JPH02179812A - Method for refining stainless steel - Google Patents

Method for refining stainless steel

Info

Publication number
JPH02179812A
JPH02179812A JP33390988A JP33390988A JPH02179812A JP H02179812 A JPH02179812 A JP H02179812A JP 33390988 A JP33390988 A JP 33390988A JP 33390988 A JP33390988 A JP 33390988A JP H02179812 A JPH02179812 A JP H02179812A
Authority
JP
Japan
Prior art keywords
molten steel
slag
furnace
content
ladle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33390988A
Other languages
Japanese (ja)
Inventor
Hiroaki Egashira
江頭 裕明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aichi Steel Corp
Original Assignee
Aichi Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Steel Corp filed Critical Aichi Steel Corp
Priority to JP33390988A priority Critical patent/JPH02179812A/en
Publication of JPH02179812A publication Critical patent/JPH02179812A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PURPOSE:To improve adding yield of Al while controlling N content to low by making the composition of slag on molten steel the specific composition having high Al2O3 content at the time of tapping the molten steel in a furnace while covering the slag on the upper face thereof and adding Al-containing agent in this molten steel. CONSTITUTION:Slag making agent is added in the molten stainless steel stored in the furnace under high temp. condition and the slag composed of 35-45wt.% CaO, 1-5% SiO2, 40-50% Al2O3 and 5-15% MgO is produced and the molten steel in the furnace is refined with this slag. Successively, the furnace is tilted as remaining the above slag and the molten steel in the furnace is tapped and charged into the ladle together with a part of the slag. After that, the Al- containing agent is added under floating condition of the slag on the upper face part of the molten steel in the ladle to adjust the Al content in the molten steel. By this method, reaction between the slag and Al can be controlled and the Al yield can be improved.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はステンレス鋼の精錬方法に関する。この精錬方
法はアルミニウムを含有する軟磁性ステンレス鋼の製造
に使用できる。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for refining stainless steel. This refining method can be used to produce soft magnetic stainless steel containing aluminum.

[従来の技術] 従来より、ステンレス鋼の分野ではステンレス鋼の磁気
特性を保証する等のため、アルミニウムを所要量含有す
るステンレス鋼が提供されている。
[Prior Art] Conventionally, in the field of stainless steel, stainless steel containing a required amount of aluminum has been provided in order to guarantee the magnetic properties of stainless steel.

このステンレス鋼を精錬するにあたっては、AOD方式
の炉に貯留されている溶鋼に酸素を吹込み脱炭を行ない
溶鋼中の炭素を減らすと共に、溶鋼の上面部に浮遊した
スラグで溶鋼を精錬する。そして精錬を終えたら、除滓
作業を行ない、炉の溶鋼に浮遊しているスラグを除去す
る。スラブを除去したら、炉を傾斜させて、炉の溶鋼を
取鍋に注入して移し変える。更に取鍋内の溶鋼に金属ア
ルミニウムおよびイオウを溶鋼に添加し、これにより溶
鋼中のアルミニウムの含有量、イオウの含有量を確保し
ている。この場合、スラグの組成は第2表に示すように
重量%で実質的に、CaOが50%、5hotが20%
、Ai t 03が8%、MgOが10%であった。更
に、取鍋内の溶鋼に添加して金属アルミニウムの添加歩
留り率が88%、取鍋内の溶鋼に添加したイオウの添加
歩留り率が67%であった。
In refining this stainless steel, oxygen is injected into the molten steel stored in an AOD furnace to decarburize it to reduce carbon in the molten steel, and the molten steel is refined using slag floating on the top of the molten steel. After refining, slag removal work is carried out to remove the slag floating in the molten steel in the furnace. Once the slab is removed, the furnace is tilted and the molten steel from the furnace is poured into a ladle and transferred. Furthermore, metallic aluminum and sulfur are added to the molten steel in the ladle, thereby ensuring the aluminum content and sulfur content in the molten steel. In this case, the composition of the slag is substantially 50% CaO and 20% 5hot by weight as shown in Table 2.
, Ait 03 was 8%, and MgO was 10%. Furthermore, the addition yield rate of metallic aluminum added to the molten steel in the ladle was 88%, and the addition yield rate of sulfur added to the molten steel in the ladle was 67%.

[発明が解決しようとする課題] 更に産業界では、アルミニウムを所要澁含有するばかり
か、ステンレス製品の窒素を低めに維持することが要望
されている。
[Problems to be Solved by the Invention] Furthermore, in the industrial world, there is a demand for stainless steel products to not only contain a required amount of aluminum, but also to maintain a relatively low nitrogen content in stainless steel products.

そこで、本発明者は、ステンレス製品中の窒素含有量を
抑えるために、除滓作業を行なわずに、炉内の溶鋼に浮
遊しているスラグを残したままで炉を傾け、炉から取鍋
内に出鋼される溶鋼の上面部をスラグで極力覆いつつ、
溶鋼を炉から取鍋に移し変える方法を試考した。しかし
ながらこの方法では、炉から取鍋に溶鋼を移し変える際
において、スラグで溶鋼を覆う面積が増すので、溶鋼が
窒素をピックアップすることを抑制できるものの、取鍋
にお【プるアルミニウム添加歩留り率は低くなる。即ち
、取鍋内にスラグも移しかえられので、取鍋内の溶鋼の
上面部にスラグが浮遊する。このように取鍋内の溶鋼の
上面部にスラグが浮遊した状態で、その溶鋼に金属アル
ミニウムを溶鋼に添加しても、スラグと金属アルミニウ
ムとが反応して金属アルミニウムはスラブに生成され易
く、そのため取鍋に添加した金属アルミニウムの添加歩
留り率は低かった。
Therefore, in order to suppress the nitrogen content in stainless steel products, the present inventor tilted the furnace while leaving the slag floating in the molten steel in the furnace without performing slag removal work, and removed the slag from the furnace to the ladle. While covering the upper surface of the molten steel as much as possible with slag,
A method of transferring molten steel from the furnace to the ladle was tested. However, with this method, when the molten steel is transferred from the furnace to the ladle, the area covered by the slag increases, which prevents the molten steel from picking up nitrogen. becomes lower. That is, since the slag is also transferred into the ladle, the slag floats on the upper surface of the molten steel in the ladle. Even if metallic aluminum is added to the molten steel with slag floating on the upper surface of the molten steel in the ladle, the slag and metallic aluminum tend to react and metallic aluminum is easily formed into a slab. Therefore, the addition yield rate of metallic aluminum added to the ladle was low.

本発明は上記した実情に鑑み開発されたものであり、そ
の目的は、窒素含有mを低めに抑えつつ、取鍋内の溶鋼
に添加したアルミニウムの添加歩留り率を高めに維持で
きるステンレス鋼の精錬方法を提供することにある。
The present invention was developed in view of the above-mentioned circumstances, and its purpose is to refining stainless steel that can maintain a high addition yield rate of aluminum added to molten steel in a ladle while keeping the nitrogen content low. The purpose is to provide a method.

[課題を解決するための手段] 本発明者は、上記した目的のもとにステンレス鋼の精錬
方法について鋭意研究を重ねた結果、重量%でCaOが
35〜45%、5iOzが1〜5%、A1203が40
〜50%、MgOが5〜15%、不可避の不純物の組成
をもつ八λ203がリッチな溶融スラグを炉内で生成し
、溶鋼と共にその溶融スラグを取鍋内に移し変え、その
スラグを取鍋内の溶鋼に浮遊させた状態で溶鋼に金属ア
ルミニウム等のアルミニウム含有剤を添加すれば、窒素
含有量を低めに抑えつつ、アルミニウムの添加歩留り率
を高めに維持できることを見出し、これに基づき本発明
を完成させたものである。
[Means for Solving the Problems] As a result of intensive research on stainless steel refining methods based on the above-mentioned objectives, the present inventor found that CaO is 35 to 45% and 5iOz is 1 to 5% by weight. , A1203 is 40
A molten slag rich in 8λ203 with a composition of ~50% MgO, 5~15% MgO, and unavoidable impurities is produced in a furnace, and the molten slag is transferred together with the molten steel into a ladle. It has been discovered that if an aluminum-containing agent such as metallic aluminum is added to molten steel while suspended in the molten steel, the nitrogen content can be kept low and the aluminum addition yield rate can be maintained at a high level.Based on this, the present invention has been developed. It has been completed.

即ち、本発明にかかるステンレス鋼の精錬方法は、炉に
貯留したステンレス鋼の高温状態の溶鋼に造滓剤を添加
し、重」%でCaOが35〜45%、5iOzが1〜5
%、Alto3が40〜50%、MqOが5〜15%、
不可避の不純物の組成をもつスラグを生成し、スラグで
炉内の溶鋼を精錬する工程と、スラグを炉内に残したま
まで、炉を傾斜させて炉内の溶鋼をスラグと共に取鍋に
出鋼して取鍋内に移し変える工程と、取鍋内の溶鋼の上
面部にスラグを浮遊させた状態でアルミニウム含有剤を
添加し、溶鋼のアルミニウム含有量を調整する工程と順
に実施することを特徴とするものである。
That is, in the stainless steel refining method according to the present invention, a slag forming agent is added to high-temperature molten stainless steel stored in a furnace, and the content of CaO is 35 to 45% and 5iOz is 1 to 5% by weight.
%, Alto3 40-50%, MqO 5-15%,
A process of generating slag with a composition of unavoidable impurities and refining the molten steel in the furnace with the slag, and a process of tilting the furnace while leaving the slag in the furnace and tapping the molten steel in the furnace together with the slag into a ladle. The slag is suspended on the upper surface of the molten steel in the ladle, and an aluminum-containing agent is added to adjust the aluminum content of the molten steel. That is.

炉に貯留されたステンレス鋼は、製造する鋼種によって
も異なるが、例えば、クロム含有量が11〜13%の1
1〜13クロム系、あるいは、クロム含有量が18%の
18クロム系とすることができる。その−例として、重
量%で、シリコンが0.30%以下、マンガンが0.4
%以下、リンが0.04%以下、イオウが0.03〜0
.017%、銅が0.2%以下、クロムが11〜1L%
、ニッケルが0.2%以下、アルミニウムが0.2〜0
.6%、残部鉄とすることができる。ここで、クロム、
ニッケルはステンレス鋼として必要な元素であり、また
、イオウは快削性の向上、シリコンは磁気特性の確保、
アルミニウムは磁気特性の確保等を目的として添加され
ている。精錬の際には、通常、炉の底部に装備されてい
る羽口から酸素、あるいは酸素とアルゴンガスとを含む
混合ガスを吹き込んで行なうことができる。混合ガスに
おいて、酸素の流量をO〜150ONm3/H、アルゴ
ンガスの流量をO〜150ONm3 /Hとすることが
できる。
The stainless steel stored in the furnace varies depending on the type of steel being manufactured, but for example, stainless steel with a chromium content of 11 to 13%
It can be a 1-13 chromium type, or an 18 chromium type with a chromium content of 18%. As an example, silicon is less than 0.30% and manganese is less than 0.4% by weight.
% or less, phosphorus is 0.04% or less, sulfur is 0.03-0
.. 017%, copper 0.2% or less, chromium 11-1L%
, nickel 0.2% or less, aluminum 0.2-0
.. 6%, balance iron. Here, chrome,
Nickel is an element necessary for stainless steel, sulfur improves free machinability, silicon ensures magnetic properties,
Aluminum is added for the purpose of ensuring magnetic properties. Refining can usually be carried out by blowing oxygen or a mixed gas containing oxygen and argon gas through tuyeres installed at the bottom of the furnace. In the mixed gas, the flow rate of oxygen can be set to 0 to 150 ONm3/H, and the flow rate of argon gas can be set to 0 to 150 ONm3/H.

精錬する際には次のような操作を行なうことができる。When refining, you can perform the following operations:

即ち、合金等を適宜添加して溶鋼組成を調整すると共に
、ホタル石、軽焼ドロマイト、石灰等の造滓剤を炉内の
溶鋼に適宜添加して所要の組成をもつスラブを生成する
。スラブの組成は製造する鋼種に応じて適宜調整される
が、その組成範囲としては、アルミナ含有量が通常のス
ラグよりも多く、CaOが35〜45%、5iOzが1
〜5%、A文203が40〜50%、MgOが5〜15
%である。また、((NCaO+NMg0)/(NSi
O2+NA、Il 203))で表示されるFA基度は
1.7〜2.3、特に1.9〜2.1とすることができ
る。上記した組成、塩基度のスラグと覆れば、スラグと
アルミニウムとの反応を抑制でき、アルミニウムの歩留
り率確保に有利であり、更に第5図に示す塩基度と脱硫
率との関係から明らかなように、スラグとイオウとの反
応も進行しにくく、脱硫を抑制できイオウの歩留り率を
確保するにも有利である。
That is, the composition of the molten steel is adjusted by appropriately adding alloys, etc., and a slag-forming agent such as fluorite, lightly calcined dolomite, and lime is appropriately added to the molten steel in the furnace to produce a slab having a desired composition. The composition of the slab is adjusted appropriately depending on the steel type to be manufactured, but the composition range is that the alumina content is higher than normal slag, CaO is 35 to 45%, and 5iOz is 1
~5%, A-text 203 40-50%, MgO 5-15
%. Also, ((NCaO+NMg0)/(NSi
The FA basicity expressed as O2+NA, Il 203)) can be from 1.7 to 2.3, in particular from 1.9 to 2.1. If the slag has the above composition and basicity, it is possible to suppress the reaction between the slag and aluminum, which is advantageous in securing the aluminum yield rate. As such, the reaction between slag and sulfur is difficult to proceed, and desulfurization can be suppressed, which is advantageous in ensuring a high sulfur yield.

そして、炉内に貯留されている溶鋼に浮遊しているスラ
ブを炉内に残したままの状態で、炉を傾けて炉の出鋼口
から溶鋼をスラグと共に取鍋に移し変える。このとき炉
から出鋼される溶鋼の上面部をスラブで極力覆いつつ、
溶鋼は出鋼されるので、空気中の窒素が溶鋼にピックア
ップされることを極力防止することができる。
Then, the furnace is tilted to transfer the molten steel together with the slag to the ladle from the tapping port of the furnace, while leaving the slab floating in the molten steel stored in the furnace in the furnace. At this time, while covering the upper surface of the molten steel that is tapped from the furnace with a slab as much as possible,
Since the molten steel is tapped, it is possible to prevent nitrogen in the air from being picked up by the molten steel as much as possible.

上記したように取鍋内に溶鋼を移し変えた状態では、上
記した組成をもつスラグが溶鋼に浮いている。そして溶
鋼を攪拌しつつ、溶鋼の上方から金属アルミニウム、ア
ルミニウム系合金等のアルミニウム含有剤を添加する。
When the molten steel is transferred into the ladle as described above, slag having the above-mentioned composition floats on the molten steel. Then, while stirring the molten steel, an aluminum-containing agent such as metallic aluminum or an aluminum-based alloy is added from above the molten steel.

更に、アルミニウム含有剤の他にイオウを添加し、これ
により溶鋼中のアルミニウム含有量の他にイオウ含有量
の調整を行なうこともできる。このとき上記した組成の
スラグは脱硫能が低くイオウと反応しにくい組成である
ため、イオウの歩留り率を高く維持できる。
Furthermore, in addition to the aluminum-containing agent, sulfur can be added to adjust the sulfur content in addition to the aluminum content in the molten steel. At this time, since the slag having the above composition has a low desulfurization ability and is difficult to react with sulfur, a high sulfur yield can be maintained.

[実施例] 以下、本発明にかかる精錬方法を実施例にしたがって具
体的に説明する。
[Examples] Hereinafter, the refining method according to the present invention will be specifically explained based on Examples.

本実施例にかかるステンレス鋼の精錬方法おいては、ま
ず、所要の組成となるように配合した原料を電気炉に装
入し、電気炉で1550〜165O℃程度に溶解し、所
要の組成のステンレス鋼の溶鋼を得る。
In the method for refining stainless steel according to this embodiment, first, raw materials blended to have the desired composition are charged into an electric furnace, and melted in the electric furnace at a temperature of about 1550 to 1650°C to obtain the desired composition. Obtain molten stainless steel.

そして内張レンガ層で区画された貯留室をもつ20トン
用のAOD炉を用い、ステンレス鋼の溶鋼をAOD炉内
に移し変える。この溶鋼はいわゆる13クロム系ステン
レス鋼であり、しかも炭素含有量、窒素含4″51jl
が極めて低い。具体的にはその組成は、重石%で、炭素
4.125%、窒素148 ppm、シリコン0.4%
、マンガン1,88%、リン0.028%、硫黄0.0
35%、銅0.06%、クロム12.25%、ニッケル
0゜06%、アルミニウム0.002%、不可避の不純
物、残部鉄である。
Then, using a 20-ton AOD furnace with a storage chamber partitioned by a layer of lining bricks, the molten stainless steel is transferred into the AOD furnace. This molten steel is so-called 13 chromium stainless steel, and has a carbon content and a nitrogen content of 4"51jl.
is extremely low. Specifically, its composition is 4.125% carbon, 148 ppm nitrogen, and 0.4% silicon.
, manganese 1.88%, phosphorus 0.028%, sulfur 0.0
35% copper, 0.06% copper, 12.25% chromium, 0.06% nickel, 0.002% aluminum, unavoidable impurities, the balance being iron.

上記のように溶鋼をAOD炉内に貯留した状態で、AO
D炉の炉体の底部に装面されている羽口に、P!2素と
アルゴンガスとの混合ガスを供給し、これにより酸素と
アルゴンガスとの混合ガスを溶鋼内に炉の底部側から吹
込み、Coガスの発生に伴うボイリング現象によりi’
l鋼を撹拌しつつ溶鋼の脱炭反応を進行させる。このと
き、適宜な時期を見図らかつて軽焼ドロマイトを600
kg、焼石灰を300kgを溶鋼の上方から添加する。
With the molten steel stored in the AOD furnace as described above, the AO
The P! By supplying a mixed gas of two elements and argon gas, the mixed gas of oxygen and argon gas is blown into the molten steel from the bottom side of the furnace, and due to the boiling phenomenon accompanying the generation of Co gas, i'
1. The decarburization reaction of molten steel is advanced while stirring the steel. At this time, 600 pieces of previously lightly calcined dolomite were prepared at an appropriate time.
300 kg of burnt lime are added from above the molten steel.

なお吹込時間は90分間程度である。Note that the blowing time is about 90 minutes.

本実施例で用いた混合ガスは、吹込当初である酸化期で
は酸素の流量が120ONm3 /H,アルゴンガスの
流量が30ONm3 /Hであった。
In the mixed gas used in this example, the flow rate of oxygen was 120 ONm3/H and the flow rate of argon gas was 30 ONm3/H during the oxidation period, which is the initial stage of injection.

そしてAOD炉内の溶鋼中の炭素が1ooppm程度に
なったら、第1表に示すように酸素の流量が15ONm
3 /H,アルゴンガスの流量が120ONm3 /H
となるようにし、酸素を減少させた。この場合、酸素の
流量とアルゴンガスの流量との流M比が(1/8 )で
ある。
When the carbon content in the molten steel in the AOD furnace reaches about 1 ooppm, the oxygen flow rate increases to 15ONm as shown in Table 1.
3 /H, argon gas flow rate is 120ONm3 /H
The amount of oxygen was reduced. In this case, the flow M ratio between the flow rate of oxygen and the flow rate of argon gas is (1/8).

第1表 本実施例では、吹込開始時の溶鋼湿度が1500℃であ
り、第2図の特性線Aに示すように溶鋼温度はガスの吹
込みが進行しても、吹込中期の溶鋼の温度、吹込終期の
溶鋼の温度は、吹込開始温度に対して溶鋼温度は実質的
に変動せず、はぼ同温度に維持された。なお溶鋼温度の
測定はR型熱雷対を用いて行なった。
Table 1 In this example, the molten steel humidity at the start of injection was 1500°C, and as shown by characteristic line A in Fig. The temperature of the molten steel at the final stage of blowing did not substantially change compared to the temperature at the start of blowing, and was maintained at approximately the same temperature. The molten steel temperature was measured using an R-type thermal lightning pair.

′M素の吹込みが終了したら、還元期として、還元(脱
硫、脱窒)を目的として、アルゴンガスのみを10分間
程度△OD炉内の溶鋼中に吹込む。
'After the injection of M element is completed, as a reduction period, only argon gas is blown into the molten steel in the ΔOD furnace for about 10 minutes for the purpose of reduction (desulfurization, denitrification).

上記のようなガス吹込みの結束、炭素含有量が極めて低
い超低炭素ステンレス鋼の溶鋼が得られた。
Through the gas injection described above, molten steel of ultra-low carbon stainless steel with extremely low carbon content was obtained.

上記したようにへ〇D炉でガス吹込みが終了したら、造
滓剤として、ホタル石を120kQ、軽焼ドロマイトを
400に9、石灰600kQをAOD炉内の溶鋼に適宜
添加し、更に、金属アルミニウムを450kg添加し、
これによりアルミナリッチで脱硫能の低いスラグを生成
する。このスラグはAOD炉に貯留されている溶鋼の上
面部に浮遊する。このスラグの組成は、第2表に示づよ
うにアルミナ含有量が通常のスラグよりも多く、シリカ
が少なく、CaOが40%、5iOzが3%、A叉Z0
3が45%、fvloが10%である。
After gas injection is completed in the AOD furnace as described above, 120 kQ of fluorspar, 400 kQ of light calcined dolomite, and 600 kQ of lime are added to the molten steel in the AOD furnace as slag forming agents, and further, metal Added 450 kg of aluminum,
This produces slag that is rich in alumina and has low desulfurization ability. This slag floats on the upper surface of the molten steel stored in the AOD furnace. As shown in Table 2, the composition of this slag is higher in alumina content than normal slag, less silica, 40% CaO, 3% 5iOz,
3 is 45% and fvlo is 10%.

このスラグの塩基度は2.0である。ここで、このスラ
グにおいて、アルミナ含有量が通常のスラグよりも多い
理由は、アルミナの還元を行いステンレス鋼の溶鋼のア
ルミニウムの含有量を確保するためであり、シリカが少
ない理由は、Aiによる3tの還元を防止するため、A
I還元を行なうためである。
The basicity of this slag is 2.0. Here, the reason why this slag has a higher alumina content than normal slag is to reduce the alumina and ensure the aluminum content of the molten stainless steel, and the reason why the silica content is low is because of the 3t In order to prevent the reduction of
This is to perform I reduction.

そして、スラブを実質的に除去せず残したままで△OD
炉を傾けて溶鋼をスラグ共に出鋼口がら取鍋に移し変え
、出鋼を行なう。このとき第3図に示すように溶鋼の上
面部をスラグで極ノyNいつつ溶鋼が注入されるので、
出鋼される溶鋼と空気との接触面積が減少し、これによ
り空気中の窒素が溶鋼にピックアップされることを極力
防止することができる。
Then, △OD with the slab left without being substantially removed.
The furnace is tilted and the molten steel and slag are transferred from the tapping port to the ladle to tap the steel. At this time, as shown in Fig. 3, the molten steel is injected while the upper surface of the molten steel is covered with slag.
The contact area between the tapped molten steel and the air is reduced, thereby making it possible to prevent nitrogen in the air from being picked up by the molten steel as much as possible.

上記したように取鍋内に溶鋼を移し変えた状態では、上
記した組成をもつスラグが取鍋内の溶鋼に浮いている。
When the molten steel is transferred into the ladle as described above, slag having the above-mentioned composition floats on the molten steel in the ladle.

そして、取鍋内の溶鋼及びスラグをアルゴンガスで攪拌
しつつ、スラグが切れて溶鋼が露出した上方から金属ア
ルミニウムを70に9、イオウを5kg添加し、溶鋼中
のアルミニウム含有間、イオウ含有量の調整を行なう。
Then, while stirring the molten steel and slag in the ladle with argon gas, 70% of metal aluminum and 5 kg of sulfur were added from above where the slag was cut and the molten steel was exposed. Make adjustments.

このとき上記した組成のスラグはイオウと反応しにくい
組成であるため、イオウの添加歩留り率を高く維持でき
る。
At this time, since the slag having the above composition does not easily react with sulfur, it is possible to maintain a high sulfur addition yield.

ところで、上記した実施例において、吹込終期つまり脱
炭未明の溶鋼、AOD炉における合金元素の調整後の溶
鋼、最終製品についてそれぞれ炭素含有量を調べた。炭
素含有量の結果を第1図の特性線Aに示1゜第1図の特
性線へに示すように、吹込終期である脱炭末期における
溶鋼の炭素含有量は5ppmであり、また、合金元素の
調整後の溶鋼における炭素含有量は14pl)mであり
、また、最終製品における炭素含有量は301) pm
と極めて低く、超低炭素ステンレス鋼が得られた。
By the way, in the above-mentioned examples, the carbon content of molten steel at the end of blowing, that is, before decarburization, molten steel after alloying element adjustment in an AOD furnace, and the final product was examined. The carbon content results are shown in characteristic line A in Figure 1. As shown in Figure 1, characteristic line A, the carbon content of the molten steel at the final decarburization stage, which is the final blowing stage, is 5 ppm, and the alloy The carbon content in the molten steel after adjusting the elements is 14 pl) m, and the carbon content in the final product is 301) pm.
Ultra-low carbon stainless steel was obtained.

また窒素含有量について、AOD炉における合金元素の
調整後の溶鋼、出鋼後の溶鋼、最終製品において調べた
。その結果を第4図の特性線Aに示す。第4図の特性1
i1Aに示すように、合金元素の調整後の溶鋼における
窒素含有量は44ppmであり、出鋼後の溶鋼における
窒素含有量は61ppmであり、最終製品にJ3ける炭
素含有量は69 p prnときわめて低く、従って低
窒素ステンレス鋼が得られた。
In addition, the nitrogen content was investigated in molten steel after alloying element adjustment in an AOD furnace, molten steel after tapping, and the final product. The results are shown in characteristic line A in FIG. Characteristic 1 in Figure 4
As shown in i1A, the nitrogen content in the molten steel after adjusting the alloying elements is 44 ppm, the nitrogen content in the molten steel after tapping is 61 ppm, and the carbon content in the final product J3 is extremely high at 69 ppm. Therefore, a low nitrogen stainless steel was obtained.

本実施例において取鍋内にみけるアルミニウムの添加歩
留り率とイオウの添加歩留り率を第3表に示した。第3
表に示づようにアルミニウムの添加歩留り率は87%で
あり、イオウの添加歩留り率は65%と良好であり、前
記した従来の技術の欄で述べた従来法における値(アル
ミニウムの添加歩留り率が88%、イオウの添加歩留り
率が67%)と比較しても遜色なかった。その理由は、
上記した組成をもつアルミナリッチなスラグ組成により
Ai還元が行なわれると共に脱硫が少なかったためであ
ると推察される。ここで、アルミニウムの添加歩留り率
とは、取鍋内に添加した金属アルミニウムの量に対する
溶鋼中のアルミニウム吊の割合を意味づる。イAつの添
加歩留り率とは、取鍋内に添加したイオウの邑に対する
溶鋼中のイオウ吊の割合を意味する。
Table 3 shows the aluminum addition yield rate and the sulfur addition yield rate found in the ladle in this example. Third
As shown in the table, the aluminum addition yield rate is 87%, and the sulfur addition yield rate is 65%, which is a good value. (88%, sulfur addition yield rate 67%). The reason is,
It is presumed that this is because the alumina-rich slag composition having the above-mentioned composition facilitates Ai reduction and less desulfurization. Here, the aluminum addition yield rate means the ratio of aluminum suspension in molten steel to the amount of metal aluminum added in the ladle. The addition yield rate means the ratio of sulfur in the molten steel to the amount of sulfur added in the ladle.

また、ステンレス鋼の組成が基本的に前記した実施例の
場合と同じでアルミニウム量のみが3%と多めのステン
レスI(AUM25)k:ついて、同様な精錬方法を実
施し、その窒素含有Mを調べた。その結果を第6図の特
性線△に示す。第6図の特性線Aに示寸ように、出鋼後
では55ppmであり、鉛投入後では391)l)mで
あり、金属アルミニウム添加後では34Dpmであり、
最終製品では33pl)mであった。更に通常のAUM
シリーズの鋼種について、同様な精錬方法を実施し、そ
の窒素含有量を調べた。その結果を第6図の特性線Bに
示す。第6図の特性線Bに示すように、出鋼後ではs7
ppmであり、アルミ投入後では91ppmであり、金
属アルミニウム添加後では9ippmであり、最終製品
では931)pmであった。このことからステンレス鋼
のアルミニウム含有者が多いと、溶鋼中の脱窒が進行し
、溶鋼中の窒素含有量が減少することがわかる。この脱
窒促進は、ステンレス鋼の組成が基本的に前記した実施
例の場合と同じでアルミニウム量のみが1%と多めのス
テンレス111(AUM6)についても同様な傾向にあ
る。これは、AλN[S]−Affi+Nの平衡反応が
寄与していると推察される。なお、第7図は1900k
における(A文N=Ai+N)の平衡曲線を示すもので
あり、アルミニウム量が増加するにつれて溶鋼中の窒素
が低下していることを示す。
In addition, stainless steel I (AUM25)k, whose composition is basically the same as in the above example but only has a higher aluminum content of 3%, was subjected to the same refining method to reduce its nitrogen content. Examined. The results are shown by the characteristic line Δ in FIG. As shown in the characteristic line A in Fig. 6, it is 55 ppm after tapping, 391) l) m after adding lead, and 34 Dpm after adding metal aluminum.
The final product was 33 pl)m. Furthermore, normal AUM
A similar refining method was applied to steel types in the series, and the nitrogen content was investigated. The results are shown in characteristic line B in FIG. As shown in characteristic line B in Figure 6, after tapping, s7
ppm, 91 ppm after adding aluminum, 9 ippm after adding metal aluminum, and 931) pm in the final product. This shows that when stainless steel contains a large amount of aluminum, denitrification in the molten steel progresses and the nitrogen content in the molten steel decreases. This promotion of denitrification has a similar tendency for stainless steel 111 (AUM6), which has basically the same composition as in the above-mentioned embodiments, but has a higher aluminum content of 1%. It is inferred that this is due to the equilibrium reaction of AλN[S]-Affi+N. In addition, Fig. 7 shows 1900k.
It shows the equilibrium curve of (A pattern N=Ai+N) in , and shows that nitrogen in molten steel decreases as the amount of aluminum increases.

[参考例△] 更に、溶鋼に吹込む混合ガスの組成変動に起因する脱炭
を把握するために、第1表に示すように、参考例1とし
て、混合ガスの酸素の流量が22ONm3 /H、アル
ゴンガスの流量が120ONm3/Hであり、酸素の流
量とアルゴンガスの流量との流星比が(115,5)で
ある場合について試験した。更に参考例2として、混合
ガスの酸素の流星が8ONm3/H、アルゴンガスの流
星が120ONm3/l−1であり、酸素の流量とアル
ゴンガスの流mとの流量比が(1/12>である場合に
ついて試験した。更に参考例3として、混合ガスの酸素
の流量がOであり、アルゴンガスの流量が120ONm
3/Hであり、Mlを吹込まない場合について試験した
[Reference Example △] Furthermore, in order to understand decarburization caused by compositional fluctuations of the mixed gas injected into molten steel, as shown in Table 1, as Reference Example 1, the flow rate of oxygen in the mixed gas was 22ONm3/H. , the case where the flow rate of argon gas was 120 ONm3/H and the meteor ratio between the flow rate of oxygen and the flow rate of argon gas was (115,5) was tested. Furthermore, as reference example 2, the mixed gas oxygen meteor is 8ONm3/H, the argon gas meteor is 120ONm3/l-1, and the flow rate ratio of the oxygen flow rate to the argon gas flow m is (1/12>). A certain case was tested.Furthermore, as reference example 3, the flow rate of oxygen in the mixed gas was O, and the flow rate of argon gas was 120ONm.
3/H, and the case where Ml was not blown was tested.

参考例1、参考例2、参考例3ともに、第1図の特性線
Bに示すように、吹込終期における溶鋼の炭素含有量は
isppm程度であり、合金元素の調整後の溶鋼におけ
る炭素含有量は36 p p m程度であり、最終製品
における炭素含有mは52pprl!度であり、本実施
例の場合に比較して炭素含有1は多かった。また参考例
1では、第2図の特性線Bに示すように吹込時間が進行
するにつれて溶鋼温度が上昇し、即ち、吹込時間が6分
間になると溶鋼温度が10℃程度上昇した。参考例2で
は、第2図の特性線Cに示すように吹込みが進行するに
つれて溶鋼温度が降下し、即ち、吹込時間が6分間にな
ると溶鋼ll!度が10℃程度降下した。参考例3では
、第2図の特性線りに示すように、酸素の吹込が進行す
るにつれて溶鋼温度が更に降下し、即ち、吹込時間が6
分間になると溶鋼温度が30℃程度降下した。
In Reference Example 1, Reference Example 2, and Reference Example 3, as shown by characteristic line B in Fig. 1, the carbon content of the molten steel at the final stage of blowing is about isppm, and the carbon content of the molten steel after adjusting the alloying elements is is about 36 pp m, and the carbon content m in the final product is 52 pprl! The carbon content was higher than in the case of this example. In addition, in Reference Example 1, as shown by characteristic line B in FIG. 2, the molten steel temperature rose as the blowing time progressed, that is, when the blowing time reached 6 minutes, the molten steel temperature rose by about 10°C. In Reference Example 2, as shown by the characteristic line C in FIG. 2, the temperature of the molten steel decreases as the blowing progresses, that is, when the blowing time reaches 6 minutes, the molten steel ll! The temperature dropped by about 10 degrees Celsius. In Reference Example 3, as shown in the characteristic line in FIG.
Within minutes, the molten steel temperature dropped by about 30°C.

このように参考例2、参考例3で溶&jl温度の降下が
見られるのは、酸素が少ないので、鉄、クロム等の酸化
に消費される酸素が少なくなるためであると推察される
。また参考例1で、溶鋼の温度上昇が見られたのは、鉄
、クロム等の金属の最に比較して炭素がppmオーダー
と極微員であるため、混合ガス中の酸素の割合が参考例
2.3に比較して増したにも拘らず、その酸素は脱炭に
有効に使用されず、鉄、クロム等の酸化源として消費さ
れ、その結果、酸化熱で溶鋼が昇温したものであると推
察される。、即ち、100〜110001)l)付近の
超低炭素量のステンレス鋼の溶鋼においては、鉄、クロ
ム等の金属と炭素との割合を見ると、鉄、クロム等の金
属の量に比較して炭素が極微間であるため、混合ガス中
のMlの割合が上記した(1/7)〜(1/9)の範凹
よりも増せば、その酸素は主として鉄、クロム等の金属
の酸化源として消費され、かえって超低炭素にするのが
困テ1になり、また、混合ガス中の酸素の割合が上記し
た(1/7)〜(1/9 )よりも減れば、S素は少な
いので、鉄、クロム等の金属の酸化も少なくなるものの
、脱炭反応も生じにくくなり、超低炭素にするのが同様
に困難になるものと推察される。
The reason why the melting temperature is observed to decrease in Reference Examples 2 and 3 is presumed to be because there is less oxygen, so less oxygen is consumed for the oxidation of iron, chromium, etc. Also, in Reference Example 1, the temperature rise in the molten steel was observed because the carbon content is on the order of ppm, which is extremely small compared to metals such as iron and chromium. 2. Despite the increase compared to 3, the oxygen was not effectively used for decarburization and was consumed as a source of oxidation of iron, chromium, etc., and as a result, the temperature of the molten steel rose due to the heat of oxidation. It is presumed that there is. That is, in molten stainless steel with an ultra-low carbon content around 100 to 110001)l), when looking at the ratio of carbon to metals such as iron and chromium, the ratio of carbon to metals such as iron and chromium is Since carbon is extremely small, if the proportion of Ml in the mixed gas increases beyond the range of (1/7) to (1/9) mentioned above, the oxygen will mainly become an oxidation source for metals such as iron and chromium. However, if the proportion of oxygen in the mixed gas decreases from the above (1/7) to (1/9), the S content will decrease. Therefore, although oxidation of metals such as iron and chromium is reduced, decarburization reactions are also less likely to occur, and it is presumed that it will be similarly difficult to achieve ultra-low carbon.

[参考例B] ところで、従来法では第2表の従来の欄で示す第2表 ようなCaOが50%、3iQ2が20%、Affi2
03が8%、MgOが10%の組成をもっスラグを用い
ていたのであるが、そのスラグを用いて精錬した後に、
AOD炉内の溶鋼の上面から除滓作業でスラグを取り除
いた状態で、溶鋼をAOD炉から取鍋へ移し変えた場合
の溶鋼の窒素含有量について、前述したように、AOD
炉における合金元素の調整後の溶鋼、出鋼後の溶鋼、最
$1製品において調べた。その結果を第4図の特性IB
に示す。
[Reference Example B] By the way, in the conventional method, as shown in the conventional column of Table 2, CaO is 50%, 3iQ2 is 20%, Affi2 is
Slag with a composition of 8% 03 and 10% MgO was used, but after refining with that slag,
Regarding the nitrogen content of the molten steel when the molten steel is transferred from the AOD furnace to the ladle after removing slag from the top surface of the molten steel in the AOD furnace, as mentioned above, the AOD
The investigation was conducted on molten steel after alloying element adjustment in the furnace, molten steel after tapping, and the lowest $1 product. The results are shown in Figure 4.
Shown below.

第4図の特性線Bに示すように、合金元素の調整後の溶
鋼における溶鋼の窒素含有量は43pl)mであり、出
鋼後の溶鋼における窒素含有量は871)I)mであり
、最終製品における窒素含有分は93ppmであった。
As shown in characteristic line B in Fig. 4, the nitrogen content in the molten steel after adjusting the alloying elements is 43 pl)m, and the nitrogen content in the molten steel after tapping is 871)I)m, The nitrogen content in the final product was 93 ppm.

第4図の特性線Aと特性線Bとの比較から明らかなよう
に、本実施例では窒素含有量を極めて低くでき、最終製
品において20〜3oppm程度低くできる。その理由
は、△OD炉から取鍋内へステンレス鋼を移し変える際
に、スラグで溶鋼を覆いつつ行なったので、窒素のピッ
クアップを極力防止できたためであると考えられる。
As is clear from the comparison between characteristic line A and characteristic line B in FIG. 4, in this example, the nitrogen content can be extremely reduced, and can be reduced by about 20 to 3 oppm in the final product. The reason for this is thought to be that when transferring the stainless steel from the ΔOD furnace to the ladle, the molten steel was covered with slag, which prevented nitrogen pickup as much as possible.

[評価] 以上説明したように本実施例では、窒素及び炭素の双方
を減少させることができ、故に最終製品において窒素が
69ppmであり、炭素が30ppmであり従って炭素
量と窒素量との合計は、最終製品において1ooppm
を維持することができ、超低炭素、低窒素のステンレス
鋼製品を得ることができる。
[Evaluation] As explained above, in this example, both nitrogen and carbon can be reduced. Therefore, in the final product, nitrogen is 69 ppm and carbon is 30 ppm, so the total amount of carbon and nitrogen is , 1ooppm in the final product
can be maintained, and can obtain ultra-low carbon, low nitrogen stainless steel products.

また、第3表に示すように取鍋内におけるアル第3表 ミニラムの添加歩留り率は87%であり、イオウの添加
歩留り率は65%と良好な値を維持できた。
Further, as shown in Table 3, the addition yield rate of the Al Table 3 minilum in the ladle was 87%, and the addition yield rate of sulfur was able to maintain good values of 65%.

その理由は、上記したアルミナリッチで脱硫能の低い組
成をもつスラグに起因するものと推察される。したがっ
て、炭素、窒素が共に極微量であると共にアルミニウム
及びイAつが含有されている磁気特性及び快削性を具有
したステンレス鋼の開発に寄与できる。
The reason for this is presumed to be due to the above-mentioned slag having a composition rich in alumina and having a low desulfurization ability. Therefore, it is possible to contribute to the development of stainless steel that contains trace amounts of both carbon and nitrogen, and also contains aluminum and aluminum, and has magnetic properties and free machinability.

[発明の効果1 本発明によれば、窒素含有量を低めに抑えつつ、取鍋内
の溶鋼に添加したアルミニウムの添加歩留り率を高めに
維持できるステンレス鋼の精錬方法を提供することがで
きる。
[Advantageous Effects of the Invention 1] According to the present invention, it is possible to provide a stainless steel refining method that can maintain a high addition yield rate of aluminum added to molten steel in a ladle while suppressing the nitrogen content to a low level.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例と参考例との炭素量を示すグラフであり
、第2図は実施例と参考例との温度変化を示すグラフで
あり、第3図はAOD炉がら取鍋に溶鋼を移し変えてい
る状態の模式図であり、第4図は実施例と参考例との窒
素量を示すグラフである。 第5図は塩基度と脱硫率との関係を示すグラフであり、
第6図はAUM鋼種の窒素量を示すグラフであり、第7
図はアルミニウムと窒素との平衡関係を示すグラフであ
る。
Figure 1 is a graph showing the carbon content of Examples and Reference Examples, Figure 2 is a graph showing temperature changes between Examples and Reference Examples, and Figure 3 is a graph showing molten steel in a ladle from an AOD furnace. FIG. 4 is a schematic diagram showing the state of transfer, and FIG. 4 is a graph showing the amount of nitrogen in Examples and Reference Examples. Figure 5 is a graph showing the relationship between basicity and desulfurization rate,
Figure 6 is a graph showing the nitrogen content of AUM steel types.
The figure is a graph showing the equilibrium relationship between aluminum and nitrogen.

Claims (1)

【特許請求の範囲】[Claims] (1)炉に貯留したステンレス鋼の高温状態の溶鋼に造
滓剤を添加し、重量%でCaOが35〜45%、SiO
_2が1〜5%、Al_2O_3が40〜50%、Mg
Oが5〜15%、不可避の不純物の組成をもつスラグを
生成し、前記スラグで前記炉内の前記溶鋼を精錬する工
程と、 前記スラグを前記炉内に残したままで、前記炉を傾斜さ
せて前記炉内の前記溶鋼を前記スラグと共に取鍋に注入
して前記取鍋内に移し変える工程と、 前記取鍋内の前記溶鋼の上面部に前記スラグを浮遊させ
た状態でアルミニウム含有剤を添加し、前記溶鋼のアル
ミニウム含有量を調整する工程とを順に実施することを
特徴とするステンレス鋼の精錬方法。
(1) A slag-forming agent is added to high-temperature molten stainless steel stored in a furnace, and the content of CaO is 35 to 45% by weight, SiO
_2 1-5%, Al_2O_3 40-50%, Mg
producing a slag having a composition of 5 to 15% O and unavoidable impurities, and refining the molten steel in the furnace with the slag; tilting the furnace while the slag remains in the furnace; pouring the molten steel in the furnace together with the slag into a ladle and transferring it into the ladle; and applying an aluminum-containing agent with the slag floating on the upper surface of the molten steel in the ladle. and adjusting the aluminum content of the molten steel.
JP33390988A 1988-12-28 1988-12-28 Method for refining stainless steel Pending JPH02179812A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33390988A JPH02179812A (en) 1988-12-28 1988-12-28 Method for refining stainless steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33390988A JPH02179812A (en) 1988-12-28 1988-12-28 Method for refining stainless steel

Publications (1)

Publication Number Publication Date
JPH02179812A true JPH02179812A (en) 1990-07-12

Family

ID=18271312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33390988A Pending JPH02179812A (en) 1988-12-28 1988-12-28 Method for refining stainless steel

Country Status (1)

Country Link
JP (1) JPH02179812A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100411264B1 (en) * 1999-12-27 2003-12-18 주식회사 포스코 METHOD FOR MANUFACTURING FERRITIC STAINLESS STEEL CONTAINING Ti FOR ELECTRONIC PART
WO2007091700A1 (en) * 2006-02-09 2007-08-16 Jfe Steel Corporation Method of denitrifying molten steel
JP2007231372A (en) * 2006-03-01 2007-09-13 Nisshin Steel Co Ltd Method for producing aluminum-killed steel

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100411264B1 (en) * 1999-12-27 2003-12-18 주식회사 포스코 METHOD FOR MANUFACTURING FERRITIC STAINLESS STEEL CONTAINING Ti FOR ELECTRONIC PART
WO2007091700A1 (en) * 2006-02-09 2007-08-16 Jfe Steel Corporation Method of denitrifying molten steel
US7901482B2 (en) 2006-02-09 2011-03-08 Jfe Steel Corporation Removal method of nitrogen in molten steel
JP2007231372A (en) * 2006-03-01 2007-09-13 Nisshin Steel Co Ltd Method for producing aluminum-killed steel

Similar Documents

Publication Publication Date Title
JP5221379B2 (en) Method for producing ferritic stainless steel with fine solidification structure and ferritic stainless steel produced thereby
CN105950826A (en) Deoxidizer for refining lag of ladle refining furnace and application method thereof
US3615348A (en) Stainless steel melting practice
JPH02179812A (en) Method for refining stainless steel
JPH10130714A (en) Production of steel for wire rod excellent in wire drawability and cleanliness
JP2000119732A (en) Melting method for high cleanliness extra-low carbon steel
US2715064A (en) Method of producing silicon steel
JPS6157372B2 (en)
JP2002146429A (en) METHOD FOR PRODUCING AUSTENITIC HIGH Mn STAINLESS STEEL
KR100224635B1 (en) Slag deoxidation material for high purity steel making
JP3896956B2 (en) Stainless steel manufacturing method
JPS6354045B2 (en)
JP3594757B2 (en) Melting method for high purity high Ni molten steel
KR890004863B1 (en) Process for high quality fe-si
EP0097971B1 (en) Method for producing low hydrogen content in steels produced by subsurface pneumatic refining
US1508083A (en) Manufacture of steel
RU2179586C1 (en) Method for making steel in oxygen converter
SU1153361A1 (en) Modified mixture
JPH06108137A (en) Method for melting low sulfur steel
US1086489A (en) Treating steel in electric furnaces with basic hearths.
KR20030047537A (en) Tundish flux fof titanium nitride inclusion
US3754900A (en) Production of low nitrogen high chromium ferrous alloys
JPH01225717A (en) Method for removing chromium from molten steel
JP3429094B2 (en) Method for producing Fe-Ni alloy containing Cr
JPS609564B2 (en) Inclusion refinement method for high silicon spring steel