JPS621444B2 - - Google Patents

Info

Publication number
JPS621444B2
JPS621444B2 JP13639582A JP13639582A JPS621444B2 JP S621444 B2 JPS621444 B2 JP S621444B2 JP 13639582 A JP13639582 A JP 13639582A JP 13639582 A JP13639582 A JP 13639582A JP S621444 B2 JPS621444 B2 JP S621444B2
Authority
JP
Japan
Prior art keywords
cao
mgo
sio
slag
refining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13639582A
Other languages
Japanese (ja)
Other versions
JPS5928514A (en
Inventor
Yoshihide Kato
Tsutomu Nozaki
Toshihiko Emi
Akira Kawarada
Shigeru Ogura
Takuo Imai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP13639582A priority Critical patent/JPS5928514A/en
Publication of JPS5928514A publication Critical patent/JPS5928514A/en
Publication of JPS621444B2 publication Critical patent/JPS621444B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、ステンレス鋼の精錬方法に関し、
とくに酸化性ガスを吹込む酸化期に引続く還元期
における効果的な脱硫を、精錬炉の炉壁耐火物の
寿命延長に併せ、有利に実現しようとするもので
ある。 一般にステンレス鋼を精錬する場合、精錬炉と
しては、AOD炉、底吹き転炉(Q―BOP)、上底
吹き転炉(K―BOP)さらにはLD転炉などが用
いられ、通常、次のような工程で実施される。 すなわち溶解炉で溶製して得られた含Cr浴
を、精錬炉に移し、この溶鉄中にO2ガスとN2
たはArなどの不活性ガスとの混合ガスを吹込ん
で、脱C、脱Siなどを行う酸化工程(酸化期)に
引続き、不活性ガスの吹込みに併せ、金属Si源や
焼石灰(CaO)などの副原料を投入して、酸化期
においてスラグに取らえられた酸化クロムの還元
回収を図り、かつ溶鉄の脱硫も併せて行う還元工
程(還元期)に移行し、このように一回の吹錬期
間中に酸化期と還元期が存在する。 ところでステンレス鋼の精錬においては、上記
したように還元期に不活性ガスを吹込むことや、
また次工程のRH処理もしくは連続鋳造とのマツ
チング上の問題があつて、酸化期末には溶鉄温度
を、1700〜1750℃の高温に保持することが必要と
されるが、これは炉壁耐火物にとつて苛酷な条件
となる。 この発明は、かかる耐火物の悪条件下において
も、耐火物損耗量の増加を極力抑えて炉寿命の延
長を図ることを第1の目的とする。 また上記還元期においては、所定のS濃度に脱
硫するため副原料が投入されるところ、従来は
CaO/SiO2がほぼ1.5程度になるように焼石灰や
軽焼ドロマイトなどが投入され、さらに耐火物の
損耗を軽減すべくスラグ中のMgOを増すことも
行われてきた。 しかしながら、軽焼ドロマイトの量を増して、
単にCaO―SiO2―MgO系のスラグとしただけで
は、還元期において滓化が安定せず、溶鉄中S濃
度を十分に低減できないところに問題を残してい
た。 この発明は、かような還元期における滓化状態
を安定化し、効果的な脱硫を達成することを第2
の目的とする。 発明者らは、上記の目的すなわち炉寿命の延長
と脱硫の安定化を達成すべく数多くの実験と検討
を重ねた結果、還元期に投入する副原料の種類お
よび投入量の調整によつてスラグの組成ならびに
生成量をコントロールすることにより、上記の目
的が有利に達成されることを新たに見出し、その
新規知見に基いてこの発明を完成させるに至つた
のである。 すなわちこの発明は、シングルスラグ法による
ステンレス鋼の精錬において、酸化性ガスの吹込
みによる酸化期に引続く還元期に、精錬炉内へ副
原料の装入を行うに当り、該副原料中のCaO、
MgOおよびCaF2につき、該精錬炉内のスラグ中
SiO2量に応じて、 CaO/SiO2=1.5〜2.0 MgO/SiO2=0.3〜0.5 の割合でCaO、MgOを、かつ スラグ中CaF2濃度=3〜5重量% の割合でCaF2を、それぞれ装入することをもつ
て上記課題の解決手段とするものであり、上記精
錬炉としては、AOD炉、Q―BOPまたはK―
BODがとくに有利に適合する。 以下この発明を由来するに至つた実験結果につ
いて説明する。なお実験はいずれも、炉容85トン
でマグネシア・ドロマイトれんがの内張りをそな
えるK―BOPを用いて行つた。 第1図に、還元精錬終了後の溶鉄中S濃度と実
塩基度(CaO/SiO2 Obs)との関係について示
す。同図より、S濃度が十分に低いと言える
〔S〕≦0.009%とするためには、CaO/SiO2 obs
≧1.5とすればよいことがわかる。 第2図に、(計算塩基度―実塩基度)/計算塩
基度で表わされる無効CaO率すなわち有効に利用
されないCaOの割合とスラグ中のCaF2濃度との
関係について調べた結果を示す。この関係は、ス
ラグ量をできるだけ少くするため、ならびに実塩
基度の安定化のために重要である。 図から、CaF2のスラグ重量に対する割合を3
%以上にすれば無効CaO率が減少することがわか
る。 第3図に、(計算MgO/SiO2―実MgO/
SiO2)/計算MgOで表わされる未溶解MgO率と計
算MgO/SiO2との関係について調べた結果を示
す。ここに未溶解MgO率が負の値の場合は、炉
壁耐火物からMgOが確実に溶出していることを
表わす。従つてMgOの溶出を極力抑えるために
は未溶解MgO率の値が正である必要があり、こ
の点計算MgO/SiO2が0.3〜0.5であれば、MgO
の無駄なく未溶解MgO率を正の値にすることが
できる。 次に第4図に、スラグ中のCaF2濃度を3〜5
%とした場合における、無効CaO率と計算塩基度
との関係を示す。同図より明らかなように、計算
塩基度が増加するにつれて無効CaO率が多くな
る。しかしながら計算塩基度と実塩基度との関係
についてみると、スラグ中のCaF2濃度が3%以
上の場合は、第4図から計算CaO/SiO2=1.5に
おいて無効CaO率≒0すなわち計算CaO/SiO2
と実CaO/SiO2はほぼ等しく、従つて計算
CaO/SiO2=1.5〜2.0程度であれば、無効CaO率
を高めることなしに実CaO/SiO2≧1.5にできる
ことが判つた。 以上、第1〜4図に示した結果から、効果的な
脱硫と炉寿命の向上とを併せて達成するために
は、CaO/SiO2≧1.5、MgO/SiO2=0.3〜0.5、
スラグ中のCaF2濃度≧重量%となるよう副原料
を装入すればよいことが明らかにされた。 しかしながら上記の諸条件を満足するとして
も、副原料の装入量が多すぎると、精錬時間の延
長やそれに伴う溶鉄温度の降下など精錬上の支障
が大きくなる。 そこでこの発明では、副原料の投入基準を、酸
化期末のスラグ中SiO2量に置くこととし、この
SiO2量に応じ、下記のとおりに定めたのであ
る。 CaO:CaO/SiO2=1.5〜2.0 MgO:MgO/SiO2=0.3〜0.5 CaF2:スラグ中3〜5重量% かくして、安定した脱硫と炉寿命の向上とが、
スラグ量の無用の増加を招くことなしに、効果的
に実現されたのである。 次にこの発明の実施例を、比較例と対比して説
明する。 炉容85トンでマグネシア・ドロマイト系れんが
を内張りしたK―BOPに収容した含Cr浴に、常
法に従う酸化精錬を施したのち、表1に示した割
合になる副原料を炉内に装入して還元精錬を行
い、精錬終了時のS濃度ならびに耐火物原単位指
数について調べ、その結果を表1に併せ示した。
なお耐火物原単位指数は、普通鋼精錬とステンレ
ス鋼精錬を同一の転炉で行つた場合のもので、す
べての実施例および比較例は1炉代中全精錬ヒー
トに対するステンレス鋼精錬ヒート割合が約45%
についてのものである。
This invention relates to a method for refining stainless steel,
In particular, the objective is to advantageously achieve effective desulfurization during the reduction period following the oxidation period in which oxidizing gas is blown in, while also extending the life of the furnace wall refractories of the smelting furnace. Generally, when refining stainless steel, the refining furnaces used include AOD furnaces, bottom blowing converters (Q-BOP), top and bottom blowing converters (K-BOP), and LD converters. It is carried out in a process like this. That is, a Cr-containing bath obtained by melting in a melting furnace is transferred to a smelting furnace, and a mixed gas of O 2 gas and an inert gas such as N 2 or Ar is blown into the molten iron to remove carbon and remove carbon. Following the oxidation process (oxidation period) in which Si, etc. The process moves to a reduction process (reduction period) in which chromium is reduced and recovered, and molten iron is also desulfurized, and thus an oxidation period and a reduction period exist during one blowing period. By the way, in the refining of stainless steel, as mentioned above, inert gas is injected during the reduction period,
There is also a matching problem with the next process of RH treatment or continuous casting, and at the end of the oxidation period, it is necessary to maintain the molten iron temperature at a high temperature of 1,700 to 1,750℃, but this is due to the fact that the furnace wall refractory The conditions are harsh for the The first object of the present invention is to extend the life of the furnace by suppressing the increase in the amount of wear of the refractory as much as possible even under such adverse conditions of the refractory. Additionally, during the reduction period, auxiliary raw materials are added to desulfurize to a predetermined S concentration;
Burnt lime and lightly burnt dolomite have been added to bring the CaO/SiO 2 ratio to about 1.5, and efforts have also been made to increase MgO in the slag to reduce wear and tear on the refractories. However, by increasing the amount of light calcined dolomite,
Simply using CaO-SiO 2 -MgO-based slag does not stabilize slag formation during the reduction period, leaving a problem in that the S concentration in the molten iron cannot be sufficiently reduced. The second objective of this invention is to stabilize the slag state during the reduction period and achieve effective desulfurization.
The purpose of The inventors conducted numerous experiments and studies to achieve the above objectives, that is, extend the life of the furnace and stabilize desulfurization. As a result, the inventors found that by adjusting the type and amount of auxiliary materials input during the reduction period, the slag can be improved. It was newly discovered that the above object can be advantageously achieved by controlling the composition and production amount of , and based on this new knowledge, the present invention was completed. In other words, this invention provides a method for refining stainless steel by the single slug method, when charging the auxiliary raw material into the refining furnace during the reduction period following the oxidation period by blowing oxidizing gas. CaO,
Regarding MgO and CaF2 , in the slag in the smelting furnace
Depending on the amount of SiO2 , CaO and MgO at a ratio of CaO/ SiO2 = 1.5-2.0 MgO/ SiO2 = 0.3-0.5, and CaF2 at a ratio of CaF2 concentration in slag = 3-5% by weight, The solution to the above problem is to charge each of them, and the above refining furnace is an AOD furnace, Q-BOP or K-
BOD is particularly advantageously suited. The experimental results that led to this invention will be explained below. All experiments were conducted using K-BOP, which has a furnace capacity of 85 tons and is lined with magnesia dolomite bricks. FIG. 1 shows the relationship between the S concentration in molten iron and the actual basicity (CaO/SiO 2 Obs) after completion of reduction refining. From the figure, in order for the S concentration to be sufficiently low [S]≦0.009%, CaO/SiO 2 obs
It can be seen that it is sufficient to set it to ≧1.5. Figure 2 shows the results of an investigation into the relationship between the invalid CaO rate, expressed as (calculated basicity - actual basicity)/calculated basicity, that is, the proportion of CaO that is not effectively utilized, and the CaF 2 concentration in the slag. This relationship is important for minimizing the amount of slag and for stabilizing the actual basicity. From the figure, the ratio of CaF 2 to the slag weight is 3
% or more, it can be seen that the invalid CaO rate decreases. Figure 3 shows (calculated MgO/SiO 2 -real MgO/
The results of an investigation of the relationship between the undissolved MgO percentage expressed as SiO 2 )/calculated MgO and calculated MgO/SiO 2 are shown below. If the undissolved MgO ratio is a negative value, it means that MgO is definitely eluted from the furnace wall refractories. Therefore, in order to suppress the elution of MgO as much as possible, the value of the undissolved MgO ratio needs to be positive, and in this point, if the calculated MgO/SiO 2 is 0.3 to 0.5,
The undissolved MgO ratio can be made to a positive value without wasting any. Next, Figure 4 shows that the CaF2 concentration in the slag is 3 to 5.
The relationship between the invalid CaO rate and the calculated basicity when expressed as % is shown. As is clear from the figure, as the calculated basicity increases, the invalid CaO rate increases. However, looking at the relationship between calculated basicity and actual basicity, when the CaF 2 concentration in the slag is 3% or more, from Figure 4, when calculated CaO / SiO 2 = 1.5, the invalid CaO rate ≒ 0, that is, calculated CaO / SiO 2 = 1.5. SiO2
and real CaO/SiO 2 are approximately equal, so the calculation
It was found that when CaO/SiO 2 = about 1.5 to 2.0, actual CaO/SiO 2 ≧1.5 can be achieved without increasing the invalid CaO ratio. From the above results shown in Figures 1 to 4, in order to achieve both effective desulfurization and improvement of furnace life, CaO/SiO 2 ≧1.5, MgO/SiO 2 = 0.3 to 0.5,
It was revealed that the auxiliary raw materials should be charged so that the CaF 2 concentration in the slag is ≧% by weight. However, even if the above-mentioned conditions are satisfied, if the amount of auxiliary raw materials charged is too large, problems in refining will increase, such as an extension of the refining time and a corresponding drop in molten iron temperature. Therefore, in this invention, the input standard for the auxiliary raw material is set on the amount of SiO2 in the slag at the end of the oxidation period, and this
It was determined as follows depending on the amount of SiO2 . CaO: CaO/SiO 2 = 1.5 to 2.0 MgO: MgO/SiO 2 = 0.3 to 0.5 CaF 2 : 3 to 5% by weight in slag Thus, stable desulfurization and improvement of furnace life are achieved.
This was effectively achieved without causing an unnecessary increase in the amount of slag. Next, examples of the present invention will be described in comparison with comparative examples. A Cr-containing bath housed in a K-BOP with a furnace capacity of 85 tons and lined with magnesia-dolomite bricks was subjected to oxidation refining according to a conventional method, and then auxiliary materials in the proportions shown in Table 1 were charged into the furnace. Reduction smelting was performed, and the S concentration and refractory unit index at the end of smelting were investigated, and the results are also shown in Table 1.
The refractory consumption index is based on the case where ordinary steel refining and stainless steel refining are performed in the same converter, and in all examples and comparative examples, the ratio of stainless steel refining heat to the total refining heat in one furnace charge is Approximately 45%
It is about.

【表】 表1において比較例1は、CaO、MgOを適正
範囲よりも幾分多目にし、かつCaF2量を少くし
た場合であり、CaOやMgOが多いにもかかわら
ず脱硫が不安定である。また比較例2はMgOの
量を適正範囲よりも少くした場合で、脱硫能は良
好であるが、耐火物の損耗が甚しい。さらに比較
例3は、MgOおよびCaF2を適正範囲より少くし
た場合で、脱硫能、耐火物原単位ともおもわしく
ない。 これに対し、この発明に従う実施例1は、精錬
終了後の脱硫能ならびに耐火物原単位とも良好
で、安定した脱硫が耐火物の損耗の増加を伴うこ
となしに達成できた。
[Table] In Table 1, Comparative Example 1 is a case in which CaO and MgO are slightly higher than the appropriate range and the amount of CaF2 is small, and desulfurization is unstable despite the large amounts of CaO and MgO. be. In Comparative Example 2, the amount of MgO was lower than the appropriate range, and although the desulfurization ability was good, the refractory was severely worn out. Furthermore, Comparative Example 3 is a case where MgO and CaF 2 are lower than the appropriate range, and both the desulfurization ability and the refractory unit consumption are unsatisfactory. On the other hand, in Example 1 according to the present invention, both the desulfurization ability and the refractory unit consumption after the completion of refining were good, and stable desulfurization was achieved without increasing wear on the refractories.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は還元精錬終了後のS濃度とCaO/
SiO2 obsとの関係について示したグラフ、第2
図は無効CaO率とスラグ中CaF2濃度との関係に
ついて示したグラフ、第3図は未溶解MgO率と
計算MgO/SiO2(MgO/SiO2 cal)との関係に
ついて示したグラフ、第4図は無効CaO率と計算
CaO/SiO2(CaO/SiO2 cal)との関係について
示したグラフである。
Figure 1 shows the S concentration and CaO/ after reduction refining.
Graph showing the relationship with SiO 2 obs, 2nd
The figure is a graph showing the relationship between the invalid CaO rate and the CaF 2 concentration in slag. Figure 3 is a graph showing the relationship between the undissolved MgO rate and calculated MgO/SiO 2 (MgO/SiO 2 cal). The figure shows invalid CaO rate and calculation
It is a graph showing the relationship with CaO/SiO 2 (CaO/SiO 2 cal).

Claims (1)

【特許請求の範囲】 1 シングルスラグ法によるステンレス鋼の精錬
において、酸化性ガスの吹込みによる酸化期に引
続く還元期に、精錬炉内へ副原料の装入を行うに
当り、該副原料中のCaO、MgOおよびCaF2につ
き、該精錬炉内のスラグ中SiO2量に応じて、 CaO/SiO2=1.5〜2.0 MgO/SiO2=0.3〜0.5 の割合でCaO、MgOを、かつ スラグ中CaF2濃度=3〜5重量% の割合でCaF2を、それぞれ装入することを特徴
とするステンレス鋼の精錬方法。 2 精錬炉が、AOD炉、底吹き転炉または上、
底吹き転炉のいずれかである特許請求の範囲第1
項記載の方法。
[Claims] 1. In refining stainless steel by the single slug method, when charging the auxiliary raw material into the refining furnace during the reduction period that follows the oxidation period by blowing oxidizing gas, the auxiliary raw material Regarding CaO, MgO and CaF 2 in the slag, CaO, MgO are added at a ratio of CaO/SiO 2 = 1.5 to 2.0 MgO/SiO 2 = 0.3 to 0.5, depending on the amount of SiO 2 in the slag in the slag. A method for refining stainless steel, characterized in that CaF 2 is charged at a medium CaF 2 concentration of 3 to 5% by weight. 2 The refining furnace is an AOD furnace, a bottom-blowing converter, or an upper
Claim 1, which is any bottom blowing converter
The method described in section.
JP13639582A 1982-08-06 1982-08-06 Method for refining stainless steel Granted JPS5928514A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13639582A JPS5928514A (en) 1982-08-06 1982-08-06 Method for refining stainless steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13639582A JPS5928514A (en) 1982-08-06 1982-08-06 Method for refining stainless steel

Publications (2)

Publication Number Publication Date
JPS5928514A JPS5928514A (en) 1984-02-15
JPS621444B2 true JPS621444B2 (en) 1987-01-13

Family

ID=15174151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13639582A Granted JPS5928514A (en) 1982-08-06 1982-08-06 Method for refining stainless steel

Country Status (1)

Country Link
JP (1) JPS5928514A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06925B2 (en) * 1986-01-06 1994-01-05 川崎製鉄株式会社 Refining method of stainless steel
JP5315669B2 (en) * 2007-11-05 2013-10-16 Jfeスチール株式会社 Method for refining molten steel with RH vacuum degassing equipment
CN103255356B (en) * 2013-05-10 2015-05-20 山西太钢不锈钢股份有限公司 Method for preparing low-carbon stainless steel

Also Published As

Publication number Publication date
JPS5928514A (en) 1984-02-15

Similar Documents

Publication Publication Date Title
US4417924A (en) Steelmaking additive composition
US5466275A (en) Method and apparatus for desulphurizing iron with minimal slag formation
US4490173A (en) Steelmaking additive composition
US4105439A (en) Method for production of refined steel
US3615348A (en) Stainless steel melting practice
US4373949A (en) Method for increasing vessel lining life for basic oxygen furnaces
JPS621444B2 (en)
US4842642A (en) Additive for promoting slag formation in steel refining ladle
US3826647A (en) Method of obtaining low-phosphorus contents in medium-and high-carbon steels in a bottom-blown oxygen steelmaking furnace
JP4422318B2 (en) Hot metal dephosphorization method with little refractory damage
US4790872A (en) Additive for promoting slag formation in steel refining ladle
JP3158912B2 (en) Stainless steel refining method
JP3776778B2 (en) Method of removing vanadium from molten iron
US2767078A (en) Process for desiliconizing and desulphurizing pig iron
JPS60121211A (en) Method for reducing and desulfurizing molten cr steel
US1086489A (en) Treating steel in electric furnaces with basic hearths.
JP4224197B2 (en) Hot metal dephosphorization method with high reaction efficiency
JPH01215914A (en) Manufacture of low s chromium-containing molten iron
US1508083A (en) Manufacture of steel
SU691497A1 (en) Method of steel smelting
JP2004176133A (en) Method for producing stainless steel
JPS6319564B2 (en)
JPH02179812A (en) Method for refining stainless steel
JPH0835022A (en) Smelting reduction method for nickel oxide-containing raw material
SU1747500A1 (en) Scrap-and-ore steelmaking process without oxygen blast