 Shimada, Hikari City, Yamaguchi Prefecture Inside the Nippon Steel Co., Ltd. Hikari Steel Co., Ltd. Inside the Kogaku Steel Works

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 AODのような転炉型の精錬容器を用い
た含クロム溶鋼の脱炭精錬において、脱炭精錬処理され
た溶鋼を出鋼するに際し、前記脱炭精錬処理によって生
成したクロム酸化物を15mass%以上かつ50ma
ss%以下含むスラグを出鋼時に炉内に残留させ、14
00℃以上の温度を有する新たに受鋼した粗溶鋼中の
〔Si〕および〔C〕により前記クロム酸化物を還元処
理することを特徴とする脱炭滓を用いた効率的な含クロ
ム溶鋼の精錬方法。
1. In the decarburization refining of molten chromium-containing steel using a converter-type refining vessel such as AOD, when the decarburization-refined molten steel is tapped, chromium oxidation produced by the decarburization refining treatment is carried out. 15mass% or more and 50ma
Slag containing ss% or less is left in the furnace at the time of tapping, and
An efficient chromium-containing molten steel using a decarburizing slag, characterized in that the chromium oxide is reduced by [Si] and [C] in newly received crude molten steel having a temperature of 00 ° C or higher. Refining method.
【請求項2】 新たに受鋼する粗溶鋼中の〔Si〕濃度
が0.2mass%以上、〔C〕濃度が1.2mass
%以上であることを特徴とする請求項1記載の脱炭滓を
用いた効率的な含クロム溶鋼の精錬方法。
2. A newly obtained crude molten steel has a [Si] concentration of 0.2 mass% or more and a [C] concentration of 1.2 mass%.
% Or more, and an efficient method for refining molten chromium-containing steel using the decarburizing slag according to claim 1.
【請求項3】 前記クロム酸化物の還元処理終了後、ス
ラグのみを排出し、続いて含クロム溶鋼の脱炭精錬を行
うことを特徴とする請求項1記載の脱炭滓を用いた効率
的な含クロム溶鋼の精錬方法。
3. The efficient use of the decarburizing slag according to claim 1, wherein after the reduction treatment of the chromium oxide is completed, only the slag is discharged, and then the decarburizing refining of the molten steel containing chromium is performed. Refining method for molten chromium-containing steel.
JP22222894A 1994-09-16 1994-09-16 Method for effectively refining molten chromium-containing steel using decarburized slag Withdrawn JPH0885813A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22222894A JPH0885813A (en) 1994-09-16 1994-09-16 Method for effectively refining molten chromium-containing steel using decarburized slag

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22222894A JPH0885813A (en) 1994-09-16 1994-09-16 Method for effectively refining molten chromium-containing steel using decarburized slag

Publications (1)

Publication Number Publication Date
JPH0885813A true JPH0885813A (en) 1996-04-02

Family

ID=16779131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22222894A Withdrawn JPH0885813A (en) 1994-09-16 1994-09-16 Method for effectively refining molten chromium-containing steel using decarburized slag

Country Status (1)

Country Link
JP (1) JPH0885813A (en)

Similar Documents

Publication Publication Date Title
CN101956044B (en) Refining method for improving clean class of steel
JP6410311B2 (en) Stainless steel refining method
JP2001355018A (en) METHOD FOR MELTING Ti-CONTAINING STEEL
JP3333795B2 (en) Method for denitrification of molten metal and method for denitrification and decarburization
JPH0885814A (en) Method for effectively refining molten chromium-containing steel using decarburized slag
JPH0885813A (en) Method for effectively refining molten chromium-containing steel using decarburized slag
JP3220233B2 (en) Refining method of ultra-low carbon / ultra low sulfur chromium-containing molten steel
JPH0885815A (en) Method for effectively refining molten chromium-containing steel using decarburized slag
JPH08260030A (en) Method for vacuum-refining extra-low carbon stainless steel
EP0146696B1 (en) Process for refining of chromium-containing molten steel
JP3160508B2 (en) Decarburization refining method of chromium-containing molten steel
KR100361778B1 (en) Manufacturing method of ultra low carbon stainless steel by slag control
JPH11106823A (en) Method for refining extra-low carbon and extra-low nitrogen stainless steel
JPH10245620A (en) Method for refining titanium and sulfur containing stainless steel
JP3411220B2 (en) Refining method of high nitrogen low oxygen chromium-containing molten steel
JP2795513B2 (en) Decarburization refining method of chromium-containing molten steel
JP3757435B2 (en) Method for decarburizing and refining chromium-containing molten steel
KR100214832B1 (en) Refining method of high chromium containing steel
JP3099152B2 (en) Raw material blending method and smelting method for chromium-containing molten steel
JPH0841530A (en) Production of low aluminum and low sulfur stainless steel
JPH089730B2 (en) Decarburization refining method for molten steel containing chromium
JPH0959708A (en) Method for efficently decarburization-blowing stainless steel
JP3282544B2 (en) Demanganese method for high chromium molten iron alloy
JP3412924B2 (en) Refining method of chromium-containing molten steel
JPH08104914A (en) Highly efficient production of high purity molten stainless steel

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20011120