JP2004176133A - Method for producing stainless steel - Google Patents

Method for producing stainless steel Download PDF

Info

Publication number
JP2004176133A
JP2004176133A JP2002344075A JP2002344075A JP2004176133A JP 2004176133 A JP2004176133 A JP 2004176133A JP 2002344075 A JP2002344075 A JP 2002344075A JP 2002344075 A JP2002344075 A JP 2002344075A JP 2004176133 A JP2004176133 A JP 2004176133A
Authority
JP
Japan
Prior art keywords
slag
caf
mgo
aod
cao
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002344075A
Other languages
Japanese (ja)
Other versions
JP3896956B2 (en
Inventor
Norio Honjo
則夫 本庄
Tsuneo Ito
恒夫 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2002344075A priority Critical patent/JP3896956B2/en
Publication of JP2004176133A publication Critical patent/JP2004176133A/en
Application granted granted Critical
Publication of JP3896956B2 publication Critical patent/JP3896956B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a stainless steel with an AOD method in which erosion of a refractory in an AOD vessel is restrained and also, a dumping cost is reduced and the environmental problem is reduced by utilizing waste electroslag remelting (ESR) slag caused by the production of a high cleanliness steel with ESR method. <P>SOLUTION: Al<SB>2</SB>O<SB>3</SB>together with CaF<SB>2</SB>are charged at reducing period into molten steel in the AOD vessel and the slag having the composition composed of CaO-SiO<SB>2</SB>-CaF<SB>2</SB>-Al<SB>2</SB>O<SB>3</SB>-MgO which contains Al<SB>2</SB>O<SB>3</SB>by 3-30 wt%, desirably 5-20 wt%, is formed on the molten steel and refining is performed while restraining the fusion of MgO from the refractory for furnace wall. As the supplying source of CaF<SB>2</SB>and Al<SB>2</SB>O<SB>3</SB>, the waste ESR slag is utilized. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、AOD法によるステンレス鋼の製造方法の改良に関し、AOD炉の炉壁にライニングされた耐火物の溶損が少ない製造方法を提供する。
【0002】
【従来の技術】
よく知られているように、AOD法によるステンレス鋼の製造は、AOD炉において、クロムを含有する溶鋼に、酸素とアルゴンとの混合ガスを吹き込んで脱炭を行ない(脱炭期)、ついでフェロシリコンまたはアルミニウムを添加して、酸化されたクロムを還元することにより溶鋼中に回収する(還元期)操作からなる。
【0003】
これらの過程で投入するスラグ形成材料は、脱炭期に生石灰CaOおよびマグネシアMgO、還元期にフェロシリコンFe−Siおよび蛍石CaFである。CaOと、フェロシリコン中のSiのCr還元反応により生じるSiOとの比率である塩基度は、C/S=CaO/SiO=1.8〜2.2が通常選択される。蛍石は、スラグの融点を低下させ、粘度が低いものとすることにより、スラグによる脱硫精錬およびクロムの還元が速やかに行なわれるように使用する。これらスラグ形成材料の使用量の一例を挙げれば、CaO+MgO:1200kg、75%フェロシリコン(Si含有量75%):200〜250kg、CaF:200〜300kgである。CaFは、100%の蛍石に限らず、80%CaF−20%SiOの組成のものも使用される。
【0004】
AOD炉の操業は温度が高くなる(脱炭時の最高温度は1750℃にも達する)から、炉壁を構成する耐火物(ドロマイトレンガ)の溶損、とくにMgOのスラグ中への溶出が進み、スラグに接していた部分の溶出、いわゆるスラグライン溶出が起こる。この傾向は、Si含有量の低いステンレス鋼を製造することを意図して、還元剤にAlを使用した場合、著しい。これは、還元により生成したAlがスラグ中に多量に存在することが原因と考えられる。
【0005】
一方、きわめて清浄度の高い鋼を製造する手段のひとつに、エレクトロスラグ再溶解法ESRがある。ESR法に使用するスラグは、つぎのような成分から成り(重量%)、

Figure 2004176133
スラグは精錬作用をもつが、使用の前後において、組成は実質上変化しない。使用後のスラグは、ほとんど利用価値のないものとして廃棄されているが、廃棄それ自体がコストを要するものであり、かつ、環境への負担を考えるとなおさら、有効利用の途が求められている。
【0006】
発明者らは、MgOを含む耐火物と溶融スラグとが接しているとき、スラグ中のAl含有量が少ない領域から多い領域に向かってMgOのスラグ中飽和濃度がいったん低下し、さらに増大すると再び上昇することを知り、適量のAlを還元期のスラグ中に存在させることによってMgOの溶出を抑制することを考え、一方、このAl含有量をESRのスラグ廃棄物から供給することを着想した。
【0007】
そこで、AOD法の実施に当たって還元期のスラグ形成のために投入する材料の一部を、ESRのスラグ廃棄物で置き換えることを実験した。この実験は成功し、期待どおり、MgOの溶出を抑制することができた。図1は、還元期スラグ中に存在するAlの量と、耐火物中のMgOが溶出する割合との関係をプロットしたグラフであって、このグラフから、スラグ中3〜5%のAlの存在がMgOの溶出をよく押さえていることがわかる。
【0008】
【発明が解決しようとする課題】
本発明の第一の目的は、発明者らが得た上述の知見を活用し、AOD法によるステンレス鋼の製造方法を改良して、AODベッセルの耐火物の溶損を抑制した製造方法を提供することにある。本発明の第二の目的は、AOD法の還元期にスラグ形成材料の一部にESRスラグ廃棄物を利用することにより、その再利用をはかり、廃棄コストを削減ないしゼロにし、かつ、環境問題を軽減することにある。
【0009】
【課題を解決するための手段】
上記の目的を達成する本発明のステンレス鋼の製造方法は、AOD法によるステンレス鋼の製造方法であって、AODベッセル内の溶鋼に対して、脱炭期にはCaOおよびMgOを投入し、還元期にはフェロシリコンを添加するともにCaFを投入してスラグを形成し、精錬を行なう製造方法において、還元期にCaFとともにAlを投入して、その3〜30重量%をAlが占める、CaO−SiO−CaF−Al−MgOからなるスラグを溶鋼上に形成し、炉壁の耐火物中からのMgO溶出を抑制しつつ精錬を行なうことを特徴とする。
【0010】
【発明の実施形態】
還元期のスラグ中に存在させるべきAlの量は、上記の下限であるAl3重量%でもその効果が認められるが、5重量%以上で顕著になる。多量に存在させてもその効果が飽和するので、上記のように30%の上限を設けた。一般に、20重量%までを占めるようにすることが好ましい。
【0011】
還元期のスラグ組成として適切な範囲は、このようなわけで、CaO:30〜70%(好ましくは45〜55%)、SiO:15〜25%(好ましくは18〜22%)、CaF:1〜25%(好ましくは5〜15%)、Al:3〜30%(好ましくは5〜20%)、MgO:5〜15%(好ましくは7〜12%)となる。
【0012】
投入するAlの源は、任意に選択することができる。バイヤー法アルミナや、その前駆体である水酸化アルミニウムにように純粋なものには問題ないことはもちろんであり、アルミドロスのような原料も、AOD法の実施にとって支障がないかぎり、使用可能である。
【0013】
Alの源としてESR法のスラグ廃棄物を利用する場合、当然にCaFもそこから供給される。この場合に、還元期スラグを形成するためにベッセルに投入する材料のうち、どのくらいの割合でESRスラグ廃棄物を使用すればよいかは、ESRスラグ廃棄物の組成にもよるが、還元期スラグの5〜40%、通常は20〜35%を占めるように添加することが適切である。それにより、上記の適切なスラグ組成が実現できるであろう。
【0014】
耐火物の溶損はまた、スラグの塩基度の低下によっても生じる。塩基度の低下は、還元工程におけるSiOの生成に起因するものである。塩基度を高めることにより、スラグの液相中に飽和するMgOの量を低減させることができるから、Alのスラグへの添加は、この面からも有用である。
【0015】
還元期スラグが示す塩基度と、耐火物中のMgOが溶出する割合との関係をプロットして、図2のグラフを得た。この場合の塩基度は、(CaO+MgO)/(SiO+Al)として定義される。塩基度の増大がMgO溶出の防止に有効であることが、このグラフから明らかである。
【0016】
【実施例】
容量20トンのAODベッセルを使用し、SUS304の溶鋼20トンを製造した。脱炭期のはじめにCaO800kgおよびMgO200kgを投入し、還元期に、つぎの配合でスラグ形成材料を投入した。
Figure 2004176133
使用したESRスラグ廃棄物の組成は、70%CaF+30%Alである。本発明によりベッセルの耐火物の寿命が、従来の85チャージから100チャージまで延ばすことができた。
【0017】
【発明の効果】
本発明の製造方法は、今日のステンレス製造技術の主流を占めるAOD法を実施するに当り、還元期スラグに適切な量のAlを存在させるという簡単な手段により、AODベッセルの耐火物からMgOがスラグ中に溶出することを抑制3し、寿命を延ばすことに成功した。とくに、スラグのAlおよびCaFの源としてESRスラグ廃棄物を利用する態様によれば、上記の効果を得た上で、スラグ廃棄物の処理の問題を解消することができ、ESRのコスト低減およびスラグ廃棄が引き起こす環境問題の解決という、多くの利益が一挙に得られる。
【図面の簡単な説明】
【図1】AOD法ステンレス製造の還元期スラグ中に存在するAlの量と、耐火物中のMgOが溶出する割合との関係をプロットしたグラフ。
【図2】AOD法ステンレス製造の還元期スラグが示す塩基度と、耐火物中のMgOが溶出する割合との関係をプロットしたグラフ。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an improvement in a method for producing stainless steel by an AOD method, and provides a method for producing a refractory lining a furnace wall of an AOD furnace with less erosion.
[0002]
[Prior art]
As is well known, in the production of stainless steel by the AOD method, in a AOD furnace, a mixed gas of oxygen and argon is blown into molten steel containing chromium to perform decarburization (decarburization stage), and then ferromagnetic steel is used. It consists of adding silicon or aluminum to reduce oxidized chromium and recovering it in molten steel (reduction phase).
[0003]
Slag forming material introduced in these processes, quick lime CaO and magnesia MgO decarburization phase, a ferrosilicon Fe-Si and fluorite CaF 2 in the reduction stage. C / S = CaO / SiO 2 = 1.8 to 2.2 is usually selected as the basicity, which is the ratio between CaO and SiO 2 generated by the Cr reduction reaction of Si in ferrosilicon. Fluorite is used to reduce the melting point of slag and reduce the viscosity so that desulfurization refining by slag and reduction of chromium are performed quickly. One example of the amount of the slag forming material used is: CaO + MgO: 1200 kg, 75% ferrosilicon (75% Si content): 200 to 250 kg, and CaF 2 : 200 to 300 kg. CaF 2 is not limited to 100% fluorite, but also has a composition of 80% CaF 2 -20% SiO 2 .
[0004]
The operation of the AOD furnace increases in temperature (the maximum temperature during decarburization reaches as high as 1750 ° C), so the refractory (dolomite brick) that constitutes the furnace wall is eroded, and the elution of MgO into slag in particular proceeds. Elution of the portion in contact with the slag, so-called slag line elution occurs. This tendency is remarkable when Al is used as a reducing agent with the intention of producing stainless steel having a low Si content. This is considered to be due to the fact that Al 2 O 3 generated by the reduction is present in a large amount in the slag.
[0005]
On the other hand, as one of means for producing extremely clean steel, there is an electroslag remelting method ESR. The slag used for the ESR method is composed of the following components (% by weight),
Figure 2004176133
Although slag has a refining action, its composition does not substantially change before and after use. Slag after use is discarded as having little value, but disposal itself is costly, and considering the burden on the environment, there is a need for more effective use. .
[0006]
The present inventors have found that when the refractory containing MgO and the molten slag are in contact with each other, the saturation concentration of MgO in the slag once decreases from a region where the content of Al 2 O 3 in the slag is small to a region where the content is large, and furthermore. knows that rises when increasing again considered to suppress the elution of MgO by the presence of a suitable amount of Al 2 O 3 in the slag in the reduction stage, while the slag disposal of ESR the content of Al 2 O 3 I conceived to supply from things.
[0007]
Therefore, in conducting the AOD method, an experiment was conducted to replace a part of the material input for slag formation in the reduction period with slag waste of ESR. This experiment was successful and the elution of MgO could be suppressed as expected. FIG. 1 is a graph plotting the relationship between the amount of Al 2 O 3 present in the slag in the reduction phase and the rate of elution of MgO in the refractory. It can be seen that the presence of Al 2 O 3 well suppresses the elution of MgO.
[0008]
[Problems to be solved by the invention]
A first object of the present invention is to provide a manufacturing method in which the above-mentioned knowledge obtained by the inventors is improved and the method of manufacturing stainless steel by the AOD method is improved to suppress the erosion of the refractory of the AOD vessel. Is to do. A second object of the present invention is to use ESR slag waste as a part of the slag forming material in the reduction period of the AOD method, thereby reusing the waste, reducing or eliminating disposal costs, and reducing environmental problems. Is to reduce.
[0009]
[Means for Solving the Problems]
The method for producing a stainless steel of the present invention for achieving the above object is a method for producing a stainless steel by an AOD method, wherein CaO and MgO are introduced into a molten steel in an AOD vessel during a decarburization period to reduce the steel. the period by both put CaF 2 adding ferrosilicon to form a slag, in the manufacturing method of performing refining, with CaF 2 was charged with Al 2 O 3 the reduction period, the 3 to 30 wt% Al A slag composed of CaO—SiO 2 —CaF 2 —Al 2 O 3 —MgO occupied by 2 O 3 is formed on molten steel, and refining is performed while suppressing MgO elution from the refractory of the furnace wall. And
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The effect of the amount of Al 2 O 3 to be present in the slag in the reduction period can be recognized at the above-mentioned lower limit of 3% by weight of Al 2 O 3 , but becomes remarkable at 5% by weight or more. Since the effect is saturated even if a large amount is present, the upper limit of 30% is set as described above. Generally, it is preferred to account for up to 20% by weight.
[0011]
Suitable ranges as slag composition of the reducing period, This is why, CaO: 30 to 70% (preferably 45~55%), SiO 2: 15~25 % ( preferably 18 to 22%), CaF 2 : 1 to 25% (preferably 5~15%), Al 2 O 3 : 3~30% ( preferably 5 to 20%), MgO: a 5-15% (preferably 7 to 12%).
[0012]
The source of Al 2 O 3 to be charged can be arbitrarily selected. Of course, there is no problem with pure substances such as the Bayer method alumina and its precursor aluminum hydroxide, and raw materials such as aluminum dross can be used as long as the AOD method is not hindered. is there.
[0013]
When utilizing slag waste of the ESR method as a source of Al 2 O 3 , CaF 2 is naturally also supplied therefrom. In this case, depending on the composition of the ESR slag waste, the proportion of the ESR slag waste to be used among the materials to be charged into the vessel to form the reduction slag depends on the composition of the reduction slag. Is suitably added so as to account for 5 to 40%, usually 20 to 35%. Thereby, the above-mentioned appropriate slag composition may be realized.
[0014]
Refractory erosion is also caused by a decrease in the basicity of the slag. The decrease in basicity is due to the formation of SiO 2 in the reduction step. By increasing the basicity, the amount of MgO saturated in the liquid phase of the slag can be reduced. Therefore, the addition of Al 2 O 3 to the slag is also useful from this aspect.
[0015]
The graph of FIG. 2 was obtained by plotting the relationship between the basicity of the slag during the reduction period and the rate of elution of MgO in the refractory. The basicity in this case is defined as (CaO + MgO) / (SiO 2 + Al 2 O 3 ). It is clear from this graph that an increase in basicity is effective in preventing MgO elution.
[0016]
【Example】
Using an AOD vessel having a capacity of 20 tons, 20 tons of SUS304 molten steel was manufactured. At the beginning of the decarburization period, 800 kg of CaO and 200 kg of MgO were introduced, and during the reduction period, a slag-forming material having the following composition was introduced.
Figure 2004176133
The composition of the ESR slag waste used is 70% CaF 2 + 30% Al 2 O 3 . According to the present invention, the life of the refractory of the vessel can be extended from the conventional 85 charge to 100 charge.
[0017]
【The invention's effect】
In the production method of the present invention, in carrying out the AOD method, which is the mainstream of today's stainless steel production technology, the refractory of the AOD vessel can be obtained by a simple means of allowing an appropriate amount of Al 2 O 3 to be present in the reducing slag. , MgO was suppressed from being eluted into the slag, and the life was extended. In particular, according to the aspect in which the ESR slag waste is used as a source of Al 2 O 3 and CaF 2 of the slag, the above-described effects can be obtained, and the problem of the treatment of the slag waste can be solved. Many benefits are obtained at once, including lower costs and solving environmental problems caused by slag disposal.
[Brief description of the drawings]
FIG. 1 is a graph plotting the relationship between the amount of Al 2 O 3 present in the slag during the reduction period in the production of AOD stainless steel and the rate of elution of MgO in the refractory.
FIG. 2 is a graph plotting the relationship between the basicity represented by the slag during the reduction period in the production of AOD stainless steel and the rate of elution of MgO in the refractory.

Claims (6)

AOD法によるステンレス鋼の製造方法であって、AODベッセル内の溶鋼に対して、脱炭期にはCaOおよびMgOを投入し、還元期にはフェロシリコンを添加するともにCaFを投入してスラグを形成し、精錬を行なう製造方法において、還元期にCaFとともにAlを投入して、その3〜30重量%をAlが占める、CaO−SiO−CaF−Al−MgOからなるスラグを溶鋼上に形成し、炉壁の耐火物中からのMgO溶出を抑制しつつ精錬を行なうことを特徴とするステンレス鋼の製造方法。A method of manufacturing a stainless steel by AOD method for the molten steel in the AOD vessel, the decarburization period was charged with CaO and MgO, the reduction period to both put CaF 2 addition of ferrosilicon slag In the manufacturing method of forming and refining, CaO—SiO 2 —CaF 2 —Al 2 , in which Al 2 O 3 is introduced together with CaF 2 during the reduction period, and Al 2 O 3 occupies 3 to 30% by weight. A method for producing stainless steel, comprising forming a slag made of O 3 -MgO on molten steel and performing refining while suppressing elution of MgO from a refractory of a furnace wall. 還元期のスラグ中のAlが5〜20重量%を占めるように実施する請求項1の製造方法。The process of claim 1 in which Al 2 O 3 in the reduction period slag carried to occupy 5 to 20 wt%. 還元期のスラグ組成を、重量%で、CaO:30〜70%、SiO:15〜25%、CaF:1〜25%、Al:3〜30%、MgO:5〜15%の範囲に選んで実施する請求項1の製造方法。The slag composition of the reducing phase, in weight%, CaO: 30~70%, SiO 2: 15~25%, CaF 2: 1~25%, Al 2 O 3: 3~30%, MgO: 5~15% 2. The method according to claim 1, wherein the method is selected from the following ranges. 投入するAlの源が、バイヤー法アルミナ、アルミドロスまたは水酸化アルミニウムから選んだものである請求項1の製造方法。The method according to claim 1, wherein the source of Al 2 O 3 to be charged is selected from Bayer method alumina, aluminum dross or aluminum hydroxide. CaFおよびAlを、エレクトロスラグ再溶解法のスラグ廃棄物から供給する請求項1の製造方法。The method according to claim 1, wherein CaF 2 and Al 2 O 3 are supplied from slag waste of an electroslag remelting method. エレクトロスラグ再溶解法のスラグ廃棄物を、還元期スラグの5〜40%を占めるように添加して実施する請求項1の製造方法。2. The production method according to claim 1, wherein the slag waste of the electroslag re-dissolution method is added so as to occupy 5 to 40% of the slag in the reduction period.
JP2002344075A 2002-11-27 2002-11-27 Stainless steel manufacturing method Expired - Fee Related JP3896956B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002344075A JP3896956B2 (en) 2002-11-27 2002-11-27 Stainless steel manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002344075A JP3896956B2 (en) 2002-11-27 2002-11-27 Stainless steel manufacturing method

Publications (2)

Publication Number Publication Date
JP2004176133A true JP2004176133A (en) 2004-06-24
JP3896956B2 JP3896956B2 (en) 2007-03-22

Family

ID=32705691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002344075A Expired - Fee Related JP3896956B2 (en) 2002-11-27 2002-11-27 Stainless steel manufacturing method

Country Status (1)

Country Link
JP (1) JP3896956B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114921617A (en) * 2022-04-27 2022-08-19 内蒙古北方重工业集团有限公司 Hydrogen control method for TP316H austenitic stainless steel
CN115595404A (en) * 2022-10-25 2023-01-13 攀枝花钢城集团有限公司(Cn) Slagging agent for AOD furnace and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114921617A (en) * 2022-04-27 2022-08-19 内蒙古北方重工业集团有限公司 Hydrogen control method for TP316H austenitic stainless steel
CN114921617B (en) * 2022-04-27 2023-07-14 内蒙古北方重工业集团有限公司 Hydrogen control method for TP316H austenitic stainless steel
CN115595404A (en) * 2022-10-25 2023-01-13 攀枝花钢城集团有限公司(Cn) Slagging agent for AOD furnace and preparation method thereof

Also Published As

Publication number Publication date
JP3896956B2 (en) 2007-03-22

Similar Documents

Publication Publication Date Title
JP6481774B2 (en) Molten iron dephosphorizing agent, refining agent and dephosphorizing method
JP3607767B2 (en) Molten steel desulfurization and dehydrogenation method with small refractory melting loss
JP2000160233A (en) Method for desulfurize-refining stainless steel
JP2008063645A (en) Steelmaking method
JP5061545B2 (en) Hot metal dephosphorization method
JP3896956B2 (en) Stainless steel manufacturing method
JPH0141681B2 (en)
JP3158912B2 (en) Stainless steel refining method
KR100226901B1 (en) Desulphurization agent of molten metal
JP2008050700A (en) Method for treating chromium-containing steel slag
JP3896992B2 (en) Low sulfur low nitrogen steel manufacturing method
JP4254412B2 (en) Hot metal desulfurization method
JP2002275521A (en) Method for dephosphorizing molten high carbon steel
JP4854933B2 (en) Refining method with high reaction efficiency
JP4218172B2 (en) Method for refining molten iron alloy
JP2001220621A (en) Method for refining molten steel
CN101365811A (en) Flux used in smelting low-nitrogen, low-oxygen, and low-sulfur steel
JP3297997B2 (en) Hot metal removal method
RU2186124C2 (en) Method of pig iron conversion
KR100916094B1 (en) Method for Pre-Treating Molten Pig-Iron
JPH10317035A (en) Desulphurization method of ferrous molten alloy, and desulphurizing agent
JPS6212301B2 (en)
JPH0920916A (en) Method for suppressing erosion of converter refractories
US1508083A (en) Manufacture of steel
SU821501A1 (en) Method of steel production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051031

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061211

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110105

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees